
HAL Id: hal-01288930
https://hal.science/hal-01288930v1

Submitted on 15 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The µ-diff toolbox: user guide
Xavier Antoine, Bertrand Thierry

To cite this version:

Xavier Antoine, Bertrand Thierry. The µ-diff toolbox: user guide. 2015. �hal-01288930�

https://hal.science/hal-01288930v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


The µ-diff toolbox: user guide

Xavier Antoine and Bertrand Thierry

January 23, 2015

version 0.9



2



Contents

Copyright 5

Introduction to the user guide 7

How to install µ-diff 11

1 Boundary integral equations: a short survey 13
1.1 Standard integral equation formulations in acoustic scattering . . . . . . . . . . . 14

1.1.1 Scattering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2 Volume and boundary integral operators . . . . . . . . . . . . . . . . . . . 14
1.1.3 Direct integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.4 Brakhage-Werner indirect integral equation . . . . . . . . . . . . . . . . . 19
1.1.5 Neumann boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Multiple scattering case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 A more explicit writing of the integral equation formulations . . . . . . . 21
1.2.2 Single-scattering preconditioning . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Mixing Dirichlet and Neumann boundary conditions . . . . . . . . . . . . . . . . 23
1.4 The penetrable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 The boundary-value problem . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.2 An example of integral equation for the penetrable case . . . . . . . . . . 25
1.4.3 Calderón projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Multiple scattering by disks: approximation method in µ-diff 29
2.1 Spectral formulation used in µ-diff . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Notations and Fourier bases . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Integral operators - integral equations for a cluster of circular cylinders . 31
2.1.3 Single-scattering preconditioned integral equations . . . . . . . . . . . . . 33
2.1.4 Projection of the incident waves in the Fourier basis . . . . . . . . . . . . 33
2.1.5 Near-field evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.6 Far-field and Radar Cross Section (RCS) . . . . . . . . . . . . . . . . . . 35

2.2 Finite-dimensional approximations and numerical solutions proposed in µ-diff . . 35

3 Description of the µ-diff toolbox and first examples 39
3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Common argument and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Geometry: creating the obstacles . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Truncation of the Fourier series . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Incident waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3



3.4 Integral operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Available integral operators and numbering . . . . . . . . . . . . . . . . . 50
3.4.3 Dense storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.4 Sparse storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Examples available in µ-diff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Simple examples of multiple scattering problems solved with µ-diff 63
4.1 The Dirichlet boundary-value problem . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 The case of the EFIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 The case of the MFIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.4 The case of the CFIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.5 The case of the single-scattering preconditioned integral equation . . . . . 66
4.1.6 The case of the Brakhage-Werner integral equation . . . . . . . . . . . . . 67
4.1.7 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.9 Point source wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 The Neumann boundary-value problem . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Mixing Dirichlet and Neumann boundary conditions . . . . . . . . . . . . . . . . 76
4.4 Penetrable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Integral equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 A more complex geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3 Writing and solving the BIE using µ-diff . . . . . . . . . . . . . . . . . . . 78
4.4.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A List of the µ-diff functions (alphabetical order) 83

B List of the µ-diff functions (ordering by folder name) 89

4



Copyright

Copyright@2014 Xavier Antoine, Bertrand Thierry

Université de Lorraine
Institut Elie Cartan de Lorraine, UMR CNRS 7502
F-54506 Vandoeuvre-lès-Nancy Cedex
FRANCE

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

5



6



Introduction to the user guide

What is µ-diff?
The toolbox µ-diff has been developed for solving two dimensional acoustic multiple scatter-
ing problems by disks based on boundary integral equations. The toolbox is a set of Matlab
functions that compute accurately and efficiently the standard integral operators with in ad-
dition pre- and post-processing facilities. When the boundary integral formulation has been
written mathematically, the coding part can be easily done in µ-diff. Solving the linear system
is realized within the Matlab framework. No particular computational skill is needed, except
basic notions in Matlab. The boundary integral operators are spectrally discretized in Fourier
basis, thanks to the circular shape of the obstacles. This leads to an accurate solution and a
smaller size linear systems to solve, compared to usual Boundary Element Methods (BEMs).
For high-frequency and/or a large number of scatterers, an adapted algorithm is moreover used
that takes advantage of the the particular structure of the matrix (block Toeplitz).

What is not µ-diff?
Even if µ-diff is designed to solve multiple scattering problem, it is not a black-box that only
solves a particular problem, i.e. µ-diff does not a priori fix the integral equation formulation
to be used for solving a particular problem. This theoretical aspect is rather let to the user.
However, for users who are not fluent with boundary integral equations, this user guide provides
a rapid survey on boundary integral equations (see chapter 1). Furthermore, some examples of
efficient solutions based on integral equations in classical cases (Dirichlet/Neumann boundary
condition, penetrable scatterers) are detailled. We expect that these elements will help a non-
specialist of boundary integral equation to use µ-diff for solving multiple scattering problems.

How to use µ-diff?
It is difficult to describe the way to use µ-diff without speaking about integral equations. To
simplify the presentation, we provide a basic example. Let us assume that a (circular) sound-soft
scatterer Ω− is placed within a homogeneous medium which is illuminated by an incident plane
wave. The mathematical problem is to compute the scattered field solution to the Helmholtz
equation in the propagation domain

(∆ + k2)u = 0 in R2 \ Ω−

u = −uinc on ∂Ω−

+ Sommerfeld’s radiation condition at infinity
A possible integral representation of the scattered field u is the following

u(x) =
∫
∂Ω−

G(x,y)ρ(y)dy, ∀x ∈ R \ Ω−,

7



where G is the Green function and ρ is the density, solution of a boundary integral equation,
which can be e.g. the EFIE (see chapter 1)

Lρ = −uinc, with Lρ(x) =
∫
∂Ω−

G(x,y)ρ(y)dy, ∀x ∈ ∂Ω−.

The problem is hence reduced to solving this boundary integral equation: knowing ρ leads to
the possible computation of u at any point x of the propagation domain. Note that, in addition,
the far-field can be obtained easily thanks to its integral representation. The theoretical part
of the problem ends here and the computational part is handled now by µ-diff through the four
following steps

1. Pre-processing

(a) Creating the obstacles
(b) Building the right-hand side (−uinc)

2. Assembling the matrix of the integral operator(s)

3. Solving the resulting linear system

4. Post-processing: computing the far-field, near-field (at a point of the domain or on a grid),
or any other physical quantity of interest . . .

Most of the steps call some µ-diff functions except for the linear system solution which uses the
already existing and optimized Matlab’s functions for the direct (backslash operator “\”) and
iterative solvers (GMRES, . . . ). This is summarized as a diagram in Figure 1.

To whom µ-diff is designed to?

The toolbox µ-diff is designed for any scientist who needs an easy-to-use and efficient way to
either solve accurately the acoustic multiple scattering problem or to compute boundary integral
operators for a collection of disks. Indeed, the µ-diff toolbox can be used

• as a solver of the multiple scattering problem,

• as a framework for more theoretical studies on boundary integral equations.

What does this user guide contain?

The first chapter recalls some well-known properties of the boundary integral equations. Even
if this part is mostly theoretical, some practical aspects of boundary integral equations are also
provided for the impenetrable case and some examples of robust integral equations are given for
the penetrable case. Moreover, some examples of usage are provided with the µ-diff toolbox.
Chapter 2 explains the theory on which the µ-diff toolbox is based. More precisely, the boundary
integral operators are projected in the Fourier bases. Their associated matrices are derived, in
addition to other physical quantities of interest such as the far- or the near-fields. The µ-diff
toolbox is detailed in chapter 3: each function is explained and examples are provided. Simple
example are provided in chapter 4. Let us note that the list of available functions is given in
the appendix A, in the alphabetic order, and arranged by folder location in appendix B.

8



Mathematical problem

Reformulate the
problem as an

integral formulation

Integral equation Integral representation

Pre-processing:
geometry and

right-hand side b

Assemble
the matrix A

Solve the linear
system: Au = b

Post-processing:

• Far field

• Near field

• Other: incident
field, displaying
geometry, . . .

Figure 1: Schematic structure of a µ-diff script.

9



How to cite µ-diff?
Please cite the following reference if you use µ-diff

B. Thierry, X. Antoine, C. Chniti, H. Alzubaidi, µ-diff: an open Matlab toolbox for computing
multiple scattering problems by disks, Computer Physics Communications, to appear, 2015.

10



How to install µ-diff

Requirement
The toolbox µ-diff requires the installation of the Matlab software (http://www.mathworks.
com/), version 2011 or higher. Furthermore, µ-diff should work fine with previous versions of
Matlab, however without any guarantee.

Installation
The install process is realized as follows

1. Download the µ-diff toolbox, either by using git with

git clone http://mu-diff.math.cnrs.fr/git mu-diff

or by downloading the following zip file and unzipping it in your Matlab working directory
(or in any other directory that you fix yourself)

http://mu-diff.math.cnrs.fr/mu-diff/Download_files/mudiff.zip

Note that git should be prefered to stay up to date easily.

2. Add the µ-diff toolbox to the Matlab’s path (including subfolders!), by using either the
graphical interface of Matlab or the addpath and save path functions.

3. Test the µ-diff install by typing in the Matlab command window

BenchmarkDirichlet;

This should solve the multiple scattering problem based on classical boundary integral
equations, as described in chapter 1, and displays the Radar Cross Section and the history
of GMRES for the various boundary integral equations, as Figure ??.

4. Other tests can be launched to check that all evaluations of the integral operators works
correctly

BenchmarkNeumann;
BenchmarkPenetrable;
BenchmarkCalderon;

5. If everything went right: congratulation! Your µ-diff installation is working!

11

http://www.mathworks.com/
http://www.mathworks.com/
http://mu-diff.math.cnrs.fr/mu-diff/Download_files/mudiff.zip


−4 −3 −2 −1 0 1 2 3

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x

y
Obstacles

(a) Obstacles (b) Absolute value of the total field

0 50 100 150 200 250 300 350

−15

−10

−5

0

5

10

15

Angle of reception (degree)

R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B)

Radar cross section

 

 
EFIE
MFIE
CFIE
BW
SpEFIE
SpMFIE
SpCFIE
SpBW
Precond
Sparse Precond

(c) Radar cross section

0 2 4 6 8 10 12 14 16 18 20
−12

−10

−8

−6

−4

−2

0
History of convergence of the GMRES, k = 1, without restart

Iteration number

G
M

R
ES

 re
si

du
al

 (l
og

)

 

 
EFIE
MFIE
CFIE
BW
Sparse EFIE
Sparse MFIE
Sparse CFIE
Sparse BW
Precond
Sparse Precond

(d) History of convergence of the GMRES

Figure 2: 4 of the different figures that pop up after launching BenchmarkDirichlet;. The
first figure shows the two obstacles and the second one the total field. The two others figures,
(c) and (d) represent respectively the radar cross section for the different boundary integral
equations and the history of convergence of the GMRES solver.

If you want to see some other examples by using µ-diff, you can try and launch the following
time reversal experiments

• DORT_NotPenetrable;

• DORT_dielectric;

12



Chapter 1

Boundary integral equations: a short
survey

Contents
1.1 Standard integral equation formulations in acoustic scattering . . . 14

1.1.1 Scattering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2 Volume and boundary integral operators . . . . . . . . . . . . . . . . . . 14
1.1.3 Direct integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.4 Brakhage-Werner indirect integral equation . . . . . . . . . . . . . . . . 19
1.1.5 Neumann boundary condition . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Multiple scattering case . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 A more explicit writing of the integral equation formulations . . . . . . 21
1.2.2 Single-scattering preconditioning . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Mixing Dirichlet and Neumann boundary conditions . . . . . . . . . 23
1.4 The penetrable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 The boundary-value problem . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.2 An example of integral equation for the penetrable case . . . . . . . . . 25
1.4.3 Calderón projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The µ-diff toolbox is based on integral equations and uses the four standard boundary integral
operators. The derivation and the choice of the integral formulation is let to the user, even
if some of them are given below. In this chapter, we provide all the necessary mathematical
background to solve time-harmonic wave scattering problems by (penetrable or impenetrable)
circular cylinders based on integral equations. The only mathematical effort requires is that the
user must of course choose the integral formulation that he wants to solve: when the integral
formulation is written, then it can be solved by using µ-diff.
This chapter begins by presenting the potential theory and the four classical boundary integral
operators with their main properties. The case of the scattering by disks is then studied and
the boundary integral operators are projected in the Fourier bases, leading to infinite matrices
but with some analytic expressions of their coefficients. We then discuss the finite dimensional
approximation. The chapter concludes with the expressions of both the near- and far-fields,
and the projections of the right-hand side onto the Fourier bases (incident wave).

13



1.1 Standard integral equation formulations in acoustic scatter-
ing

We present a way to derive standard direct integral equations in the case of non penetrable
obstacles. Even if µ-diff can be used to solve the penetrable case, studying the impenetrable
case is a suitable way to introduce the boundary integral operators and their properties. This
section is strongly inspired by [5, 7, 15, 23].

1.1.1 Scattering problems

Let us consider a homogeneous, isotropic and non dissipative medium filling the whole space
R2 and containing an open and bounded set Ω−, possibly not connected but such that each
component is itself simply connected. Let Γ be its boundary and n the unit normal vector
outwardly directed to Ω−. The domain of propagation is denoted by Ω+ = R2 \ Ω−. When
illuminated by an incident time-harmonic wave uinc, the obstacle Ω− generates a scattered wave
field u that is solution to the boundary-value problem

∆u+ k2u = 0 in Ω+

u = −uinc on Γ
+ u is outgoing to Ω−

(1.1)

(The time-dependent form of the wave is assumed to be e−iωt, the wavenumber k := 2π/ω is
supposed to be real and positive.) The first equation of system (1.1) is the well-known Helmholtz
equation. For the sake of conciseness, we consider a Dirichlet boundary condition on Γ. The
Neumann case will be studied later. The condition ”u is outgoing to Ω−” means that u satisfies
the Sommerfeld’s radiation condition at infinity

lim
‖x‖→+∞

‖x‖1/2
(
∇u · x

‖x‖ − iku
)

= 0,

where ‖x‖ =
√
x2

1 + x2
2 is the euclidian norm of R2. Since uinc is a solution of the Helmholtz

equation in R2, then the total field uT = u+ uinc is solution of the following problem
∆uT + k2uT = 0 in Ω+

uT = 0 on Γ
+(uT − uinc) is outgoing to Ω−

(1.2)

It is known that, in a suitable mathematical framework, the Dirichlet scattering boundary-value
problems is well-posed [14]. More precisely, we have

Theorem 1.1. The problems (1.1) and (1.2) are uniquely solvable.

1.1.2 Volume and boundary integral operators

Let the volume single-layer integral operator L be defined by (see e.g. [20, Theorem 6.12])

L : H−1/2(Γ) −→ H1
loc(R2)

ρ 7−→ L ρ, ∀x ∈ R2, L ρ(x) =
∫

Γ
G(x,y)ρ(y) dΓ(y),

14



and the volume double-layer integral operator M by

M : H1/2(Γ) −→ H1
loc(R2 \ Γ)

λ 7−→ Mλ, ∀x ∈ R2 \ Γ,Mλ(x) = −
∫

Γ
∂nyG(x,y)λ(y) dΓ(y),

where the spaces H−1/2(Γ), H1(R2 \ Γ), H1
loc(R2 \ Γ) are the usual Sobolev spaces and the

two-dimensional Green function G(· , ·) is given by

∀x,y ∈ R2, x 6= y, G(x,y) = i

4H
(1)
0 (k‖x− y‖). (1.3)

The function H(1)
0 is the first-kind Hankel function of order zero. The way the integral operators

on Γ must be understood is through the duality product between the Sobolev space H1/2(Γ)
and its dual space H−1/2(Γ). However, when the data (uinc and Γ) are smooth enough, then the
scattered field u is also regular and the dual product can be identified to the (non-hermitian)
inner product on L2(Γ)

〈f, g〉H−1/2,H1/2 =
∫

Γ
f(x)g(x) dΓ(x).

This identification is considered throughout this paper.
Let us now define the trace γ±0 and the normal derivative trace γ±1 operators (see [13, Appendix
A]), where the plus/minus signs specify whether the trace is taken from the inside of Ω+/Ω−.
First, the trace operators γ±0 : H1(Ω±)→ H1/2(Γ) are defined so that, if v ∈ C∞(Ω±), then

γ±0 v(x) = lim
z∈Ω±→x

v(z),

for almost every x ∈ Γ. By introducing the space H1(Ω±; ∆) := {v ∈ H1(Ω±); ∆v ∈ L2(Ω±)}
and the linear operators γ±∗ : H1/2(Γ) → H1(Ω±) such that γ±0 γ±∗ ϕ = ϕ, for all ϕ ∈ H1/2(Γ),
the normal traces γ±1 : H1(Ω±; ∆)→ H−1/2(Γ) can be defined [13, Equation (A.28)]

∀v ∈ H1(Ω±; ∆),∀ϕ ∈ H1/2(Γ),(
γ±1 v, ϕ

)
H−1/2(Γ),H1/2(Γ)

:= ∓
[∫

Ω±
∆v(x)w(x) dx +

∫
Ω±
∇v(x) · ∇w(x) dx

]
, (1.4)

where w := γ±∗ ϕ (and thus satisfies γ±0 w = ϕ). Since the quantities involved in a scat-
tering problem do not belong to H1(Ω+) but rather to H1

loc(Ω+), the exterior trace and
normal derivative trace operators are naturally extended as γ+

0 : H1
loc(Ω+) → H1/2(Γ) and

γ+
1 : H1

loc(Ω+; ∆) → H−1/2(Γ) by γ+
0 (v) = γ+

0 (vv′) and γ+
1 (v) = γ+

1 (vv′), where v′ is an arbi-
trarily compactly supported and infinitely differentiable function on Ω+ which is equal to 1 in
a neighborhood of Γ, and where H1

loc(Ω+; ∆) := {v ∈ H1
loc(Ω+); ∆v ∈ L2

loc(Ω+)}. Remark that,
when the function v is sufficiently smooth, then its normal derivative trace γ±1 v, given by (1.4),
belongs to L2(Γ) and can be written as γ±1 v(x) = limz∈Ω±→x∇v(z) · n(x), for almost every x
on Γ. Note also that, the single- and double-layer potentials, introduced previously, belong not
only to H1

loc(Ω+)⋃H1(Ω−) but also to H1
loc(Ω+; ∆)⋃H1(Ω−; ∆) (see e.g. [13, §2.2]). Some

well-known properties of the single- and double-layer potentials are summarized in the two fol-
lowing propositions. Their proof can be found for example in [20, Theorems 7.5 and 9.6] for
proposition 1.2 and in [20, Theorem 6.12] for proposition 1.3.

Proposition 1.2. For any densities ρ ∈ H−1/2(Γ) and λ ∈ H1/2(Γ), the single-layer potential
L ρ and double-layer potential Mλ are outgoing solutions to the Helmholtz equation in R2 \ Γ.
Moreover, the scattered field u, solution to (1.1), can be written as

∀x ∈ Ω+, u(x) = −L (∂nu|Γ)(x)−M (u|Γ)(x).

15



We also have

Proposition 1.3. The trace and the normal derivative trace of the operators L and M are
given by the following relations

γ±0 L ρ = Lρ, γ±0 Mλ =
(
∓1

2I +M

)
λ,

γ±1 L ρ =
(
∓1

2I +N

)
ρ, γ±1 Mλ = Dλ,

(1.5)

where I is the identity operator and, for x ∈ Γ, ρ ∈ H−1/2(Γ) and λ ∈ H1/2(Γ), the four
boundary integral operators are defined by

L : H−1/2(Γ) −→ H1/2(Γ), Lρ(x) =
∫

Γ
G(x,y)ρ(y)dΓ(y),

M : H1/2(Γ) −→ H1/2(Γ), Mλ(x) = −
∫

Γ
∂nyG(x,y)λ(y)dΓ(y),

N : H−1/2(Γ) −→ H−1/2(Γ), Nρ(x) =
∫

Γ
∂nxG(x,y)ρ(y)dΓ(y) = −M∗ρ(x),

D : H1/2(Γ) −→ H−1/2(Γ), Dλ(x) = −∂nx

∫
Γ
∂nyG(x,y)λ(y)dΓ(y).

(1.6)

All along the user guide, the boundary integral operators are written with a roman letter (e.g. L)
whereas the volume integral operators are denoted by a calligraphic letter (e.g. L ). According
to [21, Theorems 3.4.1 and 3.4.2], the boundary integral operators L and D are invertible,
providing k is not an irregular frequency. More precisely, we have

Theorem 1.4. Let FD(Ω−) (resp. FN (Ω−)) be the countable set of positive wavenumbers k
accumulating at infinity such that the interior homogeneous Dirichlet (resp. Neumann) problem

{
−∆v = k2v in Ω−,
v = 0 (resp. ∂nv = 0) on Γ,

(1.7)

admits non-trivial solutions. Then, the operator L (resp. D) realizes an isomorphism from
H−1/2(Γ) into H1/2(Γ) (resp. from H1/2(Γ) into H−1/2(Γ)) if and only if k 6∈ FD(Ω−) (resp.
k 6∈ FN (Ω−)).

