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Abstract. Systems of self-propelled particles (SPP) interacting by a velocity align-
ment mechanism in the presence of noise exhibit a rich clustering dynamics. It can
be argued that clusters are responsible for the distribution of (local) information
in these systems. Here, we investigate the statistical properties of single clusters
in SPP systems, like the asymmetric spreading of clusters with respect to their
moving direction. In addition, we formulate a Smoluchowski-type kinetic model to
describe the evolution of the cluster size distribution (CSD). This model predicts
the emergence of steady-state CSDs in SPP systems. We test our theoretical pre-
dictions in simulations of SPP with nematic interactions and find that our simple
kinetic model reproduces qualitatively the transition to aggregation observed in
simulations.

Examples of large-scale self-organized patterns in systems of self-propelled particles with
short-range interactions are found at all scales, from group of animals [1,2,3] and human
crowds [4] down to insects [5,6], bacteria [7], or actin filaments [8]. Such patterns are also
found in non-living system like in driven granular media [9,10,11,12]. Despite the fact that the
interaction mechanisms between individual elements are of a different nature, it is possible to
determine some common requirement to achieve large-scale (spatial) self-organization. Partic-
ularly important for the emerging macroscopic patterns are the self-propulsion of the agents,
and their velocity alignment mechanism. Such velocity alignment mechanism is often the result
of purely physical forces which give rise to an effective alignment interaction as observed in
systems of self-propelled rods interacting by volume exclusion interactions [10,13,14,15,16]. In
other cases, the alignment mechanism emerges from the complex behavior of the moving entities
like in birds [2]. Simple individual-based models like the Vicsek model [17] have helped to reveal
the relevance of these two elements, self-propulsion and alignment, by reducing the problem to
the competition between a local aligning interaction and some noise [18]. In two dimensions,
self-propelled particles moving at constant speed with a ferromagnetic-like velocity alignment
exhibit at low noise a phase characterized by true long-range polar order which translates into
a net flux of particles [17,19]. This ordered phase exhibits several remarkable features like the
spontaneous formation of elongated high density bands that move at roughly constant speed in
the direction perpendicular to the long axis of the band, and anomalous density fluctuations for
low noise levels [19,20]. When the alignment is replaced by a nematic velocity alignment, parti-
cles display a phase characterized by true long-range nematic order at low noise intensity [21].
Interestingly, spontaneous density segregation into bands is also observed for these particles,
for both, ordered and disordered phase [21]. These bands are formed by particles moving in
opposite directions along the long axis of the band. In the ordered phase, bands are wide and

http://arxiv.org/abs/1404.6806v1


2 Will be inserted by the editor

straight, while bands in the disordered phase are thinner and highly fluctuating, leading to a
zero average global nematic order. For very low noise, bands dissappear and an ordered phase
with anomalous density fluctuations is observed [21].

The two examples we discussed above, self-propelled particles with ferromagnetic and ne-
matic velocity alignment, display large-scale high-density patterns and seggregation in absence
of any attracting force [19,21]. Interestingly, this also occurs at densities below the percola-
tion threshold. Clearly, a prerequisite for the emergence of ordered phases is the establish-
ment of some sort of effective interaction/communication among the particles. Such interac-
tion/communication should allow information on the local order to be distributed across the
system in order to reach global order. On the other hand, this local information is transported
by the particles themselves as they move. At this point it is important to notice that local (ve-
locity) alignment leads to local polar order which results in the formation of clusters of particles
that move in the same direction. In other words, information is often rather transported by
these clusters than by isolated particles, as discussed in [21]. Altogether, the cluster dynamics
of self-propelled particles plays a key role in the formation of globally ordered phases.

Here, we study first the properties of single clusters and second propose a simple kinetic
theory that describes the steady state cluster size distribution of self-propelled particles. Our ap-
proach is a modification of the Smoluchowki kinetic equations that were developped to describe
the aggregation of colloids [22]. Clustering effects and the emergence of steady state cluster
size distributions in self-propelled particle systems were observed in the Vicsek model [23], self-
propelled rods [13], sperm-like swimmers [24], and swimming [7] and gliding bacteria [25]. While
transient clusters and aggregation were reported in colloidal self-propelled rods [26] and in a
1d-system of self-propelled particles [27]. Our theoretical approach aims at finding a common
mechanism behind these scattered observations.

We start by defining the equation of motion of generic self-propelled particles in section 1.
Then, we focus on the statical properties of single clusters in section 2, to finally propose a
simple set of equation for the evolution of the cluster size distribution, section 3. A summary
of the obtained results is given in section 4.