These irregular frequencies k of FD(Ω−) (resp. of FN (Ω−)) are exactly the square-roots of
the eigenvalues of the Laplacian operator (−∆) for the homogeneous interior Dirichlet (resp.
Neumann) problem. In the multiple scattering case, that is when Ω− = ⋃M

p=1 Ω−p is multiply
connected, the following equalities hold true

FD(Ω−) =
M⋃
p=1

FD(Ω−p ) and FN (Ω−) =
M⋃
p=1

FN (Ω−p ). (1.8)

Throughout the paper, FDN (Ω−) denotes the set of all irregular frequencies

FDN (Ω−) = FD(Ω−)
⋃
FN (Ω−). (1.9)

16



1.1.3 Direct integral equations

Generalities

This section details the way of deriving direct integral equations, as described in [5, 7, 15, 23].
This approach is nonstandard but has advantages that appear later in the user guide in section
1.2.2. The principle is to write the total field uT as a linear combination of a single- and
double-layer potentials

uT (x) = L ρ(x) + Mλ(x) + uinc(x), ∀x ∈ Ω+, (1.10)

where (λ, ρ) is now the unknown of the problem. Thanks to proposition 1.2, such an expression
ensures that both uT is solution of the Helmholtz equation in Ω+ and (uT − uinc) is outgo-
ing. Following [7], an integral equation is said to be direct when the densities (λ, ρ) have
a physical meaning. Indeed, for these integral equations, they are exactly the Cauchy data
(−uT |Γ,−∂nuT |Γ). However, this is not a choice but a consequence of the construction of the
integral equation. In electromagnetic scattering, direct and indirect integral equations are more
often referred to as respectively field and source integral equations (see e.g. Harington and
Mautz [16, 19] or Borel [9]).
From now on, the problem, with unknown (λ, ρ), has only one equation given by the Dirichlet
boundary condition on Γ. To obtain a second equation, a fictitious interior wave u−T , defined in
Ω−, is introduced through

u−T (x) = L ρ(x) + Mλ(x) + uinc(x), ∀x ∈ Ω−. (1.11)

Remark that, on the one hand u−T is a solution of the Helmholtz equation in Ω− and, on the other
hand, due to the trace relations (1.5), the couple of unknowns (λ, ρ) satisfies the well-known
jump-relations {

λ = u−T |Γ − uT |Γ,

ρ = ∂nu
−
T |Γ − ∂nuT |Γ.

(1.12)

As the wave u−T is fictitious, it does not act on the solution uT of the scattering problem. As
a consequence, the boundary condition on Γ imposed to u−T has no influence on uT . Let this
constraint be represented by an operator A such that u−T is the solution of the following interior
problem {

∆u−T + k2u−T = 0 in Ω−,
Au−T = 0 on Γ.

(1.13)

To build a direct integral equation, the operator A is chosen such that the field u−T vanishes in
Ω−. Supposing that such an operator exists, then the following equalities hold on the boundary
Γ {

u−T |Γ = 0,
∂nu

−
T |Γ = 0.

Consequently and thanks to the Dirichlet boundary condition uT |Γ = 0, the jump relations
(1.12) read as {

λ = 0,
ρ = −∂nuT |Γ,

Therefore, both the fictitious interior field u−T and the total field uT can be composed by a
single-layer potential only{

uT (x) = L ρ(x) + uinc(x), ∀x ∈ Ω+,

u−T (x) = L ρ(x) + uinc(x), ∀x ∈ Ω−.

17



The unknown ρ is finally obtained through the solution of the (direct) integral equation Au−T =
0, which can be written as

AL ρ = −Auinc. (1.14)

Both the expression and the nature of the integral equation (1.14) depend on the boundary
condition imposed to u−T , represented here by the operator A. The next steps introduce three
usual direct integral equations. The proofs are not provided and can be found for example in
[7] or [23].

EFIE (Electric Field Integral Equation)

For this first integral equation, the operator A is the interior trace operator γ−0 on Γ. Thanks to
the continuity on Γ of the single-layer integral operator L (see equation (1.5)), the boundary
integral equation (1.14) becomes

Lρ = −uinc|Γ. (1.15)

Due to theorem 1.4, this first-kind integral equation, called Electric Field Integral Equation
(EFIE), is well-posed and equivalent to the scattering problem (1.2) except for Dirichlet irregular
frequencies.

Proposition 1.5. If k 6∈ FD(Ω−), then the function L ρ + uinc is solution to the scattering
problem (1.2) if and only if ρ is the solution of the EFIE (1.15).

When k ∈ FD(Ω−), the integral operator L is no longer bijective but is still one-to-one. It
can be shown that the kernel of the operator L is a subset of the kernel of the operator L .
Consequently, for every solution ρ̃ of the EFIE, the associated single-layer potential L ρ̃+ uinc

is still the solution of the scattering problem (1.2).

MFIE (Magnetic Field Integral Equation)

Another possibility is to choose A = γ−1 , the interior normal derivative trace. Using the traces
formulas (1.5), the integral equation (1.14) becomes(1

2I +N

)
ρ = −∂nu

inc|Γ. (1.16)

This Fredholm second-kind integral equation, named Magnetic Field Integral Equation (MFIE),
is well-posed and equivalent to the scattering problem (1.2) as far as k is not an irregular
Neumann frequency.

Proposition 1.6. If k 6∈ FN (Ω−), then the quantity L ρ+ uinc is the solution of the scattering
problem (1.2) if and only if ρ is the solution of the MFIE (1.16).

For any irregular frequency k of FN (Ω−), the operator
(

1
2I +N

)
is no longer one-to-one. In

that case and unlike the EFIE, the single-layer potential L ρ̃+uinc based on a solution ρ̃ of the
MFIE is not guaranteed to be the solution of the scattering problem (1.2).

CFIE (Combined Field Integral Equation)

To avoid the irregular frequencies problem, Burton and Miller [11] considered a linear combi-
nation of the EFIE and the MFIE by imposing a Fourier-Robin boundary condition to u−T on
the boundary Γ

A = (1− α)γ−1 + αηγ−0 , (1.17)

18



with
0 < α < 1 and =(η) 6= 0, (1.18)

where =(η) is the imaginary part of the complex number η. Hence, the boundary integral
equation (1.14) reads as[

(1− α)
(1

2I +N

)
+ αηL

]
ρ = −

[
(1− α)∂nu

inc|Γ + αηuinc|Γ
]
. (1.19)

This Combined Field Integral Equation (CFIE, denomination of Harrington and Mautz [16] in
electromagnetism) or Burton-Miller integral equation [11] is well-posed for any frequency k.

Proposition 1.7. For any k > 0 and for any complex-valued numbers α and η satisfying
condition (1.18), the function L ρ+ uinc is the solution of the scattering problem if and only if
ρ is the solution of the CFIE (1.2).

1.1.4 Brakhage-Werner indirect integral equation

The indirect Brakhage-Werner Integral Equation (BWIE) is derived now. Let us first start by
introducing some notations. The total field uT is here sought as a linear combination of a single-
and a double-layer potentials applied to the density ψ ∈ H1/2(Γ)

uT = uinc + LBWψ,

where the operator LBW with parameter ηBW is given by

∀x ∈ Rd \ Γ,LBWψ(x) = (−ηBWL −M )ψ(x) =∫
Γ

(
∂nyG(x,y)− ηBWG(x,y)

)
ψ(y) dΓ(y), (1.20)

with =(η) 6= 0. The integral equation is obtained by applying the exterior trace γ+
0 to uT .

Indeed, the Dirichlet boundary condition γ+
0 uT = 0 and the trace relations (1.5) directly give

the Brakhage-Werner integral equation with ψ as unknown

LBWψ = −uinc|Γ, (1.21)

with
LBW =

(
−ηL−M + 1

2I
)
.

This second-kind integral equation does not suffer from irregular frequency [10].

Proposition 1.8. For all k > 0, the quantity LBWψ + uinc is the solution to (1.2) if and only
if ψ is the solution of the Brakhage-Werner integral equation (1.21).

A numerical study concerning the optimal choice of the parameter ηBW (see relation (1.20)) is
proposed in [17] in the case of a single spherical or circular obstacle of radius R. For a Dirichlet
boundary condition, the choice ηBW = i/2 max(1/R, k) leads to a reasonable condition number
of the matrix of the linear system associated to the Brakhage-Werner integral equation, for a
sufficiently high frequency. Recent works have been developed on how to choose this parameter
for much more general domains, see for example [12, §6] and [13, §5.1] for the case of large k and
[8, §2.6 and §2.7] for the case of small frequency k. Note also that, according to [13, Remark
2.24], these results apply to both LBW and the CFIE operator, since when α = 1/2, these
operators are adjoints (up to a factor of 1/2) in the real L2 inner product. Other generalizations
of these equations, when ηBW is an operator, are available for example in [1, 3, 4]. They provide a
clear background concerning the generalization and improvement of both the CFIE and BWIE.

19



1.1.5 Neumann boundary condition

Consider now the scattering of a wave by a sound-hard obstacle (Neumann boundary condition)
∆u+ k2u = 0 in Ω+,

∂nu = −∂nu
inc on Γ,

+ u is outgoing.

The scattered field u is sought in the form of a linear combination between a single- and a
double-layer potentials

u(x) = L ρ(x) + Mλ(x), x ∈ Ω+.

To build the direct integral equations, let us introduce the interior fictitious wave u−T = L ρ+
Mλ + uinc defined in Ω−. On Γ, a boundary condition is hence enforced to the field u−T such
that it vanishes in Ω−. In that case the jump relations (1.12) lead to{

λ = −uT |Γ,
ρ = −∂nuT |Γ = 0.

The Neumann boundary condition then makes the density ρ vanishing. The interior u−T and
exterior uT fields are obtained through a double-layer potential

u−T (x) = Mλ(x) + uinc(x) ∀x ∈ Ω−,

uT = Mλ(x) + uinc(x) ∀x ∈ Ω+.

As previously, the boundary condition applied to u−T is the integral equation to solve. Here are
listed the four integral equations obtained in addition with their properties

• EFIE: applying a homogeneous Neumann boundary condition to the wave u−T

∂nu
−
T |Γ = 0, (1.22)

leads to the EFIE for the Neumann boundary condition

Dλ = −∂nu
inc|Γ.

This first-kind integral equation is well-posed and equivalent to the scattering problem as
long as k is not an irregular frequency for the interior homogeneous Neumann problem.
If k ∈ FN (Ω−) however, then after reconstruction, the solution obtained by the EFIE is
correct.

• MFIE: applying a Dirichlet boundary condition to the field u−T

u−T |Γ = 0,

leads to the MFIE for the Neumann boundary condition(1
2I +M

)
λ = −uinc|Γ. (1.23)

This second-kind Fredholm integral equation (the operator M is compact) is well-posed.
It is equivalent to the scattering problem if k is not an interior resonance for the Dirichlet
boundary-value problem. In that case, the solution obtained from the MFIE is not correct
and must not be used for a practical computation.

20



• CFIE: applying the mixed boundary condition (1.17) to the wave u−T

(1− α)∂nu
−
T |Γ + αηu−T |Γ = 0,

with
0 < α < 1 et =(η) 6= 0,

leads to the CFIE for a Neumann boundary condition[
(1− α)D + αη

(1
2I +M

)]
λ = −

[
(1− α)∂nu

inc|Γ + αηuinc|Γ
]
. (1.24)

This first-kind integral equation is uniquely solvable for any wavenumber k and is equiv-
alent to the scattering problem.

• BWIE: the wave uT is represented as

u = (−L − ηM )ψ,

with =(η) 6= 0. Applying the boundary condition on Γ gives the BWIE(
−ηD + 1

2I −N
)
ψ = −∂nu

inc|Γ. (1.25)

This first-kind integral equation is also uniquely solvable for every k > 0 and equivalent
to the scattering problem.

1.1.6 Summary

The following table summarizes the main properties of the different integral equations for a
Dirichlet (respectively Neumann) boundary condition

Dirichlet (resp. Neumann) boundary condition
Integ. Eq. Nature Uniquely solvable for . . . Correct physical solution? . . .

EFIE 1st kind k 6∈ FD(Ω−) (resp. FN (Ω−)) yes
MFIE 2nd kind k 6∈ FN (Ω−) (resp. FD(Ω−)) no
CFIE 2nd (1st) kind k > 0 yes
BWIE 2nd (1st) kind k > 0 yes

1.2 Multiple scattering case

1.2.1 A more explicit writing of the integral equation formulations

The domain Ω− is now supposed to be a collection of M disjoint bounded open sets Ω−p of R2,
p = 1, . . . ,M , such that each domain R2 \Ω−p is connected. In the user guide, single-scattering
designates scattering in a medium containing only one scatterer whereas multiple scattering is
used for a medium containing more than one obstacle. We focus on the multiple scattering case,
i.e. M ≥ 2. Since Ω− is composed of M disjoint obstacles Ω−p , p = 1, . . . ,M , the single-layer
volume integral operator L can be written as the sum ofM operators Lq, q = 1, . . . ,M , defined
by

Lq : H−1/2(Γq) −→ H1
loc(R2)

ρq 7−→ Lqρq, ∀x ∈ R2, Lqρq(x) =
∫

Γq

G(x,y)ρq(y) dy. (1.26)

21



Therefore, the single-layer potential can be decomposed as follows

∀ρ ∈ H−1/2(Γ), L ρ =
M∑
q=1

Lqρq, with ρq = ρ|Γq . (1.27)

By introducing the operators Lp,q, for p, q = 1, . . . ,M , defined on H−1/2(Γq) by

∀ρq ∈ H−1/2(Γq), Lp,qρq = (Lqρq)|Γp ,

that is
∀ρq ∈ H−1/2(Γq), ∀x ∈ Γp, Lp,qρq(x) =

∫
Γq

G(x,y)ρq(y) dy, (1.28)

then the EFIE can be written in the following matrix form
L1,1 L1,2 . . . L1,M

L2,1 L2,2 . . . L2,M

...
... . . . ...

LM,1 LM,2 . . . LM,M



ρ1
ρ2
...
ρM

 = −


uinc|Γ1

uinc|Γ2
...

uinc|ΓM

 . (1.29)

The same procedure can be applied to the other volume operator M and the other boundary
integral operators M,N and D to obtain

Lp,q : H−1/2(Γq) −→ H1/2(Γp), Lρq(x) =
∫

Γq

G(x,y)ρq(y)dΓq(y),

Mp,q : H1/2(Γq) −→ H1/2(Γp), Mλq(x) = −
∫

Γq

∂nyG(x,y)λq(y)dΓq(y),

Np,q : H−1/2(Γq) −→ H−1/2(Γp), Nρq(x) =
∫

Γq

∂nxG(x,y)ρq(y)dΓq(y),

Dp,q : H1/2(Γq) −→ H−1/2(Γp), Dλq(x) = −∂nx

∫
Γq

∂nyG(x,y)λq(y)dΓq(y).

1.2.2 Single-scattering preconditioning

Let us introduce the single-scattering operator of the EFIE L̂ as the diagonal part of the operator
L defined by

L̂ =


L1,1 0 . . . 0

0 L2,2 . . . 0
...

... . . . ...
0 0 . . . LM,M

 . (1.30)

Let k be a wavenumber k that is not an interior resonance (k 6∈ FD(Ω−)(Ω)), implying that L
and L̂ are both invertible. The single-scattering preconditioner then simply consists in L̂

L̂−1 =


(L1,1)−1 0 . . . 0

0 (L2,2)−1 . . . 0
...

... . . . ...
0 0 . . . (LM,M )−1

 .

The associated preconditioned EFIE becomes

L̂−1Lρ = −L̂−1uinc|Γ, (1.31)

22



where the operator L̂−1L has the following matrix form

L̂−1L =


I (L1,1)−1L1,2 . . . (L1,1)−1L1,M

(L2,2)−1L2,1 I . . . (L2,2)−1L2,M

...
... . . . ...

(LM,M )−1LM,1 (LM,M )−1LM,2 . . . I

 , (1.32)

with I the identity operator. Note that this preconditioning accelerates the convergence rate of
an iterative solver, like e.g. the GMRES. The single scattering preconditioner can be applied
to the other integral equations and the following result holds [24]

Proposition 1.9. When preconditioned by their single-scattering preconditioners, the EFIE,
MFIE and CFIE become identical and similar to the preconditioned BWIE (equal up to an
invertible operator). In other words, after being preconditioned, the four integral equations lead
to the same convergence rate when an iterative solver is applied.

This proposition shows in particular that there is no need in computing the single-scattering
preconditioned versions of all the integral equations. Because the resulting operator exhibits a
good convergence rate for multiple scattering, it is hard coded in µ-diff for both the Dirichlet
and the Neumann cases. They are based on the single-layer potential for the Dirichlet case and
the double-layer potential for the Neumann case (EFIE, MFIE or CFIE in both cases).

1.3 Mixing Dirichlet and Neumann boundary conditions
Let us assume that the collection of M obstacles is such that there is MD sound-soft obstacles
and MN sound-hard scatterers, with MD + MN = M . Without loss of generality, let the
sound-soft obstacles Ω−p be numbered for p = 1, . . . ,MD, and the sound-hard ones for p =
MD + 1, . . . ,MD +MN . The problem then reads as

(∆ + k2)u = 0 in Ω+,
u = −uinc on Γp, p = 1, . . . ,MD,

∂nu = −∂nu
inc on Γp, p = MD + 1, . . . ,MD +MN ,

+ u is outgoing to Ω−.

The field is then represented as a linear combination of single- and double-layer potentials

u =
M∑
q=1

Lqρq +
M∑
q=1

Mqλq,

where Lq is given by (1.33) and Mq by

Mq : H1/2(Γq) −→ H1
loc(R2)

λq 7−→ Mqλq, ∀x ∈ R2, Mqλq(x) =
∫

Γq

∂nyG(x,y)λq(y) dy. (1.33)

A possible way to solve this problem is to apply the CFIE on both collections. To derive the
CFIE, a fictitious field is introduced and the mixed condition (1.17) is applied on it. Following
the theory previously described, this would lead to{

λq = 0 for q = 1, . . . ,MD

ρq = 0 for q = MD + 1, . . . ,MD +MN ,

23



and the scattered field u is represented as

u =
MD∑
q=1

Lqρq +
MD+MN∑
q=MD+1

Mqλq.

To simplify, let us assume now that there are only two obstacles, the first one being sound-soft
and the second one being sound-hard. The extension to M various scatterers is straightfor-
ward. The boundary condition (1.17) applied to the interior fictitious field leads to the integral
operator (

A1L1 A1M2
A2L1 A2M2

)
,

where Ap represents the boundary condition (1.17) on Γp only

Ap = (1− α)γ−1,p + αηγ−0,p.

Applying the trace formulas leads to the system (1− α)
(
I

2 +N1,1

)
+ αηL1,1 (1− α)D2,1 + αηM2,1

(1− α)N1,2 + αηL1,2 (1− α)D2,2 + αη

(
I

2 +M2,2

)

(
ρ1
λ2

)
=
(
b1
b2

)
,

with
bp = (1− α)uinc|Γp + αη∂nu

inc|Γp .

For M obstacles, the same procedure can be applied to obtain(
I

2 +A

)
ϕ = b, (1.34)

where

• the matrix A of size M ×M is such that

Ap,q =
{

(1− α)Np,q + αηLp,q, if q ≤MD,

(1− α)Dp,q + αηMp,q, if q > MD,
(1.35)

• the unknown vector ϕ = (ϕq)1≤q≤M collects the contributions of the elementary densities

ϕq =
{
ρq, if 1 ≤ q ≤MD,

λq, if MD + 1 ≤ q ≤ ND,

• the right-hand side b = (bp)1≤p≤M is given by

bp = (1− α)uinc|Γp + αη∂nu
inc|Γp .

1.4 The penetrable case

1.4.1 The boundary-value problem

Let assume that the obstacles are now penetrable with a contrast function n such that

n(x) =
{
np if x ∈ Ω−p ,
0 otherwise,

24



where np are constant for each obstacle. The boundary-value problem to solve is given by: find
the total field uT such that 

(∆ + k2)uT = 0 in Ω+,
(∆ + k2n2)uT = 0 in Ω−,

uT = 0 on Γ,
∂nuT = 0 on Γ,

(uT − uinc) is outgoing to Ω−.

1.4.2 An example of integral equation for the penetrable case

To rewrite this problem as a boundary integral equation, let the field uT be rewritten as

uT =
{
u+ + uinc in Ω+,

u− in Ω−,

where u+ and u− are solutions of the coupled problems

(∆ + k2)u+ = 0 in Ω+,
(∆ + k2n2)u− = 0 in Ω−,

(u+ − u−)|Γ = −uinc|Γ on Γ,
(∂nu

+ − ∂nu
−)|Γ = −∂nu

inc|Γ on Γ,
u+ is outgoing to Ω−.

Following the EFIE procedure, let the two fields u+ and u− be expressed as a single-layer
potential only 

u+(x) = L +ρ+(x) =
∫

Γ
G+(x,y)ρ+(y) dy in Ω+,

u−(x) = L −ρ−(x) =
∫

Γ
G−(x,y)ρ−(y) dy in Ω−,

where
G± = i

4H
(1)
0 (k±‖x− y‖)

corresponds to the Green function with respectively the wavenumber k+ := k and k− := kn
(note that k− can differ from one obstacle to another). Applying the transmission boundary
conditions for the trace and normal derivative trace on Γ leads to the following couple system
of boundary integral equations L+ −L−

−I2 +N+ −I2 −N
−

( ρ+

ρ−

)
=
(
−uinc|Γ
−∂nu

inc|Γ

)
. (1.36)

The upper index ± appearing on the boundary integral operators specifies which Green function
is used in their expression. For instance, we have

L±ρ =
∫

Γ
G±(x,y)ρ(y) dy.

It can be proved that this integral equation is well-posed if k is not an irregular frequency of
the interior homogeneous Dirichlet problem. The example BenchmarkPenetrable.m located in
Examples/Benchmark solves the penetrable scattering problem by using this integral equation.
Actually, the program has been written in the dielectric case (not the acoustic one), and thus,

25



the transmission condition on the normal derivative is there slightly modified to allow a possible
jump in the normal derivative

(∂nu
+ − µ

µ0
∂nu

−)|Γ = −∂nu
inc|Γ,

where µ0 is the magnetic permeability of the medium and µ = µp in Ω−p is the magnetic
permeability of the domain Ω−p . The associated integral equation is then obtained by modifying
the quantity

−I2 −N
−

by
µ

(
−I2 −N

−
)

in the matrix of (1.36).

1.4.3 Calderón projectors

Let us consider the Helmholtz representation of the interior field u−T = u− and the exterior one{
u+
T = uinc −M +(u+|Γ)−L +(∂nu

+|Γ),
u−p = u−T |Ωp = M−

p (u−|Γ) + L −
p (∂nu

−|Γ), ∀p = 1, . . . ,M,

where again the ± upper index specifies the interior or exterior Green function. Note that the
interior total field u−T is equal to the interior field u−. However, in the propagation domain, the
total field u+

T is obtained by summing the scattered wave u+ and the incident wave uinc. The
idea is to obtain two sets of M equations, one taken from the interior and the other one from
the exterior, and next to combine them. Let us first consider the M interior problems and take
the trace and normal derivative trace of the interior fields (see Eq. (1.5) for the trace formulae)

∀p = 1, . . . ,M,


u−p |Γp =

(
I

2 +M−p

)
(u−p |Γp) + L−p (∂nu

−
p |Γp),

∂nu
−
p |Γp = D−p (u−p |Γp) +

(
I

2 +N−p

)
(∂nu

−
p |Γp).

Then, by introducing the following quantities

∀p = 1, . . . ,M, U−p =
(

u−p |Γp

∂nu
−
p |Γp

)
,

the previous set of equations can be rewritten as

∀p = 1, . . . ,M,

(
A−p,p −

I

2

)
U−p = 0,

where
A−p,p =

(
M−p,p L−p,p
D−p,p N−p,p

)
.

The operator L−p,p are the operators Lp,p with the interior Green functions (same for the three
others)

L−p,pρp =
(∫

Γp

G−(k‖x− y‖)ρp dΓp
)
|Γp .

26



Note that the Calderón projector P−p , defined by

P−p = I

2 + Ap,

is here hidden. This set of equations can be rewritten in the following matrix form

−I2 + A−1,1 0 0 . . . 0

0 −I2 + A−2,2 0 . . . 0
... . . . . . . . . . ...
0 0 0 . . . −I2 + A−M,M




U−1
U−2
...

U−M

 =


0
0
...
0

 . (1.37)

Now, a second set of equations can be obtained, thanks to the exterior part. Following the
same idea, the trace and normal derivative trace of u+

T on Γp can be computed. However, the
M contributions appear to be here

∀p = 1, . . . ,M,


u+
T |Γp = uinc|Γp + I

2u
+|Γp −

M∑
q=1

[
M+
p,q(u+|Γq ) + L+

p,q(∂nu
+|Γq )

]
,

∂nu
+
T |Γp = ∂nu

inc|Γp + I

2∂nu
+|Γp −

[
D+
p,q(u+|Γq ) +N+

p,q(∂nu
+|Γq )

]
,

which can be rewritten as

∀p = 1, . . . ,M,
I

2U+
p +

M∑
q=1

A+
p,qU

+
q = 0,

with the following quantities

U+
p =

(
u+
T |Γp

∂nu
+
T |Γp

)
and A+

p,q =
(
M+
p,q L+

p,q

D+
p,q N+

p,q

)
.

The operator L−p,q is given by (same for the three others)

L−p,qρq =
(∫

Γq

G−(k‖x− y‖)ρq dΓq
)
|Γp .

Finally, this second set of equations can also be rewritten in the following matrix form

I

2 + A+
1,1 A+

1,2 A+
1,3 . . . A+

1,M

A+
2,1

I

2 + A+
2,2 A+

2,3 . . . A+
2,M

... . . . . . . . . . ...
A+
M,1 A+

M,2 A+
M,3 . . .

I

2 + A+
M,M




U+

1 − Uinc
1

U+
2 − Uinc

2
...

U+
M − Uinc

M

 =


0
0
...
0

 . (1.38)

To obtain only one set of equations, systems (1.37) and (1.38) must be combined. A first-kind
integral equation is obtained by doing ”(1.37) + (1.38)”, which is known to have a poor condition
number but is robust, and a second-kind integral equation can be obtained by computing
”(1.37) - (1.38)”, which is well-conditioned but can provide inaccurate solution. These two
integral equations are solved in the example function BenchmarkCalderon. The matrix A±p,q
is computed by the BlockCalderonProjector function and the whole matrix (A±p,q)p,q by
CalderonProjector.

27



28



Chapter 2

Multiple scattering by disks:
approximation method in µ-diff

Contents
2.1 Spectral formulation used in µ-diff . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Notations and Fourier bases . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Integral operators - integral equations for a cluster of circular cylinders 31
2.1.3 Single-scattering preconditioned integral equations . . . . . . . . . . . . 33
2.1.4 Projection of the incident waves in the Fourier basis . . . . . . . . . . . 33
2.1.5 Near-field evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.6 Far-field and Radar Cross Section (RCS) . . . . . . . . . . . . . . . . . 35

2.2 Finite-dimensional approximations and numerical solutions pro-
posed in µ-diff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Spectral formulation used in µ-diff

We consider that the scatterers are some circular cylinders. In this case, we can explicitly
compute the boundary integral equations in some Fourier bases, leading therefore to an efficient
computational spectral method when used in conjunction with numerical linear algebra methods
(direct or iterative solvers).

2.1.1 Notations and Fourier bases

Let us consider an orthonormal system (O,−−→Ox1,
−−→Ox2). We assume that the scattering obstacle

Ω− is the union of M disks Ω−p , for p = 1, . . . ,M , of radius ap and center Op. We define Γp as
the boundary of Ω−p and by Γ = ∪p=1...MΓp the boundary of Ω−. The unit normal vector n to
Ω− is outgoing. An illustration of the notations is reported in Figure 2.1.
For any p = 1, . . . ,M , we introduce bp as the vector between the center Op and the origin O

bp = OOp, bp = ‖bp‖ , αp = Angle(−−→Ox1,bp),

and, for q = 1, . . . ,M , with q 6= p, bpq as the vector between the centers Oq and Op

bpq = OqOp, bpq = ‖bpq‖ , αpq = Angle(−−→Ox1,bpq).

29



x

bpq
Op

Oq

bq

bp

Ω−p

Ω−q

O x1

x2

rp(x)

rq(x)

αpq

r(x)

αq
θ(x)

αp

θq(x)

θp(x)

Figure 2.1: Illustration of the notations for two disks Ω−p and Ω−q and a point x ∈ Ω+.

Furthermore, any point x is described by its global polar coordinates

r(x) = Ox, r(x) = ‖r(x)‖ , θ(x) = Angle(−−→Ox1, r(x)),

or by its polar coordinates in the orthonormal system associated with the obstacle Ω−p , with
p = 1, . . . ,M ,

rp(x) = Opx, rp(x) = ‖rp(x)‖ , θp(x) = Angle(−−−→Opx1, rp(x)).

Let us now build a basis of L2(Γ) to approximate the integral operators. To this end, we first
construct a basis of L2(Γp) associated with Ω−p , for p = 1, . . . ,M . If the circle Γp has a radius
one and is centered at the origin, then a suitable basis of L2(Γp) is the spectral Fourier basis of
functions (eimθ)m∈Z. We adapt this basis to the general case where ap 6= 1 by introducing, on
one hand, the functions (ϕm)m∈Z defined on R2 by: ∀m ∈ Z, ∀x ∈ R2, ϕm(x) = eimθ(x), and,
on the other hand, the functions (ϕpm)16p6M, m∈Z given by

∀p = 1, . . . ,M,∀m ∈ Z,∀x ∈ Γp, ϕpm(x) = ϕm(rp(x))√
2πap

= eimθp(x)√
2πap

.

For p = 1, . . . ,M , the family (ϕpm)m∈Z forms an orthonormal basis of L2(Γp) for the hermitian
inner product (·, ·)L2(Γp)

∀f, g ∈ L2(Γp), (f, g)L2(Γp) =
∫

Γp

f(x)g(x)dΓp(x).

To build a basis of L2(Γ), we introduce the functions Φp
m of L2(Γ) as the union of these M

families

∀p, q = 1, . . . ,M,∀m ∈ Z, Φp
m|Γq =

{
0 if q 6= p,

ϕpm if q = p.

The family B = {Φp
m, m ∈ Z, p = 1, . . . ,M}, also called Fourier or spectral basis, is a Hilbert

basis of L2(Γ) for the usual scalar product (·, ·)L2(Γ).

30



2.1.2 Integral operators - integral equations for a cluster of circular cylinders

In view of a numerical procedure, µ-diff can use for example the weak formulation of the EFIE
(see Eq. 1.29, page 22) in L2(Γ) based on the Fourier basis BFind ρ ∈ H−1/2(Γ) such that for any p = 1, . . . ,M, and m ∈ Z,

(Lρ,Φp
m)L2(Γ) = −

(
uinc|Γ,Φp

m

)
L2(Γ) .

Since uinc is assumed to be smooth enough (typically C∞) and that Γ is C∞, then the scattered
wavefield is also C∞(Ω+) and the density ρ is (at least) in H1/2(Γ). Therefore, ρ can be
developed in B as

ρ =
M∑
q=1

∑
n∈Z

ρqnΦq
n

and the weak form of the EFIE is
Find the Fourier coefficients ρqn ∈ C, for q = 1, . . . ,M , and n ∈ Z, such that,

∀p = 1, . . . ,M, ∀m ∈ Z,
M∑
q=1

∑
n∈Z

ρqn (LΦq
n,Φp

m)L2(Γ) = −
(
uinc|Γ,Φp

m

)
L2(Γ)

.

This formulation can be written under the following matrix form L̃ρ̃ = Ũ, where the infinite
matrix representation L̃ = (L̃p,q)16p,q6M and the infinite vectors ρ̃ = (ρ̃p)16p6M and Ũ =
(Ũp)16p6M are defined by blocks as

L̃ =


L̃1,1 L̃1,2 . . . L̃1,M

L̃2,1 L̃2,2 . . . L̃2,M

...
... . . . ...

L̃M,1 L̃M,2 . . . L̃M,M

 , ρ̃ =


ρ̃1

ρ̃2

...
ρ̃M

 , Ũ =


Ũ1

Ũ2

...
ŨM

 , (2.1)

with, for any p, q = 1, . . . ,M , and m,n ∈ Z: L̃p,qm,n = (LΦq
n,Φp

m)L2(Γ), ρ̃pm = ρpm and Ũp
m =(

−uinc|Γ,Φp
m

)
L2(Γ).

For the other integral formulations (section 1.1.3) or even for any other boundary condition,
the expressions of the three boundary integral operators M , N and D are needed. Therefore,
to compute an integral equation, we introduce the infinite matrices

M̃ = (M̃p,q)16p,q6M ,

Ñ = (Ñp,q)16p,q6M

and
D̃ = (D̃p,q)16p,q6M ,

with the same block structure as L̃ (see equation (2.1)). For p, q = 1, . . . ,M , the coefficients of
the infinite matrices M̃p,q, Ñp,q and D̃p,q are defined for any indices m and n in Z by

M̃p,q
m,n = (MΦq

n,Φp
m)L2(Γ) , Ñ

p,q
m,n = (NΦq

n,Φp
m)L2(Γ) , and D̃p,qm,n = (DΦq

n,Φp
m)L2(Γ) .

For a numerical implementation, we can explicitly compute [6, 23] the matrix blocks L̃p,q, M̃p,q,
Ñp,q and D̃p,q involved in L̃, M̃, Ñ and D̃, for p, q = 1, . . . ,M . To this end, we introduce the
infinite diagonal matrices J̃p, (dJ̃)p, H̃p and (dH̃)p, with general terms, for m ∈ Z,

J̃pmm = Jm(kap), (dJ̃)pmm = J ′m(kap), H̃p
mm = H(1)

m (kap), (dH̃)pmm = H(1)′
m (kap).

31



In addition, let Ĩp be the infinite identity matrix, and, for q 6= p, the infinite separation matrix
S̃p,q between the obstacles Ω−p and Ω−q , defined by

S̃p,q = (S̃p,qm,n)m∈Z,n∈Z and S̃p,qm,n = Smn(bpq) = H
(1)
m−n(kbpq)ei(m−n)αbq .

Under these notations, we rewrite the blocks L̃p,q, M̃p,q, Ñp,q and D̃p,q of the infinite matrices
L̃, M̃, Ñ and D̃ under the matrix form, for any p, q = 1, . . . ,M ,

• L̃p,q =


iπap

2 J̃pH̃p, if p = q,

iπ
√
apaq

2 J̃p(S̃p,q)T J̃q, if p 6= q,

(2.2)

• M̃p,q =


−1

2 Ĩ
p − iπkap

2 J̃p(dH̃)p = 1
2 Ĩ
p − iπkap

2 (dJ̃)pH̃p, if p = q,

−
ikπ
√
apaq

2 J̃p(S̃p,q)T (dJ̃)q, if p 6= q,

(2.3)

• Ñp,q =


1
2 Ĩ
p + iπkap

2 J̃p(dH̃)p = −1
2 Ĩ
p + iπkap

2 (dJ̃)pH̃p, if p = q,

ikπ
√
apaq

2 (dJ̃)p(S̃p,q)T J̃q, if p 6= q,

(2.4)

• D̃p,q =


iπk2ap

2 (dJ̃)p(dH̃)p, if p = q,

−
ik2π
√
apaq

2 (dJ̃)p(S̃p,q)T (dJ̃)q, if p 6= q,

(2.5)

where (S̃p,q)T is the transpose matrix of the separation matrix S̃p,q.
The integral equations involve the trace or normal derivative trace of the incident wavefield on
Γ. We have already introduced the infinite vector Ũ of the coefficients of uinc|Γ in the Fourier
basis. We then define similarly the infinite vector dŨ = (dŨp)16p6M of the coefficients of the
normal derivative trace ∂nu

inc|Γ, such that

∀p = 1, . . . ,M, ∀m ∈ Z, (dŨ)pm =
(
∂nu

inc|Γ,Φp
m

)
L2(Γ)

.

Finally, the density changes according to the integral equation and most particularly with
respect to the boundary condition. To keep the same notations as previously, we introduce the
densities λ and ψ (used in the BWIE) that are expanded in the Fourier basis as

λ =
M∑
p=1

∑
m∈Z

λpmΦp
m and ψ =

M∑
p=1

∑
m∈Z

ψpmΦp
m.

Finally, we set: λ̃ = (λ̃p)16p6M and Ψ̃ = (Ψ̃p)16p6M , where each block λ̃
p = (λ̃pm)m∈Z and

Ψ̃p = (Ψ̃p
m)m∈Z is defined by: ∀m ∈ Z, λ̃

p

m = λpm and Ψ̃p
m = ψpm.

32



2.1.3 Single-scattering preconditioned integral equations

The EFIE preconditioned by its single scattering component (see Section 1.2.2), given by

L̂−1Lρ = L̂−1uinc|Γ,

can also be computed analytically in the Fourier bases. Indeed, let L̂−1L be the matrix associ-
ated to the operator L̂−1L, then

∀p, q = 1, . . . ,M, ( ̂̃L−1
L̃)p,q =


Ip if p = q,√
aq
ap

(H̃p)−1(S̃p,q)T J̃q otherwise. (2.6)

For the Neumann case, the preconditioned integral equation (EFIE) reads as

D̂−1Dλ = D̂−1∂nu
inc|Γ.

The matrix representation D̂−1D of D̂−1D is then given by

∀p, q = 1, . . . ,M, ( ̂̃D−1
D̃)p,q =


Ip if p = q,

−
√
aq
ap

((dH̃)p)−1(S̃p,q)T (dJ̃)q otherwise. (2.7)

As highlighted by Proposition 1.9, there is no need to compute the preconditioned versions of
the other integral equations as they lead to the same operator (up to an invertible operators,
for BWIE). To solve sound-hard or sound-soft scattering, using the above integral equations
appears to be a suitable choice.

2.1.4 Projection of the incident waves in the Fourier basis

To fully solve one of the integral equations (EFIE, MFIE, CFIE or BWIE), we need to compute
the Fourier coefficients of the trace and normal derivative traces of the incident wave. We give
the results for both an incident plane wave and a pointwise source term (Green’s function).
For an incident plane wave, the following proposition holds [2].

Proposition 2.1. Let us assume that uinc is an incident plane wave of direction β, with β =
(cos(β), sin(β)) and β ∈ [0, 2π], i.e.

∀x ∈ R2, uinc(x) = eikβ·x.

Then we have the following equalities

Ũp
m =

(
uinc|Γ,Φp

m

)
L2(Γ)

= dpmJm(kap), (dŨ)pm =
(
∂nu

inc|Γ,Φp
m

)
L2(Γ)

= kdpmJ
′
m(kap),

with dpm =
√

2πapeikβ·bpeim(π/2−β).

Let us consider now an incident wave emitted by a pointwise source located at s ∈ Ω+, i.e. the
wave uinc is the Green’s function centered at s. The Fourier coefficients of the trace and normal
derivative trace of uinc on Γ are then given by the following proposition [23].

33



Proposition 2.2. Let s ∈ Ω+. We assume that the incident wave uinc is the Green’s function
centered at s

∀x ∈ R2 \ {s}, uinc(x) = G(x, s) = i

4H
(1)
0 (k‖x− s‖).

The Fourier coefficients in B of the trace and normal derivative trace of the incident wave on
Γ are respectively given by

Ũp
m =

(
uinc|Γ,Φp

m

)
L2(Γ)

= iπap
2 Jm(kap)H(1)

m (krp(s))Φ̃p
m(s)

and
(dŨ)pm =

(
∂nu

inc|Γ,Φp
m

)
L2(Γ)

= k
iπap

2 J ′m(kap)H(1)
m (krp(s))Φ̃p

m(s).

2.1.5 Near-field evaluation

Outside the obstacles

By using the Graf’s addition theorem [18, 23], we can compute the expression of the single- and
double-layer potentials at a point x located in the propagation domain Ω+.

Proposition 2.3. Let ρ ∈ L2(Γ) and µ ∈ H1/2(Γ) be two densities admitting the following
decompositions in the Fourier basis B

ρ =
M∑
p=1

∑
m∈Z

ρpmΦp
m and λ =

M∑
p=1

∑
m∈Z

λpmΦp
m.

Then, for any point x in the domain of propagation Ω+, the single-layer potential reads

L ρ(x) =
M∑
p=1

∑
m∈Z

ρpmL Φp
m(x) =

M∑
p=1

∑
m∈Z

ρpm
iπap

2 Jm(kap)H(1)
m (krp(x))Φ̃p

m(x), (2.8)

and the double-layer potential can be expressed as

Mλ(x) =
M∑
p=1

∑
m∈Z

λpmM Φp
m(x) = −

M∑
p=1

∑
m∈Z

λpm
iπkap

2 J ′m(kap)H(1)
m (krp(x))Φ̃p

m(x). (2.9)

Proposition 2.3 implies that, for any x in Ω+,

u(x) = L ρ(x) + Mλ(x) =
M∑
p=1

∑
m∈Z

iπap
2

[
ρpmJm(kap) + λpmJ

′
m(kap)

]
H(1)
m (krp(x))Φ̃p

m(x).

Inside the obstacles

Similarly, the potentials can be computed inside the obstacles, which is useful for penetrable
obstacles for instance. In this case, only the contribution of the current obstacle is taken into
account

u−(x) = Lpρp + Mpλp, ∀x ∈ Ωp.

Proposition 2.4. Let ρ ∈ L2(Γ) and µ ∈ H1/2(Γ) be two densities admitting the following
decompositions in the Fourier basis B

ρ =
M∑
p=1

∑
m∈Z

ρpmΦp
m and λ =

M∑
p=1

∑
m∈Z

λpmΦp
m.

34



Then, for any point x inside the obstacle Ωp, the single-layer potential reads

L ρ(x) =
∑
m∈Z

ρpmL Φp
m(x) =

M∑
p=1

∑
m∈Z

ρpm
iπap

2 H(1)
m (kap)Jm(krp(x))Φ̃p

m(x), (2.10)

and the double-layer potential can be expressed as

Mλ(x) =
M∑
p=1

∑
m∈Z

λpmM Φp
m(x) = −

M∑
p=1

∑
m∈Z

λpm
iπkap

2 H(1)′
m (kap)Jm(krp(x))Φ̃p

m(x). (2.11)

2.1.6 Far-field and Radar Cross Section (RCS)

For computing the far-field pattern, let us recall that the scattered field u admits the following
Helmholtz’s integral representation: u = L ρ+ Mλ, where ρ and λ are two unknown densities.
In the polar coordinates system (r, θ) and by using an asymptotic expansion of u when r → +∞,
the following relation holds [14]

∀θ ∈ [0, 2π], u(r, θ) = eikr

r1/2 [aL (θ) + aM (θ)] +O

( 1
r3/2

)
,

where aL and aM are the radiated far-fields for the single- and double-layer potentials, respec-
tively, defined for any angle θ of [0, 2π] by

aL (θ) = 1√
8kπ

eiπ/4
∫

Γ
e−ikθ·yρ(y)dΓ(y),

aM (θ) = 1√
8kπ

eiπ/4
∫

Γ
− ik

‖y‖θ · ye−ikθ·yλ(y)dΓ(y),

with θ := (cos(θ), sin(θ)). In addition, the Radar Cross Section (RCS) is defined by

∀θ ∈ [0, 2π], RCS(θ) = 10 log10
(
2π |aL (θ) + aM (θ)|2

)
(dB).