1 Evolution equation of self-propelled particles

We consider point-like particles moving at constant speed in a two dimensional space, as pro-
posed in [14], and assume an over-damped situation such that the state of particle i at time t is
given by its position xi and its direction of motion θi. The evolution of i-th particle is governed
by the following equations:

ẋi = v0v(θi) (1)

θ̇i = −γ(v0)
∂U

∂θi
(xi, θi) + η̃i(t) (2)

where γ(v0) ∝ v−1
0 is a relaxation constant, and U the interaction potential between particles,

and hence ∂U
∂θi

(xi, θi) defines the velocity alignment mechanism. The parameter v0 represents

the active speed of the particles, v(θi) is defined as v(θi) = (cos(θi), sin(θi)), and η̃i(t) is an
additive white noise applied to the direction of motion.

In analogy to spin systems, a ferromagnetic velocity alignment mechanism is given by a
potential defined as:

UF (xi, θi) = −
∑

|xi−xj|≤ǫ

cos(θi − θj) (3)

where ǫ is the interaction radius of the particles. For the nematic alignment mechanism, the
potential takes the form:

ULC(xi, θi) = −
∑

|xi−xj|≤ǫ

cos2(θi − θj) . (4)
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One can add a coupling strength coefficient in front of the sum of Eqs. (3) and (4). We assume
that the coupling strength is absorbed in γ(v0) in Eq. (2). Notice that the potential given by
Eq. (3) exhibits one minimum, while Eq. (4) has two minima. The latter situation corresponds
to particles moving in opposite directions.

In the limiting case of very fast angular relaxation we obtain from Eqs. (1) and (2) the
updating rules:

xt+∆t
i = xt

i + v0v
(
θti
)
∆t (5)

θt+∆t
i = arg




∑

|xt
i
−xt

j|≤ǫ

f(v(θtj),v(θ
t
i))


 + ηti (6)

where arg (b) indicates the angle of a vector b in polar coordinates, and ηti is a delta-correlated
white noise of strength η (ηtiǫ

[
− η

2 ,
η
2

]
). Given two vectors a and b, f(a,b) is defined as follows.

For ferromagnetic alignment, f(a,b) = a and Eqs. (5) and (6) reduce to the Vicsek model [17].
For nematic alignment, f takes the form f (a,b) = sign(a.b)a and Eqs. (5) and (6) define a
minimal self-propelled rod model [14,21].

1.1 Order parameters

Ordered phases can be characterized by the following order parameters. The ferromagnetic -
i.e., polar - order parameter is defined by:

SF =

∣∣∣∣∣
1

N

N∑

k=1

exp(i θk)

∣∣∣∣∣ , (7)

where N stands for the total number of particles in the system, and the direction θk is repre-

sented as a phase in the complex plane. This definition is equivalent to SF =
∣∣∣ 1N
∑N

k=0 v(θk)
∣∣∣.

SF takes the value 1 when all particle move in the same direction, while in the disordered
phase, i.e., when particles move in any direction with equal probability, it vanishes.

On the other hand, the nematic ordered parameter takes the form:

SLC =

∣∣∣∣∣
1

N

N∑

k=1

exp(i 2 θk)

∣∣∣∣∣ . (8)

Formally, SLC can be derived from the order parameter matrix Q of liquid crystals (LC) [28], as
the largest eigenvalue (which here we have normalized such that SLC ∈ [0, 1]). When the system
is perfectly nematically ordered, i.e., when particles move in opposite directions along the same
axis, SLC takes the value 1. A genuine nematic phase implies half of the particles moving in one
direction, and the other half in the opposite direction. If this symmetry is broken, for instance,
by having 3/4 of the particles moving in one direction, and 1/4 in the opposite, SLC will still
be SLC = 1, but SF > 0. In summary, a perfectly polarly ordered phase is characterized by
SF = SLC = 1, while for genuine nematically ordered phase, SF = 0 and SLC = 1.

2 Evolution of a single (isolated) cluster

This section is mainly devoted to the understanding of the evolution of a single, isolated cluster.
We consider a situation in which initially all particles are located at the origin and move in
direction +x̂ with speed v0. Since initially each particle can see all the others, the problem
can be described initially by a mean-field. According to Eq.(6), and assuming ferromagnetic
interactions, particles calculate the same common direction of motion. The additive noise ηti
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acts just as a perturbation around the global common direction of motion. This average vector
can be thought as an external field that guides the particles. Thus, particles perform a directed
random walk [29]. Since initially each particle can see all the others, all of them calculate
the same average direction α0. The initial condition in our example is such that all particles
move in direction +x̂ at t = 0, and thus α0 = 0. This assumption is only true for η < π, if
particles interact by nematic alignment. Then, the angular dynamics of the ith-particle can be
approximated by:

θt+∆t
i = α0 + ηti , (9)

where again, for our example, α0 = 0. This means that the probability of finding a randomly
chosen particle pointing in direction θ at t+∆t is