To optimize the far-fields computation, these relations can be written thanks to the inner
product between two infinite vectors. Indeed, let us introduce ãL = ((ãL )p)16p6M and ãM =
((ãM )p)16p6M , where (ãL )p and (ãM )p are given by: ∀p = 1, . . . ,M ,

(ãL )p =
(
(ãL )pm

)
m∈Z

, (ãL )pm =
ie−iπ/4

√
ap

2
√
k

e−ibpk cos(θ−αp)Jm(kap)eim(θ−π/2),

(ãM )p =
(
(ãL )pm

)
m∈Z

, (ãL )pm = ie−iπ/4
√
kap

2 e−ibpk cos(θ−αp)J ′m(kap)eim(θ−π/2).

(2.12)
Then, we obtain the following: aL (θ) = (ãL )T ρ̃ and aM (θ) = (ãM )T λ̃.

2.2 Finite-dimensional approximations and numerical solutions
proposed in µ-diff

We now have all the ingredients to numerically solve the four integral equations EFIE, MFIE,
CFIE and BWIE, for sound-soft obstacles. In fact, any integral equation for any boundary
condition can be solved according to the previous developments. In practice, the resulting
infinite Fourier system needs to be truncated to get a finite dimensional problem: we must pass

35



from a sum over m ∈ Z to a finite number of Fourier modes that depends on kap, p = 1, ...,M .
Let us consider e.g. the EFIE, the extension to the other boundary integral operators being
direct. The EFIE is given by equation (2.1): L̃ρ̃ = −Ũ. To truncate each Fourier series
associated with (Φp

m)m∈Z for the obstacle Ω−p , we only keep 2Np + 1 modes in such a way that
the indices m of the truncated series satisfy: ∀p = 1, . . . ,M , −Np 6 m 6 Np. The truncation
parameter Np must be fixed large enough, with Np > kap, for p = 1, ...,M . An example [2, 6]
is: Np = kap + Cp, where Cp weakly grows with kap. A numerical study of the parameter Np

is proposed in [2, 6] where the following formula leads to a stable and accurate computation

Np =
[
kap +

( 1
2
√

2
ln(2
√

2πkapε−1)
) 2

3
(kap)1/3 + 1

]
, (2.13)

where ε is a small parameter (related to the relative tolerance required in the iterative Krylov
subspace solver used for solving the truncated linear system (2.14), see [2, 6]).
The resulting linear system writes

Lρ = −U, (2.14)

where we introduced the block matrix L = (Lp,q)16p,q6M , the vectors ρ = (ρp)16p6M and
U = (Up)16p6M as

L =


L1,1 L1,2 . . . L1,M

L2,1 L2,2 . . . L2,M

...
... . . . ...

LM,1 LM,2 . . . LM,M

 , ρ =


ρ1

ρ2

...
ρM

 , U =


U1

U2

...
UM

 . (2.15)

For p, q = 1, . . . ,M , the complex-valued matrix Lp,q is of size (2Np + 1) × (2Nq + 1) and its
coefficients Lp,qm,n are: Lp,qm,n = L̃p,qm,n, for m = −Np, . . . , Np, n = −Nq, . . . , Nq. The complex-
valued components of the vector ρp = (ρpm)−Np6m6Np of size 2Np + 1 are the approximate
Fourier coefficients ρpm of ρ. For the sake of clarity, we keep on writing: ρpm = ρ̃pm = ρpm, for all
m = −Np, . . . , Np. The complex-valued vector Up = (Up

m)−Np6m6Np is composed of the 2Np+1
Fourier coefficients of the trace of the incident wave on Γ, i.e. Up

m = Ũp
m =

(
uinc|Γ,Φp

m

)
L2(Γ),

∀m = −Np, . . . , Np. If Ntot = ∑M
p=1(2Np + 1) denotes the total number of modes, the size of

the complex-valued matrix L is then Ntot × Ntot. More generally, all the boundary integral
operators can be truncated according to this process. Concerning the notations, it is sufficient
to formally omit the tilde symbol ∼ over the quantities involved in sections (2.1.2) to (2.1.6).
Since the four finite-dimensional matrices L, M, N and D that respectively correspond to the
four boundary integral operators L, M , N and D can be computed, the linear systems that
approximate the EFIE, MFIE, CFIE and BWIE can be stated. For example, the CFIE leads
to (with 0 6 α 6 1 and =(η) 6= 0)[

αηL + (1− α)
( I

2 + N
)]

ρ = −αηU− (1− α)dU. (2.16)

Let us remark that the matrix obtained after discretization is always a linear combination of
the four integral operators L, M, N, D and the identity matrix I. As a consequence, for a given
integral equation, the resulting matrix is of size Ntot×Ntot and has the same block structure as
e.g. L (see equation (2.15)). The finite-dimensional linear system (2.14) (or (2.16)) is accurately
solved in µ-diff by using the Matlab direct solver or a preconditioned Krylov subspace linear
solver that uses fast matrix-vector products based on Fast Fourier Transforms (FFTs), the
choice of the linear algebra strategy (direct vs. iterative) depending on the configuration with
respect to kap and M . The use of FFTs is made possible since the off-diagonal blocks of the

36



integral operators can be written as the products of diagonal and Toeplitz matrices [2, 6] (see
e.g. the matrices S̃p,qm,n in section 2.1.2). In addition, low memory is only necessary when kap is
large enough since the storage of the Toeplitz matrices can be optimized. This resulting storage
technique is called sparse representation in µ-diff, in contrast with the dense (full) storage of
the complex-valued matrices. Let us assume that ap ≈ a, for 1 6 p 6 M . In terms of storage,
the dense version of a matrix requires to store about 4M2[ka]2 coefficients (assuming that Np

are fixed by formula (2.13), and [r] denotes the integer part of a real number r) while the sparse
storage needs about 4M2[ka] complex-valued coefficients. In terms of computational time for
solving the linear system, the direct (multi-threaded) gaussian solver included in Matlab leads to
a cost that scales with O(M3(ka)3). For the preconditioned iterative Krylov subspace methods
(i.e. restarted GMRES)), the global cost is O(M2ka log2(ka)), the converge rate depending on
the physical situation and robustness of the preconditioner. From these remarks, we deduce
that an iterative method can be an efficient alternative to a direct solver for large wavenumbers
ka, but also for large M . We refer to [2, 6] for a thorough computational study of the various
numerical strategies. A few examples in µ-diff are provided with the toolbox. Finally, the post-
processing formulas (near- and far-fields quantities) clearly inherits of the truncation procedure
(see sections 2.1.5 and 2.1.6).

37



38



Chapter 3

Description of the µ-diff toolbox and
first examples

Contents
3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Common argument and notations . . . . . . . . . . . . . . . . . . . . 40
3.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Geometry: creating the obstacles . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Truncation of the Fourier series . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Incident waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Integral operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Available integral operators and numbering . . . . . . . . . . . . . . . . 50
3.4.3 Dense storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.4 Sparse storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Examples available in µ-diff . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Generalities

An effort has been made to keep the same notations between the mathematical framework and
the µ-diff toolbox. Some explanations (goal of the function and input/output arguments) about
a function name_of_the_function can be obtained by typing the classical Matlab command
window

help name_of_the_function;

Because µ-diff includes all the integral operators that are needed in scattering (traces and
normal derivative traces of the single- and double-layer potentials), a large class of scattering
problems can be solved as long as the shape of the obstacles is circular. Concerning the geo-
metrical configurations, any deterministic or random distribution of disks is possible. Finally,
µ-diff includes post-processing facilities like e.g.: surface and far-fields computations, total and
scattered exterior (near-field) visualization. . .

39



We now introduce the µ-diff toolbox based on Matlab by explaining the main predefined func-
tions and their relations with the previous mathematical derivations. Section 3.2 gives a presen-
tation and introduces the notations. Section 3.3 shows how to define the scattering configuration
(geometry and physical parameters). Section 3.4 presents the way the integral equations must
be defined and solved. Finally, section 3.5 describes the data post-processing.
The µ-diff toolbox is organized following the five subdirectories (see also Figure 3.1 for a diagram
of the directory arborescence)

• mudiff/PreProcessing/: pre-processing data functions (incident wave and geometry)
(section 3.3).

• mudiff/IntOperators/: functions for the four basic integral operators (dense and sparse
structure) used in the definition of the integral equations to solve (section 3.4).

• mudiff/PostProcessing/: post-processing functions of the solution (trace and normal
derivative traces, computation of the scattered/total wavefield at some points of the spatial
domain or on a grid, far-field and RCS) (section 3.5).

• mudiff/Common/: this directory includes functions that are used in µ-diff but which does
not need to be known from the standard user point of view.

• mudiff/Examples/: various scripts are presented for the user in standard configurations.

In addition, the µ-diff user guide, license and credits can be found under the directory mudiff/Doc/.

3.2 Common argument and notations
A large number of arguments of the µ-diff functions are similar. For the sake of conciseness
and if nothing is specified, the following arguments refer to the ones given in the Tables below,
where the indices p and q vary from 1 to M (or N_scat in the µ-diff scripts). In addition, any
function or value specific to µ-diff is written with the following font.

Geometry

Name Size Description

N_scat [1× 1] number of obstacles M
O [2×M ] matrix of the centers of the disks such that O(1,p) (resp.

O(2,p)) is the abscissa (resp. ordinate) of the pth obstacle
Op [2× 1] coordinates of the pth scatterer
Oq [2× 1] coordinates of the qth scatterer
a [1×M ] vector of the radii of the disks such that a(p) is the radius

of the pth scatterer
ap [1× 1] radius of the pth scatterer
aq [1× 1] radius of the qth scatterer

40



mu-diff/

Common

Doc
Examples

Benchmark

TimeReversal

FarField

Common

NonPenetrable

Penetrable
IntOperators

Dense

Interface

Block

Full
Sparse

Functions

Interface

Block

Full
PostProcessing

FarField

Interface
Geometry

IncidentWave

NearField

Functions

Interface
Preprocessing

Fourier
Geometry

IncidentWave

Full

Block

Figure 3.1: Arborescence of µ-diff toolbox.41



Parameters (wavenumbers, incident waves, Fourier series expansions, . . . )

Name Size Description

beta_inc [1× 1] angle of direction β of a plane wave eik(cos(β)x1+sin(β)x2)

XS [2× 1] center (x1s, x2s) of a point source: x1s =XS(1) and
x2s =XS(2). A point source wave is given by

i

4H
(1)
0 (k‖x− xs‖),

with x = (x1, x2) and xs = (x1s, x2s), with H(1)
0 the zeroth

order Hankel function of the first-kind
k [1× 1] wavenumber k in the vacuum

k_int [1×M ] wavenumbers in the obstacles: k−p =k_int(p). If k_int is
a scalar then k−p = k_int for all p = 1, ...,M

M_modes [1×M ] vector of index of truncation of the Fourier series, i.e.
M_modes(p)=Np

Np [1× 1] corresponds to the truncation index Np in the Fourier series
Nq [1× 1] corresponds to the truncation index Nq in the Fourier series

Integral operators (see chapter 1)

Index Letter µ-diff abbreviation Operator
0 - - null operator

1 I Identity identity

2 L SingleLayer Lρ =
∫

Γ
G(x,y)ρ(y) dy

3 M DoubleLayer Mλ = −
∫

Γ
∂nyG(x,y)λ(y) dy

4 N DnSingleLayer Nρ = ∂nx

∫
Γ
G(x,y)ρ(y) dy

5 D DnDoubleLayer Dλ = −∂nx

∫
Γ
∂nyG(x,y)λ(y) dy

6 L̂−1L PrecondDirichlet single-scattering preconditioned trace of the single-
layer operator (see §1.2.2)

7 D̂−1D PrecondNeumann single-scattering preconditioned normal derivative
trace of the double-layer operator (see §1.2.2)

3.3 Pre-processing
The pre-processing in µ-diff consists in defining the right-hand side (or the incident wave) and
the geometry (the obstacles). The associated functions are located respectively in the folders
mudiff/PreProcessing/IncidentWave and in mudiff/PreProcessing/Geometry.

3.3.1 Geometry: creating the obstacles

The obstacles are stored in memory as a row vector a containing the radii of the disks and a
[2 × N_scat] matrix O with the centers of the disks (O(1,p=x- and O(2,p=y- coordinates of
the center of the pth disk). These two arrays can be created either manually or by using some
built-in functions.

42



Manually

The disks can be created manually by simply creating the two variables O and a containing
respectively the coordinates of the disks and their radii. For example, for three obstacles placed
at points (−1, 2), (5, 5) and (−15, 10) with respective radii 0.1, 0.5 and 10, one gets

O = [-1, 5, 2 ; -15, 5, 10];
a = [0.1, 0.5, 10];

Periodic placement

Two built-in functions are available with the toolbox to periodically place some disks, with a
rectangular or a triangular lattice, as shown on Figure 3.2. The two functions must be called
as follows, first for the rectangular lattice

O = RectangularLattice(bx, by, Nx, Ny, OPTIONS);

and second for the triangular lattice

O = TriangularLattice(bx, by, Nx, Ny, OPTIONS);

where the arguments are

• bx: distance separating two centers in the x1-direction (be careful with the radii of the
disks to avoid overlapping!).

• by: distance separating two row of obstacles in the x2-direction.

• Nx: number of disks in a row.

• Ny: number of rows.

For both functions, the vector of radii must be built separately and manually. For a set of
unitary disks, the following command is used

a = ones(size(O,2));

The available options are (same for RectangularLattice and TriangularLattice)

• RectangularLattice(..., 'Origin', Ostart) places the first disk at Ostart posi-
tion, Ostart being a [2x1] vector. (Default: [0; 0]).

• RectangularLattice(..., 'Centered', Ocenter) center the collection on the point
Ocenter, Ocenter being a [2x1] vector. (Default: none but replace Ostart value).

• RectangularLattice(..., 'Direction', DIR) places the row in the increasing (DIR=
+1) or decreasing x2-direction (DIR = -1). The default value is: DIR = +1.

43



x1

x2

(a) Rectangular lattice

x1

x2

(b) Triangular lattice

Figure 3.2: Rectangular (left) and triangular (right) lattice with bx = 3, by = 4, Nx = 5, Ny=6.

Example: Building a rectangular lattice of 3× 4 unit disks. Each disk is separated from the
other by a distance equal to 1.5 (so the centers are separated from a distance of 3.5)

O = RectangularLattice(3.5, 3.5, 3, 4);
a = ones(size(O,2));

Random placement

The toolbox µ-diff provides a function CreateRandomDisks to randomly place N_scat obstacles
in a box [xmin, xmax]× [ymin, ymax] with a random radius. In its simplest version, the function
is called as

[O, a] = CreateRandomDisks(xmin, xmax, ymin, ymax, N_scat);

In that case, CreateRandomDisks builds N_scat disks with unit radius in the box. The function
takes care to not overlap the disks. Note that it is possible that the function does not succeed
to place the obstacles (e.g. if the user specifies too many obstacles in a box which is not large
enough). This is the reason why a security test has been set: only 500 possible placements are
allowed per disk.
The function comes along with a large set of optional arguments

[O, a] = CreateRandomDisks(xmin, xmax, ymin, ymax, N_scat,
amin, amax, dmim, dmax, O_avoid, a_avoid, dmin_avoid, dmax_avoid);

where each additional argument is optional (but the order must be kept (amin must be set,
then amax, etc...!) and given by

44



Variable Type Default Description
amin scalar 1 minimal (random) radius of the obstacles allowed
amax scalar 1 maximal (random) radius of the obstacles allowed
dmin scalar realmin minimal distance allowed between two obstacles (not be-

tween the centers!). Setting ≤ 0 value will set dmin to
realmin (i.e. ignore it)

dmax scalar realmax maximal distance allowed between two obstacles (not be-
tween the centers!). The maximal distance is efficiently
reached! Setting ≤ 0 value will set dmax to realmax (i.e.
ignore it)

O_avoid [2×N ] [] center of N hole(s) where the obstacles must not overlap.
Useful for example for the points source location

a_avoid [1×N ] [] radii of the N holes
dmin_avoid [1×N ] [] minimal distance between an obstacle and a hole

The “holes”, represented by the *_avoid arguments, are circular regions where the obstacles
must not overlap, for example where a point source is emitting a wave.

Example 1: creating N_scat random disks with random radii is realized by the command

[O, a] = CreateRandomDisks(xmin, xmax, ymin, ymax, N_scat, amin, amax);

Example 2: building 7 obstacles in the box [−10, 10]× [−10, 10] with radii between 0.1 and
0.5. The disks must be separated by a minimal distance equal to 0.1 and without maximal
value. The command is then

[O, a] = CreateRandomDisks(-10, 10, -10, 10, 7, 0.1, 0.5, 0.1, -1);

Example 3: now consider that a point source is located at (2, 2) and that the obstacles must
be separated from the source by at least a distance equal to 0.3. Then, the “*_avoid” arguments
can be used and the resulting function call is

[O, a] = CreateRandomDisks(-10, 10, -10, 10, 7, 0.1, 0.5, 0.1, -1, [2;2], 0.3);

The disk centered at (2, 2) with radius 0.3 is then avoided. A second option is to set a_void to
zero and set the minimal distance dmin_avoid to 0.3

[O, a] = CreateRandomDisks(-10, 10, -10, 10, 7, 0.1, 0.5, 0.1, -1, [2;2], 0, 0.3);

Remark 3.1. To check if a disk is correctly placed, CreateRandomDisks calls the CheckPlacement
function which can also be useful for a user who is placing the obstacles manually.

Removing disks

The function RemoveDisk aims to remove some disks of the geometrical configuration, either
disk by disk, by row, by column or by radius. This can be useful for example to delete a row of
disks. Here is the syntax

45



[O,a] = RemoveDisk(O_old, a_old, ...);

where O_old and a_old are the centers and radii of the current geometry. Without optional
argument, the function has no effect. The available arguments are

• [O,a] = RemoveDisk(..., 'X', [X1, X2, .., XN]);

Remove all the disks with a center which has an abscissa equal to X1, X2, . . . , or XN.

• [O,a] = RemoveDisk(..., 'Y', [Y1, Y2, ..., YN]);

Remove all the disks with a center which has an ordinate equal to Y1, Y2, . . . , or YN.

• [O,a] = RemoveDisk(..., 'XY', [[X1;Y1], [X2;Y2], ..., [XN;YN]]);

Remove all the disks with a center with coordinates [X1;Y1], [X2;Y2], . . . , or [XN;YN].

• [O,a] = RemoveDisk(..., 'Radius', [a1, a2, ..., aN]);

Remove all the disks with a radius equal to a1, a2, . . . , or aN.

• [O,a] = RemoveDisk(..., 'Verbosity', VERBOSITY);

set VERBOSITY to 0 to avoid display message, to 1 to only show results, and to > 1 to see
everything (default).

• [O,a] = RemoveDisk(..., 'Tol', TOL);

Tolerance used for the conditional statement (default 10−10).

Example 1: Remove all the obstacles that are either on the row of with abscissa equal to 1
or on the column with an ordinate equal to 2.5

[O,a] = RemoveDisk(O_old, a_old, 'X', 1, 'Y', 2.5);

Example 2: Remove the obstacles centered at (2, 5) and (3, 4)

[O,a] = RemoveDisk(O_old, a_old, 'XY', [2, 3; 5, 4]);

Example 3: Create a periodic placement of 11× 11 unit disks, separated by a distance equal
to 1, then remove the middle line and the middle column, as shown on Figure 3.3. The central
disk is moreover centered at (0, 0).

bx = 3; by = 3;
Nx = 11; Ny = 11;
O = RectangularLattice(bx, by, Nx, Ny, 'Centered', [0,0]);
a = ones(1, size(O, 2));
[O, a] = RemoveDisk(O, a, 'X', 0, 'Y', 0);

3.3.2 Truncation of the Fourier series

To help the user, the formula (2.16) has been coded in µ-diff. The values of Np are stored in a
Matlab vector of size [1× N_scat] called M_modes in µ-diff. Computing M_modes only involves
the radii of the disks and the wavenumber k, which is assumed to be created by the user

46



x1

x2

Figure 3.3: Periodic placement with a row and a column deleted.

M_modes = FourierTruncation(a, k);

The resulting vector is such that M_modes(p)=Np, where Np satisfies (2.16), with obviously a
minimal value equal to 0 (which consists in only one mode). If k is a vector (which corresponds
to one wavenumber per obstacle), then FourierTruncation uses formula (2.16) with k(p) as
the wavenumber. The following options are moreover available

• M_modes = FourierTruncation(..., 'Min', MIN);

To force a minimal value: M_modes(p) is then either the min value between MIN and
formula (2.16).

• M_modes = FourierTruncation(..., 'Tol', TOL);

The tolerance, set by default to 10−10, is then set to TOL.

3.3.3 Incident waves

Generalities

Two different incident waves are available in the µ-diff toolbox: the plane wave and the point
source wave. The user can build his own incident wave. They are all located in the directory
PreProcessing/IncidentWave/.
As explained in section 2.1.4, a right-hand side b is decomposed by blocks, each of these blocks
representing one obstacle: b = (bp)p=1,...,M . A different condition can be applied on two different
obstacles (e.g. Dirichlet on Ω1 and Neumann on Ω2) or a different integral equation can be
considered on each obstacle (e.g. EFIE on Ω1 and MFIE on Ω2). To this end, µ-diff builds each
block separately thanks to the function BlockIncidentWave which computes the vector bp.
According to the input data, the function builds one of the available right-hand sides described
in Table 3.1.
On the other hand, the common function IncidentWave computes the whole vector b. For all
obstacles p, the function BlockIncidentWave is called and the whole vector is assembled.
In addition, for all the incident waves, an interface function is available. These easy-to-use
interfaces build the whole vector on only one pattern (trace of plane wave, normal derivative
of a point source wave, . . . ). They are located in the interface/ directory and their names
allow an easy interpretation (see also table 3.1, column µ-diff name): PlaneWave, PointSource,
DnPlaneWave,. . . . Let us recall that the help informations of the interface functions contains
the mathematical description of the incident wave.

47



Value µ-diff function name Param Description
1 PlaneWave beta_inc trace of a plane wave of angle of direction beta_inc.

A plane wave is defined by eik(cos(β)x1+sin(β)x2

2 DnPlaneWave beta_inc normal derivative of a plane wave of angle of incidence
beta_inc

3 PointSource XS trace of the wave emitted by a point source placed at
XS. Such a wave is defined in µ-diff by

i

4H
(1)
0 (k‖x− xs‖)

4 DnPointSource XS normal derivative trace of the wave emitted by a point
source placed at XS

5 PlaneWavePrecond beta_inc same as PlaneWave but multiplied by the inverse of
the single-layer block diagonal operator (see section
2.1.3 on the single-scattering preconditioner)

6 DnPlaneWavePrecond beta_inc same as DnPlaneWave but multiplied by the inverse of
the double-layer block diagonal operator

Table 3.1: Right-hand sides already coded in µ-diff.

The two main functions, BlockIncidentWave and IncidentWave, are now detailed.

BlockIncidentWave

This function computes the block vector of the opposite of the coefficients of an incident
wave, either the trace of the normal derivative trace, on one of the obstacles, in the Fourier
bases. Its syntax is

Bp = BlockIncidentWave(Op, ap, Np, k, TypeOfWave, Param);

where TypeOfWave is a scalar value specifying the incident wave (see table 3.1) and Param is
the parameter of the wave: angle of direction, position of a point source, . . . . The returned
value Bp is a column vector of length 2Np + 1.

IncidentWave

The function call is the following

B = IncidentWave(O, a, M_modes, k, TypeOfWave, Param)

The resulting vector B is of size ∑M
p=1(2M_modes(p) + 1). The value Param is the same as for

BlockIncidentWave whereas TypeOfWave is a vector of size M , where TypeOfWave(p) is the
fixed choice for the block bp. In other word, the block bp is built by calling the function with
the arguments BlockIncidentWave(Op, ap, Np, k, TypeOfWave, Param);. To simplify, if
TypeOfWave is a scalar value, then it is considered as a vector with the same scalar value.

Example 1: Building a vector associated to the trace of an incident plane wave of direction
beta_inc is done thanks to the following command (the “1 argument” refers to as PlaneWave)

48



B = IncidentWave(O, a, M_modes, k, 1, beta_inc);

or by using the interface function

B = PlaneWave(O, a, M_modes, k, beta_inc);

Example 2: For two obstacles and a point source centered at (1, 2), if b1 is the trace of the
wave and b2 is the normal derivative trace, then

B = IncidentWave(O, a, M_modes, k, [3;4],[1;2]);

In other words, this builds the vector ([3,4] can be translated as PointSource, DnPointSource)

b =
(
−uinc|Γ1

−∂nu
inc|Γ2

)
,

where
uinc = i

4H
(1)
0 (k‖x− xs‖),

with xs = [1, 2].

Remark 3.2. Remember that the resulting vector corresponds to the opposite of the trace or
normal derivative trace!

3.4 Integral operators

3.4.1 Generalities

The functions defining the integral operators are available in the directory IntOperators/
which has the Dense/ and Sparse/ subdirectories for the dense (matrix) and sparse (@func-
tion) representations of the four basic integral operators used in scattering, i.e. L, M, N and
D, given in their infinite dimensional operator versions by respectively (2.2), (2.3), (2.4) and
(2.5). Preconditioned versions of the operators by their single-scattering operators [24] are also
defined. Following Proposition 1.9, only L̂−1L (EFIE Dirichlet) and D̂−1D (EFIE Neumann)
are provided since they are the only ones needed for the Dirichlet and Neumann problems.
Two different types of storage can be used within the µ-diff toolbox: dense and sparse. The
assembly of the matrix is almost the same in both cases. The way µ-diff is developed is close to
the mathematics for the assembly process, in the sense that the matrix A of an integral opera-
tor is built block-by-block (Ap,q). For both storages, two main functions exist: a ”block” func-
tion (BlockIntegralOperator and SpBlockIntegralOperator) and a global matrix function
(IntegralOperator and SpIntegralOperator) which assemble all the blocks into a matrix.
This separation allows the user to either build a ”simple” matrix for one operator or to con-
struct a more ”complex” matrix where each block represents a different operator or a linear
combination of them. Let us also note that all the operators have interface functions (located in
Dense/Interface or Sparse/Interface folders). For example, SingleLayer is the interface
function of IntegralOperator to build the single-layer operator, and BlockSingleLayer the
one for BlockIntegralOperator. The same applies for the sparse storage with a prefix Sp:
SpSingleLayer, SpBlockSingleLayer.

49



Int. Op. Identifier Function Definition for x ∈ Γ
- 0 - zero operator (null matrix)
I 1 Identity identity
L 2 SingleLayer Lρ(x) =

∫
Γ
G(x,y)ρ(y)dy

M 3 DoubleLayer Mλ(x) = −
∫

Γ
∂nyG(x,y)λ(y)dy

N 4 DnSingleLayer Nρ(x) = ∂nx

∫
Γ
G(x,y)ρ(y)dy

D 5 DnDoubleLayer Dλ(x) = −∂nx

∫
Γ
∂nyG(x,y)λ(y)dy

L̂−1L 6 PrecondDirichlet single-layer preconditioned by its diagonal

D̂−1D 7 PrecondNeumann double-layer preconditioned by its diagonal

Table 3.2: Available integral operators in µ-diff, their (unique) identifier, function name (in-
terface) and the mathematical definition. The zero operator function does not have an inter-
face function and the sparse version is obtained by adding the prefix Sp (SpSingleLayer,
SpDnDoubleLayer,. . . ). The block interface functions are also prefixed by ”Block”
(SpBlockSingleLayer, BlockSingleLayer,. . . ).

The dense storage should be preferred for solving small scale problems (most particularly low
frequency problems), when the memory storage and the CPU cost is not a problem, where
the sparse storage must be used when the limits are reached. For the sparse storage, which is
detailed later, the block matrices are stored through vectors and the matrix-vector product is
then fast when an iterative Krylov subspace solver is used. This is essentially a suitable strategy
when a sufficiently high number of modes Np is required per obstacle, i.e. for large enough wave
numbers k. The drawback is that some instabilities may arise in the numerical process if the
truncations of the Fourier series are not done correctly. The formula (2.16) provides a stable
result following [2].

3.4.2 Available integral operators and numbering

As for the incident wave, for each operator, there exists a function that builds the whole operator
for the multiple scattering problem, both for the dense and sparse storages. The available
operators are listed in Table 3.2, with their unique identifier (integer), their associated name in
µ-diff (useful to get their interface functions) and their definitions.

3.4.3 Dense storage

Building a block Ap,q

An elementary block matrix in a global matrix can be created by using the following function
BlockIntegralOperator

Apq = BlockIntegralOperator(Op, ap, Np, Oq, aq, Nq, k, TypeOfOperator, Weight);

The Weight argument is optional and set to 1 by default. The quantity TypeOfOperator speci-
fies the integral operator to compute, thanks to the numbering of Table 3.2. If TypeOfOperator

50



is a scalar (e.g. = 2), then the resulting matrix Apq is the elementary matrix of the associated
operator (e.g. Lp,q). If TypeOfOperator is a row (e.g. [1,3]), the sum of the two operators is
computed (e.g. Ip,q+Mp,q). Finally, the Weight quantity (of the same size as TypeOfOperator)
is the constant that is used to multiply the block and hence

Ap,q =
N∑
`=1

Weight(`).Operator(`)

where Operator(`) is one of the integral operators.

Example 1: Build the single-layer block Lp,q

Apq = BlockIntegralOperator(Op, ap, Np, Oq, aq, Nq, k, 1);

Example 2: Build the whole matrix 0.5× Ip,q + Np,q, appearing in the MFIE (1.16)

Apq = BlockIntegralOperator(Op, ap, Np, Oq, aq, Nq, k, [1, 4], [0.5, 1]);

Example 3: Compute the sum of the four blocks: 0.5×Lp,q+1.5×Mp,q+2.5×Np,q+3.5×Dp,q

Apq = BlockIntegralOperator(Op, ap, Np, Oq, aq, Nq, k, [2, 3, 4, 5],
[0.5, 1.5, 2.5, 3.5]);

Assembling the matrix A

Now that the construction of an elementary block matrix is well-understood, building a global
matrix is easy thanks to the common function

A = IntegralOperator(O, a, M_modes, k, TypeOfOperator, Weight);

As for BlockIntegralOperator, the quantity Weight is optional and set to 1 by default.
Roughly speaking, IntegralOperator creates a loop on all the obstacles p and q, launches the
following command

Apq = BlockIntegralOperator(O(:,p), a(p), M_modes(p), O(:,q), a(q), M_modes(q),
k, Tpq, Wpq);

and places Apq in the expected elementary block matrix of the global matrix. The quantities
Tpq and Wpq are given by TypeOfOperator and Weight such that (Weight is of the same size
as TypeOfOperator and so Wpq follows the same rules as Tpq)

• If TypeOfOperator is a scalar then Tpq = TypeOfOperator.

• If TypeOfOperator is a row or a column vector then Tpq is an array given by Tpq =
TypeOfOperator.

• If TypeOfOperator is a matrix then Tpq = TypeOfOperator(p,q).

• If TypeOfOperator is a three-dimensional array, then Tpq is an array given by Tpq(:) =
TypeOfOperator(p,q,:).

51



Example 1: The single-layer potential L is

L = IntegralOperator(O, a, M_modes, k, 2);

Example 2: The MFIE operator 0.5× I +N for a Dirichlet boundary condition (1.16) is

A_MFIE = IntegralOperator(O, a, M_modes, k, [1,4], [0.5,1]);

Example 3: The following two-obstacles operator is(
0.5× I1,1 +M1,1 L1,2

D2,1 0.5× I2,2 +N2,2

)

can be computed by using a three-dimensional array and the null operator

TypeOfOp = zeros(2,2,2); Weight = zeros(2,2,2);
TypeOfOp(:, 1,1) = [1, 3]; Weight(:, 1,1) = [0.5, 1]; %block A_{1,1}
TypeOfOp(:, 1,2) = [2, 0]; Weight(:, 1,2) = [1, 0]; %block A_{1,2}
TypeOfOp(:, 2,1) = [5, 0]; Weight(:, 2,1) = [1, 0]; %block A_{2,1}
TypeOfOp(:, 2,2) = [1, 4]; Weight(:, 2,2) = [0.5, 1]; %block A_{2,2}
A = IntegralOperator(O, a, M_modes, k, TypeOfOp, Weight);

Example 4: The Brakhage-Werner Integral Equation (BWIE) for a Dirichlet problem (1.21)
is solved by writing

k = 1;
beta_inc = pi;
eta = i/k;
Uinc = PlaneWave(O, a, M_modes, k, beta_inc);
A = IntegralOperator(O, a, M_modes, k, [1, 2, 3], [0.5, -eta_BW, -1]);
psi = A \ Uinc;

3.4.4 Sparse storage

Storing the matrices in a sparse way leads to a significant reduction in memory storage and the
ability to get access to fast matrix-vector product evaluations. The linear system must then
be solved by an iterative solver since the global matrix is no longer built. Combining linearly
the matrices is still possible but this is realized during the computation of the matrix-vector
products. Indeed, summing two matrices for two different integral operators is not guaranteed
to keep the particular matrix structure. If the problem involves (at least) two different integral
operators, they must hence be computed separately.

Compressed storage

To explain how the matrix is stored by using the µ-diff sparse storage, let us consider that A is
a matrix corresponding to one of the four integral operators L,M,N or D. The matrix A has
the following special structure (for p, q = 1, . . . ,M and p 6= q)

52



• Ap,p is diagonal,

• Ap,q is full and can be written as Ap,q = Ap,qL Tp,qAp,qR , where Ap,qL and Ap,qR are diagonal
and called respectively the left and right parts, and Tp,q = (Tp,qm,n)), with

Tp,qm,n = iπei(n−m)αpqH
(1)
n−m(kbpq),

is a Toeplitz matrix: Tp,qm,n = Tp,qm+1,n+1.

The idea is that the diagonal matrices can be stored as vectors containing the diagonal elements.
A matrix-vector product between a diagonal matrix and a vector is then simply an element-
by-element multiplication. The Toeplitz matrix can also be stored in a compressed form as a
vector and the matrix-vector product is handled by a cross-correlation based on the Fast Fourier
Transform (FFT).
The diagonals parts are stored in the three-dimensional arrays AL and AR (”L” for Left part
and ”R” for Right part). The left part AL also includes the diagonal part of the matrix

AL(:, p, q) =
{

diag(Ap,p) if p = q,

diag(Ap,qL ) otherwise,
AR(:, p, q) =

{
0 if p = q,

diag(Ap,qR ) otherwise.

The matrix Tp,q of size (2Np + 1) × (2Nq + 1) is then also compressed as a Toeplitz matrix
following

Tp,q =


t1 t2 t3 . . . t(2Nq+1)

t(2Nq+1)+1 t1 t2 . . . t(2Nq+1)−1
t(2Nq+1)+2 t(2Nq+1)+1 t1 . . . t(2Nq+1)−2

... . . . . . . . . . ...
t(2Nq+1)+(2Np+1)−1 t(2Nq+1)+(2Np+1)−2 t(2Nq+1)+(2Np+1)−3 . . . t(2Nq+1)−(2Np+1)+1


Clearly, the root vector containing the first row and the first column is enough to rebuild the
matrix. This root vector, called Ap,qM , is of size (2Np + 1) + (2Nq + 1)− 1 = 2Np + 2Nq + 1 and
such that

Ap,qM =



t(2Nq+1)+(2Np+1)−1
t(2Nq+1)+(2Np+1)−2

...
t(2Nq+1)+2
t(2Nq+1)+1

t1
t2
t3
...

t(2Nq+1),1



.

Finally, all these root vectors are stored in the three-dimensional array AM

AM (:, p, q) =
{

0 if p = q,

Ap,qM otherwise.

The global matrix A is thus stored through three different parts: AL, AM and AR. From the
computer point of view, as a three-dimensional array has a fixed size in each direction, the
second and third dimensions of the arrays are both of size N_scat and the length in the first
dimension is given by

53



3D-array Length in the dimension. . .
1 2 3

AL max
p

(2Np + 1) N_scat N_scat

AM max
p

max
q 6=p

[(2Np + 1) + (2Nq + 1)− 1] N_scat N_scat

AR max
p

(2Np + 1) N_scat N_scat

With this constraint, the vector AL(:, p, q) can be larger than 2Np + 1 and thus Ap,qL must be
extracted: Ap,qL = AL(1 : 2Np + 1, p, p). The same occurs for AM and AR.
Finally, these three-dimensional arrays are merged into a cell A, representing the matrix A, such
that, by using the Matlab notations

A{1} = AL, A{2} = AM , A{3} = AR.

Fast matrix-vector products

The matrix-vector product between A and a vector X is divided into different elementary
operations. Let us consider Y = AX and more particularly the pth component

Yp =
∑
q

Ap,qXq.

By using the previous notations, we have

Yp = Ap,pL Xp +
∑
q 6=p

Ap,qL (Ap,qM (Ap,qR Xq)).

Since Ap,pL , Ap,qL and Ap,qR are diagonal matrices (that are stored as vectors), the corresponding
matrix-vector products are easy to compute. The only difficulty concerns Ap,qM Zq (where Zq =
Ap,qR Xq). This can however be achieved efficiently. Indeed, the discrete cross-correlation product
(xcorr) between Ap,qM and Zq gives

W̃q = xcorr(Zq,Ap,qM ),

where the bar denotes the complex conjugate of a complex number. The result Wq is then
extracted from W̃q by

Wq = W̃q(2Nq + 1 : 2Nq + 1 + 2Np).

The matrix-vector product between A and X is then done in a fast way (cross-correlation is
efficiently evaluated through the FFT).

Assembling the matrix

The assembly process is very similar to the dense one, the difference being the prefix Sp. The
block function is then called by

SpBlockIntegralOperator(Op, ap, Np, Oq, aq, Nq, Nmax, k, TypeOfOperator, Weight);

The function returns three vectors corresponding to Ap,qL , Ap,qM and Ap,qR . The major difference
here is that no linear combination of operators can be done during the assembly
process for the sparse representation. The quantity TypeOfOperator cannot hence be a vector
but must be a scalar. The assembly process of the global matrix can be done through

54



A = SpIntegralOperator(O, a, M_modes, k, TypeOfOperator, Weight);

The result is a Matlab cell of three components, where each component is a three-dimensional
array. The quantity TypeOfOperator can be a scalar or a matrix (not a three-dimensional
array nor a vector!). If TypeOfOperator is a matrix, then the block Ap,q is assumed to be of
type TypeOfOperator(p,q). The linear combination of operators can still be done, but must
be specified in the matrix-vector product (see below). Note that a function exists to add the
(weighted-)identity to a sparse operator (see below).

Example 1: Creation of µ-diff sparse matrix of the single-layer operator L

L = SpIntegralOperator(O, a, M_modes, k, 2);

L is now a cell with three components! Note the interface function can also be used

L = SpSingleLayer(O, a, M_modes, k);

Example 2: For two obstacles, building the following matrix(
M1,1 0.5× L1,2

1.5×D2,1 2.5×N2,2

)

can be done with the commands

TypeOfOp = zeros(2,2); Weight = zeros(2,2);
TypeOfOp(1,1) = [3]; Weight(1,1) = [1]; %block A_{1,1}
TypeOfOp(1,2) = [2]; Weight(1,2) = [0.5]; %block A_{1,2}
TypeOfOp(2,1) = [5]; Weight(2,1) = [1.5]; %block A_{2,1}
TypeOfOp(2,2) = [4]; Weight(2,2) = [2.5]; %block A_{2,2}
A = SpIntegralOperator(O, a, M_modes, k, TypeOfOp, Weight);

Assembling: adding the identity

It is possible to add the identity (multiplied by a constant) to a sparse operator

A = SpAddIdentity(A, alpha, M_modes);

which simply returns A = A+ αI.

Example 1: If L is the sparse representation of the single-layer operator, then

L = SpIntegralOperator(O, a, M_modes, k, 2);
alpha_L = SpAddIdentity(L, 0.5, M_modes);

computes 0.5× L.

55



Sparse matrix-vector product

A matrix-vector product Y = AX is done thanks to

Y = SpMatVec(X, M_modes, ListOfOperators, Weight);

where Weight is optional. ListOfOperators is a Matlab cell (not an array! Make use
of {·} instead of [·]) containing all the sparse matrices that the user wants to involve in the
computational process. The linear combination of the operators is done at that time for each
matrix-vector product.

Example 1: Computing Y = LX is done as follows

SpL = SpIntegralOperator(O, a, M_modes, k, 2);
Y = SpMatVec(X, M_modes, SpL);

Example 2: Calculating Y = (0.5 × I + N)X, where I is the identity (Beware the {·} !),
consists in the following sequence of function calls

SpI = SpIdentity(O, a, M_modes);
SpN = SpDnSingleLayer(O, a, M_modes, k);
Y = SpMatVec(X, M_modes, {SpI, SpN}, [0.5, 1]);

This can also be done thanks to the SpAddIdentity function as

SpN = SpDnSingleLayer(O, a, M_modes, k);
A = SpAddIdentity(SpN, 0.5, M_modes);
Y = SpMatVec(X, M_modes, A);

Solving a linear system

Now that the matrices and the right-hand side have been built, the sparse linear system can be
solved iteratively. If one uses for example the GMRES solver [22], the syntax is then. . .