P (θ) =
1

η
g(θ, α0, η) , (10)

where g(θ, α0, η) is defined to be 1 when α0 − η/2 ≤ θ ≤ α0 + η/2, and 0 otherwise, i.e.,
g(θ, α0, η) = H(α0 + η/2− θ).H(η/2− α0 + θ), where H(x) is a Heaviside function. In Eq. (9)
we are assuming that the average direction α0 does not change over time, which is not true for
a finite cluster. Nevertheless, this simplification makes the problem analytically tractable, and,
as we will see, the obtained results will be of interest. Under these assumptions, the position of
the i-particle at time tn = n∆t - using the discrete time description, i.e., Eqs. (5) and (6) - is
given by:

xi(tn) =

n∑

k=0

cos(θi(tk))v0∆t (11)

yi(tn) =

n∑

k=0

sin(θi(tk))v0∆t . (12)

From Eq. (11) and (12), and using Eq.(10), it is possible to derive 〈x(tn)〉, 〈y(tn)〉, 〈x2(tn)〉,
and 〈y2(tn)〉, where 〈...〉 denotes an average over all particles and realizations of the noise. For
the calculation, it is important to assume that 〈θi(tk)θj(tl)〉 = σδk,lδi,j , with σ the second mo-
ment of distribution given by Eq.(10). The calculation becomes straightforward after computing
〈cos(θi(tk)) cos(θi(tk))〉, 〈cos(θi(tk)) cos(θi(tl))〉, 〈sin(θi(tk)) sin(θi(tk))〉, and 〈sin(θi(tk)) sin(θi(tl))〉.
With this at hand, we derive the diffusion coefficients of the spreading process. To gain intuition
on the problem, we express the time evolution of the cloud of particles in terms of the (contin-
uum time) particle density ρ(x, t) which obeys the following equation (assuming propagation
of the particles along +x̂, and thus α0 = 0):

∂tρ(x, t) = −V (η, v0)∂xρ(x, t) +▽. (D(η, v0)▽ρ(x, t)) . (13)

In the convective term, V (η) is the mean projection of the instantaneous velocity of the particles

on the +x̂ semi-axis. V (η) is by definition V (η) = v0
∫ 2π

0 dθP (θ) cos(θ), that takes the form:

V (η) = v0
2 sin(η/2)

η
. (14)

This is nothing else than limtn→∞〈x(tn)〉/tn. Notice that in the limit of η → 0, V (η) → 1, and
thus there is a deterministic transport of particles without any diffusion. In the limit of η → 2π,
V (η) → 0, and particles experience diffusive motion and no convective flux. Now we focus on
the diffusive term of Eq.(13), where the diffusion matrix D takes the form:

D(η, v0) =

(
Dx(η, v0) 0

0 Dy(η, v0)

)
. (15)
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Fig. 1. Spreading A of the swarm around it center of mass vs. time for different values of the noise
intensity η. Symbols correspond to measurements of A(t) in simulations with N = 1000 self-propelled
particles with nematic alignment, which initially were located at the origin and all pointing in direction
+x̂. The dashed lines correspond to the approximation given by Eq.(18)

with Dx and Dy defined as:

Dx(η, v0) =

(
1

2
−
[
sin(η/2)

η/2

]2
+

sin(η)

2η

)
v20∆t (16)

Dy(η, v0) =

(
1

2
− sin(η)

2η

)
v20∆t (17)

These terms are obtained from limtn→∞(〈x2(tn)〉 − 〈x(tn)〉2)/t and (〈y2(tn)〉 − 〈y(tn)〉2)/tn.
Notice that for small noise η, Dy > Dx. This implies that the cluster spreads more in the
direction orthogonal to the common moving direction. As mentioned above, particles with
ferromagnetic alignment form macroscopic bands that move in the direction perpendicular to
the longest axis of the band. Eqs.(16) and (17) indicate that at the level of an individual
(isolated) cluster a similar situation arises: the cluster moves in the direction perpendicular to
its longest axis. Notice that ∆t in Eqs. (16) and (17) plays the role of the inverse of the turning
rate, i.e., α−1 in Eq. (10) and Eq. (11) in [29]. The description given by Eq. (13) is valid while
the cloud of particles remains one coherent giant cluster. For longer times, this picture fails
and particle motion looses its coherence. The interaction among particles is such that particles
move in the same direction as long as they can see each other. It cannot, however, prevent the
particles from slowly moving apart due to the fluctuations the direction of motion.