Example 1: ...for the Dirichlet EFIE (1.15) : Lρ = −uinc|Γ

SpL = SpSingleLayer(O, a, M_modes, k);
Uinc = PlaneWave(O, a, M_modes, k, beta_inc);
rho = gmres(@(X)SpMatVec(X, M_modes, SpL), Uinc);

Example 2: ...for the Dirichlet MFIE (1.16) : (I/2 +N)ρ = −∂nu
inc|Γ

SpN = SpDnSingleLayer(O, a, M_modes, k);
SpI = SpIdentity(O, a, M_modes);
DnUinc = DnPlaneWave(O, a, M_modes, k, beta_inc);
rho = gmres(@(X)SpMatVec(X, M_modes, {SpI, SpN}, [0.5, 1]), DnUinc);

or by using the SpAddIdentity function

56



SpAMFIE = SpDnSingleLayer(O, a, M_modes, k);
SpAMFIE = SpAddIdentity(SpAMFIE, 0.5, M_modes);
DnUinc = DnPlaneWave(O, a, M_modes, k, beta_inc);
rho = gmres(@(X)SpMatVec(X, M_modes, SpAMFIE), DnUinc);

Example 3: ...for the Dirichlet BWIE (1.21) : The operators L andM must be computed
separately and 0.5I can be added to −M directly:

k = 1;
beta_inc = pi;
eta = i/k;
Uinc = PlaneWave(O, a, M_modes, k, beta_inc);
SpL = SpSingleLayer(O, a, M_modes, k);
SpM = - SpDoubleLayer(O, a, M_modes, k);
SpIminusM = SpAddIdentity(SpM,0.5);
psi = gmres(@(X)SpMatVec(X, M_modes, {SpL, SpIminusM}, [-eta_BW, 1]), Uinc);

3.5 Post-Processing
Now that the system has been solved, the next step is to display some results. The µ-diff toolbox
proposes some post-processing features such as computing the far-field (fast) or the near-field
of the wave on a grid (Matlab meshgrid) or only at some points. In addition, other possibilities
are offered such as drawing the disks on a figure or the incident field. Both the near- and far-
field computations can be done for a linear combination of a single- and double-layer potentials
L ρ + Mλ, only one of them (e.g. L ρ) or with the same density (L + M )ψ, with a single
command line. All post-processing functions are located in the PostProcessing/ directory.

Far-field

The far-field of the combination of the single- and double-layer potentials

M∑
p=1

ηpLpρp + γpMpλp

is given by the equation (2.12). The corresponding µ-diff function is FarField

F = FarField(O, a, M_modes, k, theta, Density, Weight);

where the parameters are

• theta is the vector of receiving angles (in radians)

• Density is either ρ, λ or both. If Density is a column vector then Density(:,2) =
Density(:,1) and only one density is used both for the single- and the double-layer
potentials contribution. If Density has 2 columns, then Density(:,1) is considered to
be the single-layer density and Density(:,2) the double-layer density.

• Weight is the weight vector to apply to theM volume integral operators (ηp and γp). The
quantity Weight is of size either [1×2] or [1×M ]. The first column of Weight is applied to
the single-layer potentials and the second to the double-layer potentials: Weight(p,1)=ηp

57



and Weight(p,2)=γp. If Weight is a row of length 2, then Weight(1)=ηp and Weight(2)=γp
for all p (the coefficient are the same for all obstacles).

With these notations, the resulting far-field is

N_scat∑
p=1

Weight(p, 1)L Density(:,1) + Weight(p,2)MDensity(:,2).

Example 1: the Dirichlet EFIE (1.15): the scattered field u reads as u = L ρ and the far-field
is then computed by

F = FarField(O, a, M_modes, k, theta, rho, [1,0]);

Example 2: the Dirichlet BWIE (1.21): the scattered field u is given by u = (−ηL −M )ψ
and the corresponding far-field by

eta = i/k;
F = FarField(O, a, M_modes, k, theta, psi, [-eta,-1]);

Example 3: if the densities ρ and λ are known and if the user needs to compute for example

M∑
p=1

pLpρp − pMpλp,

then this can be done by the function call

F = FarField(O, a, M_modes, k, theta, [rho, lambda], [[1:p].', -[1:p].']);

Remark 3.3. Let us remark that the FarField function is also interfaced with the ready-to-use
function: FarFieldSingleLayer and FarFieldDoubleLayer. These two functions are located
in the PostProcessing/FarField/Interface directory.

Radar Cross Section (RCS)

The Radar Cross Section (RCS) can be computed either from the far-field with FarField_to_RCS
or directly from the density with RCS. In µ-diff, the RCS σ is obtained by (F being the far-field)

σ = 10 log10(2π|F |2).

The computation is realized by the function call

R = FarField_to_RCS(F);

where F has been computed by the FarField function. Otherwise, the RCS can be computed
directly from the densities by

R = RCS(O, a, M_modes, k, theta, Density, Weight);

58



where the arguments are exactly the same as for the far-field. In fact, RCS first calls FarField
and then FarField_to_RCS.

Remark 3.4. The RCS function is also interfaced with the two following ready-to-use func-
tions RCSSingleLayer and RCSDoubleLayer. Both of them are located in the directory called
PostProcessing/FarField/Interface.

Near-field: inside and outside the obstacles

The near-field of a potential is given by equations (2.8) and (2.9) outside the obstacles and by
(2.10) and (2.11) inside. In the same way, µ-diff separates the outside and the inside computa-
tions.
Let us first explain how to compute the field outside the obstacles. The user only needs to
create a mesh by using e.g. meshgrid and launch ExternalPotential through the syntax

U = ExternalPotential(X, Y, O, a, M_modes, k, Density, Weight, OPTIONS);

The resulting matrix U has zero value inside the obstacle. By default, the computation is not
realized on the boundary of the obstacles (this can be changed thanks to the options). The
arguments are

• Density and Weight are exactly the same as for FarField,

• the quantities X and Y are the grid points which are created by the Matlab meshgrid

function,

• the OPTIONS must be chosen from the options of the potential, see below (after the interior
potential).

Let us consider now the computation inside the obstacle Ωp. For the interior field, the only
contribution is assumed to be of the form

Lpρp + Mpλp.

In other words, the contributions of the other obstacles are not taken into account. In the same
way as for the external potential, the computation is realized in µ-diff by the function call

U = InternalPotential(X, Y, O, a, M_modes, k, Density, Weight, OPTIONS);

where U has zero value outside the obstacles and by default on the boundaries too. The argu-
ments are exactly the same as ExternalPotential.
Finally, the common options for ExternalPotential and InternalPotential are described
below. For the sake of clarity, the examples are shown with only ExternalPotential even if
they also apply for InternalPotential

• ExternalPotential(..., 'Verbosity', VERBOSITY)

VERBOSITY is a scalar, which when set to 0, stop displaying message (default = 1)

• ExternalPotential(..., 'OnBoundary', ONBOUNDARY)

if ONBOUNDARY is set to 1 then the boundary is also covered (beware of the jump rela-
tion. . . ) (default = 0)

59



Example 1: compute the single-layer potential u = L ρ on a grid

XX = [-10:0.1:10];
YY = [-10:0.1:10];
[X,Y] = meshgrid(XX,YY);
U = ExternalPotential(X, Y, O, a M_modes, k, rho, [1,0]);

Example 2: consider two obstacles and compute

L1ρ1 + 0.5×L2ρ2 + 1.5×M1λ1 − 1.5×M2λ2

inside the obstacle, where the densities have already been computed

XX = [-10:0.1:10];
YY = [-10:0.1:10];
[X,Y] = meshgrid(XX,YY);
U = InternalPotential(X, Y, O, a M_modes, k, [rho, lambda], [1, 1.5 ; 0.5, -1.5]);

Remark 3.5. The near-field functions ExternalPotential and InternalPotential are also
interfaced by: ExternalSingleLayerPotential, InternalSingleLayerPotential, for the
single-layer and by ExternalDoubleLayerPotential and InternalDoubleLayerPotential

for the double-layer potential. These four ready-to-use functions are located in the following
folder PostProcessing/NearField/Interface.

Incident wave

The incident waves can also be computed on a grid by using

Uinc = IncidentWaveOnGrid(X, Y, k, TypeOfWave, Param);

where, like for the IncidentWave function from the pre-processing part (see §3.3.3), we have

• X and Y are two matrices coming from the meshgrid Matlab function,

• Param is either the incidence angle of a (scalar) plane wave or the location of a point
source ([2× 1] vector),

• TypeOfWave is either a char or a scalar value.

Example: computation of a plane wave with an incidence angle equal to beta_inc = π

beta_inc = pi;
XX = [-10:0.1:10];
YY = [-10:0.1:10];
[X,Y] = meshgrid(XX,YY);
Uinc = IncidentWaveOnGrid(X, Y, k, 'PlaneWave', beta_inc);

The last line could also be (switch 'PlaneWave' with its identifier 1)

Uinc = IncidentWaveOnGrid(X, Y, k, 1, beta_inc);

60



Geometry: drawing the obstacles and creating mask matrices

The µ-diff toolbox also proposes some functions for the post-processing of the obstacles.
Drawing the circular cylinders can be done by calling the following function

PlotCircles(O, a, fig_index, OPTIONS);

where fig_index is the Figure handle and the OPTIONS are

• PlotCirclesOnFigure(..., 'Color', COLOR): apply the color COLOR to lines (same
as the plot function)

• PlotCirclesOnFigure(..., 'LineWidth', LINEWIDTH): set the line width to LINEWIDTH
(same as the plot function)

• PlotCirclesOnFigure(..., 'zdata', ZDATA): set the zdata of the figure to ZDATA

(same as the plot function)

When drawing disks on a figure containing some values, do not forget to set the zdata to the
max value! An example is given below

figure(1);
surf(X,Y,U);
PlotCirclesOnFigure(O, a, 1, 'zdata', max(max(U)));

If X and Y are obtained by meshgrid, let us define the mask matrix S by

S(i, j) =


0 if (X(i, j), Y (i, j)) is outside the obstacles,
p if (X(i, j), Y (i, j)) ∈ Ωp,

p+ 0.5 if (X(i, j), Y (i, j)) ∈ Γp.

This class of matrices is handy when plotting the potentials and is actually used by the two func-
tions ExternalPotential and InternalPotential. The function MaskMatrixObstacles

which provides the matrix M has the following syntax

S = MaskMatrixObstacles(X, Y, O, a);

Let us explain how to extract the boundary points. In the same way as for the MaskMatrixObstacles
function, BoundaryOfObstacles leads to a matrix G where

G(i, j) =


0 if (X(i, j), Y (i, j)) is outside the obstacles,
0 if (X(i, j), Y (i, j)) ∈ Ωp,

p if (X(i, j), Y (i, j)) ∈ Γp.

Similarly, G is computed by

G = BoundaryOfObstacles(X, Y, O, a);

61



3.6 Examples available in µ-diff
Some examples are available in the Examples/ directory and especially in Examples/Benchmark,
where each file is independent and solves a different problem (Dirichlet, Neumann or penetrable).
They should also be launched to check that µ-diff is correctly installed on your computer and
provides the expected results. In the next chapter, we present some standard examples of µ-diff
scripts.

62



Chapter 4

Simple examples of multiple
scattering problems solved with
µ-diff

Contents
4.1 The Dirichlet boundary-value problem . . . . . . . . . . . . . . . . . 63

4.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 The case of the EFIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 The case of the MFIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.4 The case of the CFIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.5 The case of the single-scattering preconditioned integral equation . . . . 66
4.1.6 The case of the Brakhage-Werner integral equation . . . . . . . . . . . . 67
4.1.7 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.9 Point source wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 The Neumann boundary-value problem . . . . . . . . . . . . . . . . . 73
4.3 Mixing Dirichlet and Neumann boundary conditions . . . . . . . . . 76
4.4 Penetrable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Integral equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 A more complex geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3 Writing and solving the BIE using µ-diff . . . . . . . . . . . . . . . . . . 78
4.4.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

The aim of this chapter is to provide some examples of multiple scattering problems solved by
the µ-diff toolbox. The impenetrable case with a Dirichlet, a Neumann or a mixed of both
boundary conditions set on the boundaries of the obstacles are fully treated. For penetrable
obstacles, an example of the implementation of equation (1.36) is provided.

4.1 The Dirichlet boundary-value problem
Let us consider the scattering problem by a collection of sound-soft obstacles

(∆ + k2)u = 0, in Ω+,
u = −uinc, on Γ,
u outgoing,

63



with Ω− = ⋃M
p=1 Ω−p . We propose to solve this problem through various integral equations:

the EFIE (1.15), the MFIE (1.16), the CFIE (1.19) and the single-scattering preconditioned
integral equations (1.32). We show how to use both the full and sparse storages of the matrices.
Before starting, we recommend to use the single-scattering preconditioned integral equation as
presented in §4.1.5. Indeed, the resulting system is well-posed and is well-conditioned leading
to an efficient solution by a Krylov subspace iterative solver.

4.1.1 Pre-processing

Let us first consider a collection of three sound-soft unit circular cylinders. The wavenumber
is k = 2π and the direction of incidence of the wave is β = 0 degree. The resulting µ-diff
pre-processing code for setting these parameters is then

%% Pre-processing
% Three unit disks
O = [-5, 0, 5; -2, 0, 2];
a = [1, 1, 1];
%Set the parameters...
k = 1; %wavenumber
beta_inc = 0; %incident angle (plane wave case)
%Fourier series truncation parameter
M_modes = FourierTruncation(a, k, 'Min', 1);

For each integral equation, we now present the assembly process, the computation of the solution
and finally the post-processing of the computed wave fields. The common pre-processing part
is the one described above. All the functionalities presented here are also available in the file
BenchmarkDirichlet.m which is located in the Examples/Benchmark folder.

4.1.2 The case of the EFIE

This integral formulation reads as {
u = L ρ,
Lρ = −uinc|Γ,

where the first line is the integral equation representation of the exterior wavefield u and the
second one is the surface integral equation to solve.

Dense storage

In µ-diff, the surface single-layer operator L and the incident plane wave field uinc|Γ are prede-
fined quantities. If the full storage of the integral equation is used, then the direct solution of
the resulting linear system can be obtained by the standard backslash Matlab operator \

%Right-hand side (plane wave)
Uinc = PlaneWave(O, a, M_modes, k, beta_inc);
%% Assembling
%Matrix of the system (the two following lines are the same)
L = SingleLayer(O, a, M_modes, k);
%% Solving (here, direct)
rho = L \ Uinc;

64



Sparse storage

For the sparse storage version, only the assembly process of the single-layer matrix and the
system solution need to be modified as follows

%Matrix of the system (the two following lines are the same)
SpL = SpSingleLayer(O, a, M_modes, k);
%% Solving (here, direct)
rho = gmres(@(X)SpMatVec(X, M_modes, SpL), Uinc);

4.1.3 The case of the MFIE

The resolution of the scattering problem by the MFIE (1.16) leads to the integral equation
representations  u = L ρ,(

I

2 +N

)
ρ = −∂nu

inc|Γ.

Dense storage

The MFIE operator (
I

2 +N

)
can be computed thanks to the frontal function IntegralOperator with two arguments: the
type of the operators (for the identity operator and the double-layer potential operator N , see
Table 3.2) and their associated weights (0.5 and 1).

%Right hand side
DnUinc = DnPlaneWave(O, a, M_modes, k, beta_inc);
%% Assembling
%Matrix of the system (the two following lines are the same)
A_MFIE = IntegralOperator(O, a, M_modes, k, [1, 4], [0.5, 1]);
%% Solving (here, direct)
rho = A_MFIE \ DnUinc;

The post-processing part is exactly the same as for the EFIE since the surface equation is based
on the volume single-layer integral representation.

Sparse storage

The sparse storage version is almost the same as for the dense storage except for assembling
the matrix and solving the linear system. Indeed, the matrices I and N cannot be com-
puted by the same function since the sparse function representations SpIntegralOperator

and IntegralOperator cannot be summed together. It is however possible to add the identity
to a ”sparse operator” thanks to SpAddIdentity

SpN = SpDnSingleLayer(O, a, M_modes, k);
%Add I/2 to N:
SpA_MFIE = SpAddIdentity(SpN, 0.5, M_modes)
rho = gmres(@(X)SpMatVec(X, M_modes, SpA_MFIE), DnUinc);

65



4.1.4 The case of the CFIE

Let us now consider the well-posed and well-conditioned CFIE (see also Eq. (1.19)) u = L ρ,[
αηL+ (1− α)

(
I

2 +N

)]
ρ = −αηuinc|Γ − (1− α)∂nu

inc|Γ.

Here, we fix the parameters to α = 0.5 and η = i/k.

Dense storage

The operator
(1− α)

(
I

2 +N

)
+ αηL

is computed in µ-diff by using the IntegralOperator function, the post-processing remaining
unchanged,

%CFIE
alpha = 0.5;
eta = i/k;
%Right-hand side
Uinc = PlaneWave(O, a, M_modes, k, beta_inc);
DnUinc = DnPlaneWave(O, a, M_modes, k, beta_inc);
BCFIE = alpha*eta*Uinc + (1-alpha)*DnUinc;
%% Assembling
%Matrix of the system (the two following lines are the same)
ACFIE = IntegralOperator(O, a, M_modes, k, [2, 1, 4], [alpha*eta, ...

0.5*(1-alpha), 1-alpha]);
%% Solving (here, direct)
rho = ACFIE \ BCFIE;

Sparse storage

The sparse storage version changes compared to the dense one: the operators I/2 + N and L
are computed separately and merged during the matrix-vector products. This is done in the
SpMatVec function

SpL = SpSingleLayer(O, a, M_modes, k);
SpN = SpDnSingleLayer(O, a, M_modes, k);
SpA_MFIE = SpAddIdentity(SpN, 0.5, M_modes)
%% Solving and combining operators:
rho = gmres(@(X)SpMatVec(X,M_modes,{SpL, SpA_MFIE}, [alpha*eta, 1-alpha]), B_CFIE);

4.1.5 The case of the single-scattering preconditioned integral equation

We strongly recommend to use the single-scattering preconditioned version of the EFIE, which
is rigorously the same as the MFIE and CFIE and, up to an invertible operator, to any other
boundary integral equation (see Proposition 1.9). The EFIE version is available in µ-diff and
is represented as {

u = L ρ,

L̂−1Lρ = −L̂−1uinc.

66



Dense storage

In µ-diff, the quantity −L̂−1uinc|Γ is provided by PlaneWavePrecond whereas L̂−1L is obtained
with PrecondDirichlet. The syntax for the dense version is then the following

[...]
%Right-hand side
UincPrecond = PlaneWavePrecond(O, a, M_modes, k, beta_inc);
%Matrix of the system (the two following lines are the same)
APrecond = PrecondDirichlet(O, a, M_modes, k);
%Solving (here, directly)
rho = APrecond \ UincPrecond;
[...]

Sparse storage

The sparse storage is here almost the same as for the dense version thanks to SpPrecondDirichlet

SpPrecond = SpPrecondDirichlet(O, a, M_modes, k);
%% Solving and combining operators:
rho = gmres(@(X)SpMatVec(X,M_modes, SpPrecond), UincPrecond);

4.1.6 The case of the Brakhage-Werner integral equation

The Brakage-Werner integral equation for the Dirichlet problem (1.21) reads as
u = (−ηL −M )ψ,[
−ηL+

(
I

2 −M
)]

ψ = −uinc.

Dense storage

As in the previous chapter, we make here use of the common function IntegralOperator:

[...]
% eta parameter
eta_BW = i/k;
%Right-hand side
Uinc = PlaneWave(O, a, M_modes, k, beta_inc);
%Matrix of the system (the two following lines are the same)
A = IntegralOperator(O, a, M_modes, k, [1, 2, 3], [0.5, -eta_BW, -1]);
%Solving (here, directly)
rho = APrecond \ UincPrecond;
[...]

Sparse storage

For the sparse storage, the three operators I, L and N must be computed separately and merged
during each matrix-vector products. Note that, in fact, the operators I and N can be merged
together, as shown below using SpAddIdentity:

67



SpL = SpSingleLayer(O, a, M_modes, k); %L
SpM = -SpDoubleLayer(O, a, M_modes, k); %-M
SpIminusM = SpAddIdentity(SpM, 0.5, M_modes); %0.5I -M
%% Solving and combining operators:
psi_BW = gmres(@(X)SpMatVec(X,M_modes, {SpL, SpIminusM}, [-eta_BW, 1]), Uinc);

4.1.7 Post-processing

The EFIE, MFIE, the CFIE and their preconditioned version share the same integral represen-
tation of the scattered field u as a single-layer potential only: u = L ρ. Their post-processing
operations are the same. For the Brakhage-Werner integral equation, the post-processing is
different since u = (−ηL −M )ψ.

Radar Cross Section (RCS) and far field

Once the surface wavefield has been computed, the far field can be calculated by the following
µ-diff commands, here for a discretization of [0, 2π[ with a step of 1 degree:

%% Post-processing
%Scattering angles
theta_RCS = 0:360;
theta_RCS_rad = theta_RCS*2*pi/360;
%Farfield for the single-layer representation (<-> [1,0])
FSingleLayer = FarField(O, a, M_modes, k, theta_RCS_rad, rho, [1, 0]);
%Farfield for the BWIE (<-> [-eta_BW, -1])
FBWIE = FarField(O, a, M_modes, k, theta_RCS_rad, psi_BW, [-eta_BW, -1]);

The RCS can also be computed simply by:

RCSSingleLayer = FarFieldToRCS(FSingleLayer);
RCSBWIE = FarFieldToRCS(FBWIE);

or, if the far fields are not computed:

RCSSingleLayer = RCS(O, a, M_modes, k, theta_RCS_rad, rho, [1, 0]);
RCSBWIE = RCS(O, a, M_modes, k, theta_RCS_rad, psi_BW, [-eta_BW, -1]);

Near fields

The scattered field can also be computed on a grid. Even with a vectorization of the code,
this functionality remains slow and cpu consuming. For the EFIE/MFIE and CFIE, only the
single-layer potential must be computed whereas for the Brakhage-Werner integral equation,
the double-layer must also be computed. In all the case, the computations are done in the
exterior of the obstacles and ExternalPotential will do the job properly:

%% Building the grid
XXmin = -10; XXmax = 10;
YYmin = -10; YYmax = 10;
lc = 0.1;
XX = [XXmin:lc:XXmax];
YY = [YYmin:lc:YYmax];

68



[X,Y] = meshgrid(XX,YY);
%% Scattered field (single-layer potential)
U = ExternalPotential(X, Y, O, a, M_modes, k, rho, [1,0], 'OnBoundary', 1);
%% Scattered field (Brakhage-Werner integral equation)
UBWIE = ExternalPotential(X, Y, O, a, M_modes, k, psi_BW, [-eta_BW, -1], ...

'OnBoundary', 1);

The total field uT = u + uinc can also be calculated, thanks to IncidentWaveOnGrid which
computes the incident wave on a grid, even inside the obstacles (on these point, 0 value must
be set, using MaskMatrixObstacles).

%% Incident wave
UincOnMesh = IncidentWaveOnGrid(X, Y, k, 'PlaneWave', beta_inc);
%Set 0 to points in obstacles
Matrix_Not_Obstacles = MaskMatrixObstacles(X, Y, O, a) == 0;
UincOnMesh = UincOnMesh.*Matrix_Not_Obstacles;
%% Total field
U_tot = U + UincOnMesh;
UBWIE_tot = UBWIE + UincOnMesh;

Note that, to display the near field, we suggest to use the following script, where the white
artefacts are removed thanks to set(gcf,'Renderer','Zbuffer'); and the circles are also
displayed, using a high zdata (here, displaying a value called U_tot).

ind_fig = 1;
figure(ind_fig)
hold on;
surf(X,Y, abs(U_tot));
shading interp;
view(2); colorbar;
PlotCircles(O, a, ind_fig, 'Color', 'k', 'LineWidth', 2, 'zdata', ...

max(max(abs(U_tot))));
set(gcf,'Renderer','Zbuffer');
hold off

4.1.8 Results

The figure 4.1 presents the results obtained with the considered configuration, that is 3 unit
disks placed on (−5,−2), (0, 0) and (5, 2) with k = 1 and an incident plane wave of direction 0.
On the figure is shown the obstacles, the history of convergence of the GMRES for the 5 integral
equations for their dense and sparse storage, the radar cross section and also the near-fields.

4.1.9 Point source wave

Our toolbox µ-diff also provides a right hand side derived from a wave emitted by a point
source. To solve that kind of problem, the right hand side is built thanks to PointSource

and DnPointSource instead of respectively PlaneWave and DnPlaneWave (there is currently
no equivalent of PlaneWavePrecond). For example, for the EFIE and a point source centered
on (−10, 0), the right hand side must be computed as:

XS = [-10; 0]; %location of the source (point source case)
%Right-hand side

69



−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

x

y
Obstacles

(a) Obstacles

0 50 100 150 200 250 300 350
−2

0

2

4

6

8

10

12

14

16

Angle of reception (degree)

R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B)

Radar cross section

 

 
EFIE
MFIE
CFIE
BW
SpEFIE
SpMFIE
SpCFIE
SpBW
Precond
Sparse Precond

(b) Radar cross section

0 5 10 15 20 25
−12

−10

−8

−6

−4

−2

0
History of convergence of the GMRES, k = 1, without restart

Iteration number

G
M

R
ES

 re
si

du
al

 (l
og

)

 

 
EFIE
MFIE
CFIE
BW
Sparse EFIE
Sparse MFIE
Sparse CFIE
Sparse BW
Precond
Sparse Precond

(c) History of convergence of the GMRES (d) Absolute value of the scattered field

(e) Absolute value of the total field (f) Real part of the total field

Figure 4.1: Different results for a Dirichlet problem and an incident plane wave solved using
µ-diff. The first figure shows the three obstacles and the second one the radar cross section
obtained for the different integral equation (all superimposed). The next figure (c) represents
the GMRES history of convergence of the different integral equations. The figure (d) shows the
absolute value of the scattered field, and the last two, (e) and (f), represent respectively the
absolute value and the real part of the total field.

70



Uinc = PointSource(O, a, M_modes, k, XS);

The other change appears in the post-processing when computing the total field on a grid.
Indeed, the incident wave is different and IncidentWaveOnGrid must get the right argument:

UincOnMesh = IncidentWaveOnGrid(X, Y, k, 'PointSource', XS);

The rest of the code remains unchanged and the results obtained with a point source are shown
on figure 4.2.

71



−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

x

y
Obstacles

(a) Obstacles

0 50 100 150 200 250 300 350

−20

−18

−16

−14

−12

−10

−8

Angle of reception (degree)

R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B)

Radar cross section

 

 
EFIE
MFIE
CFIE
BW
SpEFIE
SpMFIE
SpCFIE
SpBW
Precond
Sparse Precond

(b) Radar cross section

0 5 10 15 20 25
−12

−10

−8

−6

−4

−2

0
History of convergence of the GMRES, k = 1, without restart

Iteration number

G
M

R
ES

 re
si

du
al

 (l
og

)

 

 
EFIE
MFIE
CFIE
BW
Sparse EFIE
Sparse MFIE
Sparse CFIE
Sparse BW
Precond
Sparse Precond

(c) History of convergence of the GMRES (d) Absolute value of the scattered field

(e) Absolute value of the total field (f) Real part of the total field

Figure 4.2: Different results for a Dirichlet problem for a wave emitted by a point source
solved using µ-diff. The first two pictures show respectively the obstacles and the radar cross
section, while the third one shows the GMRES history of convergence. The absolute value of
the scattered field is presented on subfigure (d), and the total field on figures (e) (absolute
value) and (f) (real part).

72



4.2 The Neumann boundary-value problem
Let us now consider the sound-hard scattering problem

(∆ + k2)u = 0, in Ω+,
∂nu = −∂nu

inc, on Γ,
u outgoing.

An efficient solution to this problem is given for example by a preconditioned integral equa-
tion for sound-hard obstacles. Here, we only present this solution but the extension to other
kinds of integral equations is direct. The µ-diff script is close to the one developed for the
Dirichlet problem, only the two following functions must be modified: PrecondDirichlet

is replaced by PrecondNeumann and the right-hand side PlaneWavePrecond is now given by
DnPlaneWavePrecond. For the Neumann problem, the preconditioned boundary integral equa-
tion is based on the double-layer representation{

u = Mλ,

D̂−1Dλ = −D̂−1∂nu
inc.

% Three unit disks
O = [-5, 0, 5; -2, 0, 2];
a = [1, 1, 1];
%Set the parameters...
k = 1; %wavenumber
beta_inc = 0; %incident angle
%Fourier series truncation parameter
M_modes = FourierTruncation(a, k, 'Min', 1);
%Right-hand side
DnUincPrecond = DnPlaneWavePrecond(O, a, M_modes, k, beta_inc);
%Matrix of the system (the two following lines are the same)
APrecond = PrecondNeumann(O, a, M_modes, k);
%Solving (here, direct)
lambda = APrecond \ DnUincPrecond;

The post-processing is based on the double-layer potential (compared to Dirichlet, the modifi-
cation is realized in the RCS function, the last argument [1,0] is then replaced by [0,1])

%Scattering angles
theta_RCS = 0:360;
theta_RCS_rad = theta_RCS*2*pi/360;
%Radar Cross Section associated with the double-layer potential
myRCS = RCS(O, a, M_modes, k, theta_RCS_rad, lambda, [0,1]);
plot(theta_RCS, myRCS, 'k');

With the previous parameter, we obtain the result shown on figure 4.3 for an incident plane
wave of direction 0 and on figure 4.4 for a point source centered on [−10, 0]. Only the case of
the preconditioned integral equation has been shown.

73



−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

x

y
Obstacles

(a) Obstacles

0 50 100 150 200 250 300 350

−20

−15

−10

−5

0

5

10

Angle of reception (degree)

R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B)

Radar cross section

 

 
Precond

(b) Radar cross section

1 2 3 4 5 6 7 8 9 10
−12

−10

−8

−6

−4

−2

0
History of convergence of the GMRES, k = 1, without restart

Iteration number

G
M

R
ES

 re
si

du
al

 (l
og

)

 

 
Precond

(c) History of convergence of the GMRES (d) Absolute value of the scattered field

(e) Absolute value of the total field (f) Real part of the total field

Figure 4.3: Neumann boundary value problem with an incident plane wave of direction 0, solved
using (only) the single scattering preconditioned integral equation. The three first figures show
respectively: the obstacles, the radar cross section, the history of convergence of the GMRES.
The three last, (d) to (f), present the absolute value of the scattered field, the absolute and real
part of the total field.

74



−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

x

y
Obstacles

(a) Obstacles

0 50 100 150 200 250 300 350

−30

−25

−20

−15

−10

Angle of reception (degree)

R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B)

Radar cross section

 

 
Precond

(b) Radar cross section

1 2 3 4 5 6 7 8 9 10
−12

−10

−8

−6

−4

−2

0
History of convergence of the GMRES, k = 1, without restart

Iteration number

G
M

R
ES

 re
si

du
al

 (l
og

)

 

 
Precond

(c) History of convergence of the GMRES (d) Absolute value of the scattered field

(e) Absolute value of the total field (f) Real part of the total field

Figure 4.4: Neumann boundary value problem with a point source emitter solved using the single
scattering preconditioned integral equation. In the respective order is shown: the obstacles, the
radar cross section, the history of convergence of the GMRES and then, the absolute value of
the scattered field, the absolute and real part of the total field.

75



4.3 Mixing Dirichlet and Neumann boundary conditions
Let us consider the following situation where we mix Dirichlet and Neumann boundary condi-
tions. The scatterer is composed of MD sound-soft and MN = M −MD sound-hard obstacles,
leading to the scattering problem

(∆ + k2)u = 0, in Ω+,
u = −uinc, on Γp, p = 1, . . . ,MD,

∂nu = −∂nu
inc, on Γp, p = MD + 1, . . . ,M,

u outgoing.

For this problem, the preconditioned integral is not directly available. We can apply a Combined
Field Integral Equation for the mixed problem (see equation (1.34)) and written as

(I2 +A)ϕ = b,

where the matrix A is given by (1.35). We have

A(p, q) =
{

(1− α)Np,q + αηLp,q, if q ≤MD,

(1− α)Dp,q + αηMp,q, if q > MD.

The matrix is particularly easy to build with µ-diff thanks to the frontal function IntegralOperator.
To this end, two three-dimensional arrays, Assembling and Weight, are built such that

Assembling(:, p, q) =
{

[4, 2], if q ≤MD,

[5, 3], if q > MD,
and Weight(:, p, q) = [(1− α), αη].

The indices in Assembling corresponds to the indices of the boundary integral operators (2 =
Lp,q, 3 = Mp,q, 4 = Np,q, 5 = Dp,q). The assembling process is realized by IntegralOperator.

% Two Dirichlet obstacles (unit diks)
OD = [-5, -5; -5, 5];
aD = [1, 1];
N_scatD = length(aD);
% Two Neumann obstacles (unit diks)
ON = [5, 5; -5, 5];
aN = [1, 1];
N_scatN = length(aN);
%All obstacles
O = [OD, ON];
a = [aD, aN];
N_scat = N_scatD + N_scatN;
%Set the parameters...
k = 1; %wavenumber
beta_inc = 0; %incident angle
%Fourier series truncation parameter (Dirichlet, Neumann, All)
M_modesD = FourierTruncation(aD, k, 'Min', 1);
M_modesN = FourierTruncation(aN, k, 'Min', 1);
M_modes = [M_modesD, M_modesN];
%Right-hand side
Uinc = DnPlaneWave(O, a, M_modes, k, beta_inc);
DnUinc = DnPlaneWave(O, a, M_modes, k, beta_inc);
B = alpha*eta*Uinc + (1-alpha)*DnUinc;
%% Assembling
Assembling = zeros(2, N_scat, N_scat);

76



Weight = zeros(2, N_scat, N_scat);
for p=1:N_scatD

for q=1:N_scat
Assembling(:,p,q) = [4;2];
Weight(:,p,q) = [1-alpha; alpha*eta];

end
end
for p=N_scatD+1:N_scat

for q=1:N_scat
Assembling(:,p,q) = [5;3];
Weight(:,p,q) = [1-alpha; alpha*eta];

end
end
%Common function
A = IntegralOperator(O, a, M_modes, k, Assembling, Weight);
%Solving (here, direct)
density = A \ B;

The post-processing is then done by specifying to µ-diff how the density must be used: for the
first MD obstacles, a single-layer potential is used, while for the others, a double-layer potential
is required. The RCS function can simply do that. It just needs an array TypeOfOp of size
N_scat× 2 such that

TypeOfOp(p, :) =
{

[1, 0], if p ≤MD,

[0, 1], if p > MD.

In a µ-diff script, this means “Apply the single-layer potential (multiplied by 1) for the first
MD part of the density and a double-layer potential (multiplied by 1) for the others”.

%Preparing TypeOfOp
TypeOfOp = zeros(N_scat, 2);
for p =1:N_scat

if(p ≤ N_scatD)
TypeOfOp(p,1) = 1;

else
TypeOfOp(p,2) = 1;

end
end
%Scattering angles
theta_RCS = 0:360;
theta_RCS_rad = theta_RCS*2*pi/360;
%Radar Cross Section computation
myRCS = RCS(O, a, M_modes, k, theta_RCS_rad, density, TypeOfOp);
plot(theta_RCS, myRCS, 'k');

77



4.4 Penetrable case

4.4.1 Integral equation

Let us now consider the case of penetrable obstacles, with a frequency k−p (possibly different)
in each scatterer Ω−p , for p = 1, . . . ,M . The problem then reads as:

(∆ + (k+)2)u+ = 0, in Ω+,
(∆ + (k−)2)u− = 0, in Ω−,

u+ − u− = −uinc, on Γ,
∂nu

+ − ∂nu
− = −∂nu

inc, on Γ,
u+ outgoing,

where k−|Ω−p = k−p . Solving this problem can be done thanks to the integral equation presented
in section 1.36 where the interior total field u− (equal also to the total field) and the exterior
scattered field u+ are represented as a single-layer potential:

u+(x) = L +ρ+(x) =
∫

Γ
G+(x,y)ρ+(y) dy in Ω+,

u−(x) = L −ρ−(x) =
∫

Γ
G−(x,y)ρ−(y) dy in Ω−,

The associated integral equation (1.36) is recalled to be L+ −L−

−I2 +N+ −I2 −N
−

( ρ+

ρ−

)
=
(
−uinc|Γ
−∂nu

inc|Γ

)
.

4.4.2 A more complex geometry

As already explained in §3.3.1, µ-diff also proposes some tools to place the obstacles and in a
particular order, leading to original geometry, as the one shown previously on figure 3.3 and
treated here (see 4.5(a)). The geometry is composed by a periodic placement of 11 × 11 unit
disks, separated by a distance equal to 1 with an empty middle line and middle column, leading
to, in fact, 10× 10 = 100 obstacles. Below is recalled the code to obtain this geometry:

bx = 3; by = 3;
Nx = 11; Ny = 11;
O = RectangularLattice(bx, by, Nx, Ny, 'Centered', [0, 0]);
a = ones(1, size(O, 2));
[O, a] = RemoveDisk(O, a, 'X', 0, 'Y', 0);
N_scat = size(O,2);

4.4.3 Writing and solving the BIE using µ-diff

Let us solve the problem using a dense storage and first write the matrix of the system, which
consists in assembling the different operator into a larger matrix:

Splus = SingleLayer(O, a, M_modes, k);
Sminus = IntegralOperator(O, a, M_modes, k_int, 2*eye(N_scat,N_scat));
Nplus = DnSingleLayer(O, a, M_modes, k);
Nminus = IntegralOperator(O, a, M_modes, k_int, 4*eye(N_scat,N_scat));
Identity = eye(size(Nplus));

78



% Boundary integral operator
A = [Splus, -Sminus; -0.5*Identity + Nplus, -(0.5*Identity + Nminus)];
%cleaning memory
clear Splus Sminus Nplus Nminus Identity mu_matrix;

Second, we need to introduce the right hand side (here a point source):

Uinc = PointSource(O, a, M_modes, k, XS);
DnUinc = DnPointSource(O, a, M_modes, k, XS);
[B] = [Uinc;DnUinc];
clear Uinc DnUinc;

Finally, we solve the system, here using a direct solver. The two densities ρ+ and ρ− are here
also extracted to simplify:

rho = A\B;
%% Extracting the "exterior" and "interior" densities
rho_plus = rho(1:sum_modes);
rho_minus = rho(sum_modes+1:end);
clear rho;

4.4.4 Post-processing

Radar cross section

We compute now the radar cross section, which is based on the (exterior) single-layer potential:

theta_RCS = 0:360;
theta_RCS_rad = theta_RCS*2*pi/360;
R = RCS(O, a, M_modes, k, theta_RCS_rad, rho_plus, [1,0]);

The radar cross section is shown on figure 4.5(b).

Near field

Let us now compute the near-fields by first building the grid:

XX = [-20:0.1:20];
YY = [-20:0.1:20];
[X,Y] = meshgrid(XX,YY);

And second, we compute the single-layer potentials, external and internal:

%%Potentials
Ue = ExternalPotential(X, Y, O, a, M_modes, k, rho_plus, [1,0]);
Ui = InternalPotential(X, Y, O, a, M_modes, k_int, rho_minus, [1,0], ...

'OnBoundary', 1);
U = Ue + Ui;

The quantity U is the scattered field outside the obstacles and the total field inside in the
obstacles. The option OnBoundary is set to compute the potential also on the boundary, in
case there is some points of the grid on it. To get the total field, we need to add the incident
wave to U, outside the obstacles:

79



UincOnMesh = IncidentWaveOnGrid(X, Y, k, 'PointSource', XS);
Matrix_Not_Obstacles = (MaskMatrixObstacles(X, Y, O, a) == 0);
UincOnMesh = UincOnMesh.*Matrix_Not_Obstacles;
U_tot = U + UincOnMesh;

The near-fields are now fully computed and can be displayed. Figure 4.5(c) represents the
absolute value of the total field, and 4.5(d) and 4.5(e) its real and imaginary part.

80



−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

x

y

Obstacles

(a) Obstacles

0 50 100 150 200 250 300 350

−10

−9

−8

−7

−6

−5

−4

−3

Radar Cross Section

Angle of reception (degree)

R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B)

(b) Radar cross section

(c) Absolute value of the total field (d) Real part of the total field

(e) Imaginary part of the total field

Figure 4.5: Results obtained for a complex geometry of penetrable obstacles with k = 1 and
k− = 2k, solved using a single-layer potential representation of the field. The point source is
located on (0, 0), in the center of the geometry.

81



82



Appendix A

List of the µ-diff functions
(alphabetical order)

• BenchmarkCalderon (Examples/Benchmark)
Example of solution of penetrable scattering using Calderon projectors
• BenchmarkDirichlet (Examples/Benchmark)
Example of solution of sound soft scattering using different integral equations
• BenchmarkNeumann (Examples/Benchmark)
Example of solution of sound hard scattering using different integral equations
• BenchmarkPenetrable (Examples/Benchmark)
Example of solution of penetrable scattering using single layer potential
• BlockCalderonProjector (IntOperators/Dense/Interface/Block)
Calderon projector block
• BlockDnDoubleLayer (IntOperators/Dense/Interface/Block)
Block of the normal derivative of the double layer integral operator
• BlockDnPlaneWave (PreProcessing/IncidentWave/Block)
Block vector (=1 obstacle) of a the right hand side of the normal derivative of a plane wave
• BlockDnPlaneWavePrecond (PreProcessing/IncidentWave/Block)
Block vector (=1 obstacle) of a the right hand side of the normal derivative of a plane wave
for the preconditioned problem of sound-hard scattering
• BlockDnPointSource (PreProcessing/IncidentWave/Block)
Block vector (=1 obstacle) of a the right hand side of the normal derivative of a point source
wave
• BlockDnSingleLayer (IntOperators/Dense/Interface/Block)
Block of the normal derivative of the single layer integral operator
• BlockDoubleLayer (IntOperators/Dense/Interface/Block)
Block of the double layer integral operator
• BlockIdentity (IntOperators/Dense/Interface/Block)
Block of the identity integral operator
• BlockIncidentWave (PreProcessing/IncidentWave)
Block vector of a generic incident wave (right hand side, block=1 obstacle)

83



• BlockIntegralOperator (IntOperators/Dense)
Generic dense block of an integral operator
• BlockPlaneWave (PreProcessing/IncidentWave/Block)
Block vector (=1 obstacle) of a the right hand side of the trace of a plane wave
• BlockPlaneWavePrecond (PreProcessing/IncidentWave/Block)
Block vector (=1 obstacle) of a the right hand side of the trace of a plane wave for the
preconditioned problem of sound-soft scattering
• BlockPointSource (PreProcessing/IncidentWave/Block)
Block vector (=1 obstacle) of a the right hand side of the trace of a point source wave
• BlockPotential (PostProcessing/NearField/Functions)
Generic block potential matrix used to compute external or internal potentials
• BlockPrecondDirichlet (IntOperators/Dense/Interface/Block)
Block of the preconditioned integral operator (sound soft case)
• BlockPrecondNeumann (IntOperators/Dense/Interface/Block)
Block of the preconditioned integral operator (sound hard case)
• BlockSingleLayer (IntOperators/Dense/Interface/Block)
Block of the single layer integral operator
• BoundaryOfObstacles (PostProcessing/Geometry)
Extract the boundary of the obstacle
• CalderonProjector (IntOperators/Dense/Interface/Full)
Full dense matrix of the Calderon projector
• CheckPlacement (PreProcessing/Geometry)
Verify if the obstacles are satisfying the condition (overlapping, . . . )
• CreateRandomDisks (PreProcessing/Geometry)
Place randomly random disks in a box
• dbesselh (Common)
First derivative of first kind Hankel function
• dbesselj (Common)
First derivative of Bessel function
• dbessely (Common)
First derivative of Newton function
• DnDoubleLayer (IntOperators/Dense/Interface/Full)
Full dense matrix of the normal derivative of the double layer integral operator
• DnPlaneWave (PreProcessing/IncidentWave/Full)
Full vector (=all obstacle) of a the right hand side of the normal derivative of a plane wave
• DnPlaneWavePrecond (PreProcessing/IncidentWave/Full)
Full vector (=all obstacle) of a the right hand side of the normal derivative of a plane wave
for the preconditioned problem of sound-hard scattering
• DnPointSource (PreProcessing/IncidentWave/Full)
Full vector (=all obstacle) of a the right hand side of the normal derivative of a point source
wave
• DnSingleLayer (IntOperators/Dense/Interface/Full)
Full dense matrix of the normal derivative of the single layer integral operator

84



• DORT_dielectric (Examples/TimeReversal/FarField/NonPenetrable)
DORT for penetrable obstacles (far field)
• DORT_NonPenetrable (Examples/TimeReversal/FarField/NonPenetrable)
DORT for acoustic sound soft obstacles (far field)
• DoubleLayer (IntOperators/Dense/Interface/Full)
Full dense matrix of the double layer integral operator
• ExternalDoubleLayerPotential (PostProcessing/NearField/Interface)
External potential of double layer potential only
• ExternalPotential (PostProcessing/NearField)
Compute potentials (single, double or linear combination) on a (Matlab) meshgrid and
outside the obstacles
• ExternalSingleLayerPotential (PostProcessing/NearField/Interface)
External potential of single layer potential only
• fangle (Common)
Angle with horizontal axis
• FarField (PostProcessing/FarField)
Generic far field computation from densities
• FarField_to_RCS (PostProcessing/FarField)
Radar Cross Section (RCS) from far field
• FarFieldDoubleLayer (PostProcessing/FarField/Interface)
Far field of the double layer potential only
• FarFieldSingleLayer (PostProcessing/FarField/Interface)
Far field of the single layer potential only
• FourierTruncation (PreProcessing/Fourier)
Provide the number of mode to kept in the Fourier series
• GetPotentialOptions (PostProcessing/NearField/Functions)
Options for potential computations are condensed here
• HerglotzWave (Examples/TimeReversal/FarField/Common)
Compute an Herglotz wave (linear combination of plane waves)
• Identity (IntOperators/Dense/Interface/Full)
Full dense matrix of the identity operator
• IncidentWave (PreProcessing/IncidentWave)
Full vector of a generic incident wave (right hand side)
• IncidentWaveOnGrid (PostProcessing/IncidentWave)
Compute incident wave on a (Matlab) meshgrid
• IntegralOperator (IntOperators/Dense)
Generic integral operator dense matrix (full)
• InternalDoubleLayerPotential (PostProcessing/NearField/Interface)
Internal potential of double layer potential only
• InternalPotential (PostProcessing/NearField)
Compute potentials (single, double or linear combination) on a (Matlab) meshgrid and
inside the obstacles

85



• InternalSingleLayerPotential (PostProcessing/NearField/Interface)
Internal potential of single layer potential only
• MaskMatrixObstacles (PostProcessing/Geometry)
Matrix with boolean values inside or outside obstacles
• PlaneWave (PreProcessing/IncidentWave/Full)
Full vector (=all obstacle) of a the right hand side of the trace of a plane wave
• PlaneWavePrecond (PreProcessing/IncidentWave/Full)
Full vector (=all obstacle) of a the right hand side of the trace of a plane wave for the
preconditioned problem of sound-soft scattering
• PlotCircles (PostProcessing/Geometry)
Display obstacles on figure
• PointSource (PreProcessing/IncidentWave/Full)
Full vector (=all obstacle) of a the right hand side of the trace of a point source wave
• PrecondDirichlet (IntOperators/Dense/Interface/Full)
Full dense matrix of the preconditioned integral operator (sound soft case)
• PrecondNeumann (IntOperators/Dense/Interface/Full)
Full dense matrix of the preconditioned integral operator (sound hard case)
• RCS (PostProcessing/FarField)
Generic Radar Cross Section (RCS) computation from densities
• RCSDoubleLayer (PostProcessing/FarField/Interface)
Radar Cross Section (RCS) of the double layer potential only
• RCSSingleLayer (PostProcessing/FarField/Interface)
Radar Cross Section (RCS) of the single layer potential only
• RectangularLattice (PreProcessing/Geometry)
Build a rectangular lattice of disks
• RemoveDisk (PreProcessing/Geometry)
Remove some disks
• repeat_horiz (Common)
Copy/paste a row vector to build a matrix
• repeat_vert (Common)
Copy/paste a column vector to build a matrix
• SingleLayer (IntOperators/Dense/Interface/Full)
Full dense matrix of the single layer integral operator
• SpAddIdentity (IntOperators/Sparse/Functions)
Sparse function: add identity to a sparse operator
• SpBlockDnDoubleLayer (IntOperators/Sparse/Interface/Block)
Sparse block of the normal derivative of the double layer integral operator
• SpBlockDnSingleLayer (IntOperators/Sparse/Interface/Block)
Sparse block of the normal derivative of the single layer integral operator
• SpBlockDoubleLayer (IntOperators/Sparse/Interface/Block)
Sparse block of the double layer integral operator
• SpBlockIdentity (IntOperators/Sparse/Interface/Block)
Sparse block of the identity operator

86



• SpBlockIntegralOperator (IntOperators/Sparse)
Generic sparse block of an integral operator
• SpBlockPrecondDirichlet (IntOperators/Sparse/Interface/Block)
Sparse block of the preconditioned integral operator (sound soft case)
• SpBlockPrecondNeumann (IntOperators/Sparse/Interface/Block)
Sparse block of the preconditioned integral operator (sound hard case)
• SpBlockSingleLayer (IntOperators/Sparse/Interface/Block)
Sparse block of the single layer integral operator
• SpDnDoubleLayer (IntOperators/Sparse/Interface/Full)
Sparse matrix of the normal derivative of the double layer integral operator
• SpDnSingleLayer (IntOperators/Sparse/Interface/Full)
Sparse matrix of the normal derivative of the single layer integral operator
• SpDoubleLayer (IntOperators/Sparse/Interface/Full)
Sparse matrix of the double layer integral operator
• SpIdentity (IntOperators/Sparse/Interface/Full)
Sparse matrix of the identity operator
• SpIntegralOperator (IntOperators/Sparse)
Generic integral operator sparse matrix (full)
• SpMatVec (IntOperators/Sparse/Functions)
Sparse function: sparse matrix - vector product (possibly multiples)
• SpPrecondDirichlet (IntOperators/Sparse/Interface/Full)
Sparse matrix of the preconditioned integral operator (sound soft case)
• SpPrecondNeumann (IntOperators/Sparse/Interface/Full)
Sparse matrix of the preconditioned integral operator (sound hard case)
• SpSingleLayer (IntOperators/Sparse/Interface/Full)
Sparse matrix of the single layer integral operator
• SpSingleMatVec (IntOperators/Sparse/Functions)
Sparse function: sparse matrix - (only one) vector product
• TimeReversalOperator (Examples/TimeReversal/FarField/Common)
Time reversal matrix in acoustic and far field context
• TriangularLattice (PreProcessing/Geometry)
Build a triangular lattice of disks

87



88



Appendix B

List of the µ-diff functions (ordering
by folder name)

Common

• repeat_horiz: Copy/paste a row vector to build a matrix
• fangle: Angle with horizontal axis
• dbesselj: First derivative of Bessel function
• dbessely: First derivative of Newton function
• dbesselh: First derivative of first kind Hankel function
• repeat_vert: Copy/paste a column vector to build a matrix

Examples/Benchmark

• BenchmarkCalderon: Example of solution of penetrable scattering using Calderon pro-
jectors
• BenchmarkDirichlet: Example of solution of sound soft scattering using different in-
tegral equations
• BenchmarkNeumann: Example of solution of sound hard scattering using different inte-
gral equations
• BenchmarkPenetrable: Example of solution of penetrable scattering using single layer
potential

Examples/TimeReversal/FarField/Common

• HerglotzWave: Compute an Herglotz wave (linear combination of plane waves)
• TimeReversalOperator: Time reversal matrix in acoustic and far field context

Examples/TimeReversal/FarField/NonPenetrable

• DORT_dielectric: DORT for penetrable obstacles (far field)
• DORT_NonPenetrable: DORT for acoustic sound soft obstacles (far field)

IntOperators/Dense

89



• BlockIntegralOperator: Generic dense block of an integral operator
• IntegralOperator: Generic integral operator dense matrix (full)

IntOperators/Dense/Interface/Block

• BlockDnSingleLayer: Block of the normal derivative of the single layer integral oper-
ator
• BlockDoubleLayer: Block of the double layer integral operator
• BlockIdentity: Block of the identity integral operator
• BlockPrecondDirichlet: Block of the preconditioned integral operator (sound soft
case)
• BlockPrecondNeumann: Block of the preconditioned integral operator (sound hard case)
• BlockSingleLayer: Block of the single layer integral operator
• BlockDnDoubleLayer: Block of the normal derivative of the double layer integral oper-
ator
• BlockCalderonProjector: Calderon projector block

IntOperators/Dense/Interface/Full

• DnDoubleLayer: Full dense matrix of the normal derivative of the double layer integral
operator
• DnSingleLayer: Full dense matrix of the normal derivative of the single layer integral
operator
• DoubleLayer: Full dense matrix of the double layer integral operator
• SingleLayer: Full dense matrix of the single layer integral operator
• CalderonProjector: Full dense matrix of the Calderon projector
• PrecondNeumann: Full dense matrix of the preconditioned integral operator (sound hard
case)
• PrecondDirichlet: Full dense matrix of the preconditioned integral operator (sound
soft case)
• Identity: Full dense matrix of the identity operator

IntOperators/Sparse

• SpBlockIntegralOperator: Generic sparse block of an integral operator
• SpIntegralOperator: Generic integral operator sparse matrix (full)

IntOperators/Sparse/Functions

• SpAddIdentity: Sparse function: add identity to a sparse operator
• SpMatVec: Sparse function: sparse matrix - vector product (possibly multiples)
• SpSingleMatVec: Sparse function: sparse matrix - (only one) vector product

IntOperators/Sparse/Interface/Block

90



• SpBlockDoubleLayer: Sparse block of the double layer integral operator
• SpBlockPrecondNeumann: Sparse block of the preconditioned integral operator (sound
hard case)
• SpBlockPrecondDirichlet: Sparse block of the preconditioned integral operator (sound
soft case)
• SpBlockDnSingleLayer: Sparse block of the normal derivative of the single layer inte-
gral operator
• SpBlockDnDoubleLayer: Sparse block of the normal derivative of the double layer
integral operator
• SpBlockSingleLayer: Sparse block of the single layer integral operator
• SpBlockIdentity: Sparse block of the identity operator

IntOperators/Sparse/Interface/Full

• SpSingleLayer: Sparse matrix of the single layer integral operator
• SpDnDoubleLayer: Sparse matrix of the normal derivative of the double layer integral
operator
• SpDnSingleLayer: Sparse matrix of the normal derivative of the single layer integral
operator
• SpDoubleLayer: Sparse matrix of the double layer integral operator
• SpIdentity: Sparse matrix of the identity operator
• SpPrecondDirichlet: Sparse matrix of the preconditioned integral operator (sound
soft case)
• SpPrecondNeumann: Sparse matrix of the preconditioned integral operator (sound hard
case)

PostProcessing/FarField

• FarField_to_RCS: Radar Cross Section (RCS) from far field
• FarField: Generic far field computation from densities
• RCS: Generic Radar Cross Section (RCS) computation from densities

PostProcessing/FarField/Interface

• RCSDoubleLayer: Radar Cross Section (RCS) of the double layer potential only
• RCSSingleLayer: Radar Cross Section (RCS) of the single layer potential only
• FarFieldSingleLayer: Far field of the single layer potential only
• FarFieldDoubleLayer: Far field of the double layer potential only

PostProcessing/Geometry

• MaskMatrixObstacles: Matrix with boolean values inside or outside obstacles
• BoundaryOfObstacles: Extract the boundary of the obstacle
• PlotCircles: Display obstacles on figure

PostProcessing/IncidentWave

91



• IncidentWaveOnGrid: Compute incident wave on a (Matlab) meshgrid

PostProcessing/NearField

• InternalPotential: Compute potentials (single, double or linear combination) on a
(Matlab) meshgrid and inside the obstacles
• ExternalPotential: Compute potentials (single, double or linear combination) on a
(Matlab) meshgrid and outside the obstacles

PostProcessing/NearField/Functions

• BlockPotential: Generic block potential matrix used to compute external or internal
potentials
• GetPotentialOptions: Options for potential computations are condensed here

PostProcessing/NearField/Interface

• InternalSingleLayerPotential: Internal potential of single layer potential only
• ExternalSingleLayerPotential: External potential of single layer potential only
• ExternalDoubleLayerPotential: External potential of double layer potential only
• InternalDoubleLayerPotential: Internal potential of double layer potential only

PreProcessing/Fourier

• FourierTruncation: Provide the number of mode to kept in the Fourier series

PreProcessing/Geometry

• TriangularLattice: Build a triangular lattice of disks
• CheckPlacement: Verify if the obstacles are satisfying the condition (overlapping, . . . )
• RectangularLattice: Build a rectangular lattice of disks
• RemoveDisk: Remove some disks
• CreateRandomDisks: Place randomly random disks in a box

PreProcessing/IncidentWave

• IncidentWave: Full vector of a generic incident wave (right hand side)
• BlockIncidentWave: Block vector of a generic incident wave (right hand side, block=1
obstacle)

PreProcessing/IncidentWave/Block

• BlockPointSource: Block vector (=1 obstacle) of a the right hand side of the trace of
a point source wave
• BlockPlaneWavePrecond: Block vector (=1 obstacle) of a the right hand side of the
trace of a plane wave for the preconditioned problem of sound-soft scattering

92



• BlockDnPlaneWave: Block vector (=1 obstacle) of a the right hand side of the normal
derivative of a plane wave
• BlockPlaneWave: Block vector (=1 obstacle) of a the right hand side of the trace of a
plane wave
• BlockDnPointSource: Block vector (=1 obstacle) of a the right hand side of the normal
derivative of a point source wave
• BlockDnPlaneWavePrecond: Block vector (=1 obstacle) of a the right hand side of the
normal derivative of a plane wave for the preconditioned problem of sound-hard scattering

PreProcessing/IncidentWave/Full

• PlaneWavePrecond: Full vector (=all obstacle) of a the right hand side of the trace of
a plane wave for the preconditioned problem of sound-soft scattering
• PlaneWave: Full vector (=all obstacle) of a the right hand side of the trace of a plane
wave
• DnPlaneWave: Full vector (=all obstacle) of a the right hand side of the normal derivative
of a plane wave
• DnPointSource: Full vector (=all obstacle) of a the right hand side of the normal
derivative of a point source wave
• PointSource: Full vector (=all obstacle) of a the right hand side of the trace of a point
source wave
• DnPlaneWavePrecond: Full vector (=all obstacle) of a the right hand side of the normal
derivative of a plane wave for the preconditioned problem of sound-hard scattering

93



94



Bibliography

[1] F. Alouges, S. Borel, and D.P. Levadoux. A stable well-conditioned integral equation
for electromagnetism scattering. Journal of Computational and Applied Mathematics,
204(2):440 – 451, 2007.

[2] X. Antoine, C. Chniti, and K. Ramdani. On the numerical approximation of high-frequency
acoustic multiple scattering problems by circular cylinders. J. Comput. Phys., 227(3):1754–
1771, 2008.

[3] X. Antoine and M. Darbas. Alternative integral equations for the iterative solution of
acoustic scattering problems. Quaterly J. Mech. Appl. Math., 1(58):107–128, 2005.

[4] X. Antoine and M. Darbas. Generalized combined field integral equations for the iterative
solution of the three-dimensional Helmholtz equation. M2AN Math. Model. Numer. Anal.,
1(41):147–167, 2007.

[5] X. Antoine and M. Darbas. Integral Equations and Iterative Schemes for Acoustic Scatter-
ing Problems. to appear, 2014.

[6] X. Antoine, K. Ramdani, and B. Thierry. Wide frequency band numerical approaches
for multiple scattering problems by disks. J. Algorithms Comput. Technol., 6(2):241–259,
2012.

[7] A. Bendali and M. Fares. Boundary integral equations methods in acoustics in computa-
tional acoustic scattering. In Computational Methods for Acoustics Problems, pages 1–36.
Saxe-Coburg Publications, 2008.

[8] T. Betcke, S. N Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner. Condition
number estimates for combined potential boundary integral operators in acoustics and their
boundary element discretisation. Numerical Methods for Partial Differential Equations,
27(1):31–69, 2011.

[9] S. Borel. Résolution des équations intégrales pour la diffraction d’ondes acoustiques et
électromagnétiques. Stabilisation d’algorithmes itératifs et aspects de l’analyse numérique.
PhD thesis, Université Paris XI, 2006.

[10] H. Brakhage and P. Werner. Über das Dirichletsche Aussenraumproblem für die
Helmholtzsche Schwingungsgleichung. Arch. Math., 16:325–329, 1965.

[11] A. J. Burton and G. F. Miller. The application of integral equation methods to the nu-
merical solution of some exterior boundary-value problems. Proc. Roy. Soc. London. Ser.
A, 323:201–210, 1971. A discussion on numerical analysis of partial differential equations
(1970).

95



[12] S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner. Condition number
estimates for combined potential boundary integral operators in acoustic scattering. J.
Integral Equations Appl., 21(2):229–279, 2009.

[13] S. N Chandler-Wilde, I. G. Graham, S. Langdon, and E. A. Spence. Numerical-asymptotic
boundary integral methods in high-frequency acoustic scattering. Acta Numerica, 21(1):89–
305, 2012.

[14] D. L. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Pure and
Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1983. A Wiley-
Interscience Publication.

[15] M. Darbas. Préconditionneurs Analytiques de type Calderòn pour les Formulations Inté-
grales des Problèmes de Diffraction d’Ondes. PhD thesis, INSA de Toulouse, 2004.

[16] R. Harrington and J. Mautz. H-field, E-field and combined field solution for conducting
bodies of revolution. Archiv Elektronik und Uebertragungstechnik, 4(32):157–164, 1978.

[17] R. Kress and W. T. Spassov. On the condition number of boundary integral operators
for the exterior Dirichlet problem for the Helmholtz equation. Numer. Math., 42(1):77–95,
1983.

[18] P. A. Martin. Multiple Scattering. Interaction of Time-Harmonic Waves with N Obstacles,
volume 107 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 2006.

[19] J. Mautz and R. Harrington. A combined-source solution for radiation and scattering from
a perfectly conducting body. Antennas and Propagation, IEEE Transactions on, 27(4):445
– 454, jul 1979.

[20] W.C.H. McLean. Strongly elliptic systems and boundary integral equations. Cambridge
University Press, 2000.

[21] J.-C. Nédélec. Acoustic and Electromagnetic Equations. Integral Representations for Har-
monic Problems, volume 144 of Applied Mathematical Sciences. Springer-Verlag, New York,
2001.

[22] Y. Saad and M. Schultz. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869, 1986.

[23] B. Thierry. Analyse et Simulations Numériques du Retournement Temporel et de la Diffrac-
tion Multiple. Nancy University, Thèse de Doctorat, 2011.

[24] B. Thierry. A remark on the single scattering preconditioner applied to boundary integral
equations. Journal of Mathematical Analysis and Applications, 413(1):212 – 228, 2014.

96


	Copyright
	Introduction to the user guide
	How to install -diff
	Boundary integral equations: a short survey
	Standard integral equation formulations in acoustic scattering
	Scattering problems
	Volume and boundary integral operators
	Direct integral equations 
	Brakhage-Werner indirect integral equation
	Neumann boundary condition
	Summary

	Multiple scattering case
	A more explicit writing of the integral equation formulations
	Single-scattering preconditioning

	Mixing Dirichlet and Neumann boundary conditions
	The penetrable case
	The boundary-value problem
	An example of integral equation for the penetrable case
	Calderón projectors


	Multiple scattering by disks: approximation method in -diff
	Spectral formulation used in -diff
	Notations and Fourier bases
	Integral operators - integral equations for a cluster of circular cylinders
	Single-scattering preconditioned integral equations
	Projection of the incident waves in the Fourier basis
	Near-field evaluation
	Far-field and Radar Cross Section (RCS)

	Finite-dimensional approximations and numerical solutions proposed in -diff

	Description of the -diff toolbox and first examples
	Generalities
	Common argument and notations
	Pre-processing
	Geometry: creating the obstacles
	Truncation of the Fourier series
	Incident waves

	Integral operators
	Generalities
	Available integral operators and numbering
	Dense storage
	Sparse storage

	Post-Processing
	Examples available in -diff

	Simple examples of multiple scattering problems solved with -diff
	The Dirichlet boundary-value problem
	Pre-processing
	The case of the EFIE
	The case of the MFIE
	The case of the CFIE
	The case of the single-scattering preconditioned integral equation
	The case of the Brakhage-Werner integral equation
	Post-processing
	Results
	Point source wave

	The Neumann boundary-value problem
	Mixing Dirichlet and Neumann boundary conditions
	Penetrable case
	Integral equation
	A more complex geometry
	Writing and solving the BIE using -diff
	Post-processing


	List of the -diff functions (alphabetical order)
	List of the -diff functions (ordering by folder name)