In the following, we compute the time evolution of the spreading coefficient A of the swarm
around its center of mass. The spreading area is defined by A(tn) = 〈x(tn)2〉 − 〈x(tn)〉2. This
quantity, A(tn), can be derived directly from the discrete (time) process by making use of
Eqs. (11) and (12) as explained above. Alternatively, the continuum time equivalent A(t) can
be obtained from Eq.(13). To obtain 〈x(t)〉, both sides of Eq. (13) are multiplied by x and
integrated over space to get a simple expression for ∂t (〈x(t)〉) from which finally 〈x(t)〉 is
obtained. One proceeds similarly to get 〈x(t)2〉, but here both sides of Eq. (13) are multiplied
by x2. The resulting expression is:

A(tn) =

[
1−

(
sin(η/2)

η/2

)2
]
(v20∆t)tn = Deff (η) tn . (18)

A similar expression can be obtained by proposing a continuum-time process for the orientation
dynamics, where ∆t is replaced by the inverse of the stochastic turning rate, see [29]. Notice
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Fig. 2. (a) and (b): SLC and SF vs. time for a simulation performed with N = 1000 self-propelled
particles with nematic alignment, initially located at the origin and all pointing in direction +x̂. The
noise intensity corresponds to η = 0.3 in (a) and η = 1.5 in (b). The solid black line refers to the
prediction for SF given by Eq. (19), while the dashed line is the approximation for SLC given by
Eq. (20). (c) shows the trajectory of the center of mass of the particle ensemble corresponding to the
numerical experiment with η = 0.3 (solid line) and η = 1.5 (dot-dashed line).

that in the limit of η → 0, Deff (η → 0) vanishes, while V (η → 0) = v0. Thus, in this limit, the
motion becomes purely ballistic. On the other hand, the diffusive limit corresponds to η → 2π,
where V (η → 2π) = 0 and Deff (η → 2π) = v20∆t. This corresponds to the diffusion coefficient
of an ensemble of regular random walkers that make at each ∆t a step with equal probability
in any direction. Fig. 1 shows a comparison between Eq.(18) and simulations with N = 1000
self-propelled particles interacting by nematic alignment at various noise intensities η. As shown
in Fig. 1, the agreement between simulations and the predictions of Eq. (13) is fairly good.

Now, we turn our attention to the orientational order parameters exhibited by this cloud
of moving particles. At first glance, it might seem that, since the bunch of particles moves
coherently, SF and SLC have to be both equal to one. Figs. 2(a) and (b) show SF and SLC as
function of time in simulation with N = 1000 self-propelled particles with nematic alignment
at two different noise strength values. Fig. 2 indicates that SF and SLC inside the coherently
moving swarm are still functions of η. We compute SF in terms of P (θ) by inserting Eq.(10)
into the average given by Eq.(7), and obtain:

SF =
2

η
sin(η/2) . (19)

As observed by Dossetti et al., this approximation corresponds in fact to the limit of N → ∞
- see Eq. (A8) and its derivation in [31]. Similarly for SLC , by inserting Eq.(10) into Eq.(8) we
obtain:

SLC =

∣∣∣∣∣

(
sin(η)

η

)2
∣∣∣∣∣ . (20)

Fig. 3 compares the predictions of Eqs. (19) and (20) and simulations performed with N = 1000
particles. The symbols correspond to temporal averages of simulated time series of SF and SLC

as shown in Figs. 2(a) and (b). The agreement is remarkably good for the 104 integration steps
that the simulations span. It is worth to notice that during this period the center of mass of the
swarm travels a distance d much larger than the interaction radius ǫ, i.e., d ≫ ǫ (see Fig. 2(c)),
while the swarm’s expansion around its center of mass is comparatively very small. Despite the
fact that the swarm moves in a quite coherent way, the value of the order parameters drops
with increasing η (see Figs. 2(a) and (b)), and the center of mass performs a more pronounced
meandering trajectory as shown in Fig. 2(c). Interestingly, the fluctuations of the center of
mass around the ŷ axis are much larger than the swarm spreading around its center. This is
due to large fluctuations of the average total momentum vector that are not reflected in the
fluctuations of SF . The total momentum vector fluctuates in direction and modulus, but SF

fluctuations are only related to fluctuations of its modulus. The same applies to the orientation
tensor Q and to its associated scalar liquid crystal order parameter SLC .
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Fig. 3. SF and SLC as function of η as predicted by Eq. (19) (solid curve) and (20) (dashed curve),
respectively. Symbols correspond to SF (triangles) and SLC (squares) measured in simulations per-
formed with N = 1000 self-propelled particles with nematic alignment initially located at the origin
and all pointing in direction +x̂.

As said above, this simple description of the swarm is valid until the spreading around the
center of mass is such that the density of the moving cluster falls below percolation. The critical
density is obtained by assuming overlapping discs of radius r = ǫ/2 = 1/2, ρp ∼ 1.45 [32]. Now,
let us imagine that the swarm does not evolve in an infinite space, but in a box with periodic
boundary conditions. Let us assume in addition that the size L2 of the box is such that N/L2

is much larger than ρp. Can this system be described in terms of such simple equations as Eq.
(19) and (20) for all times? If the initial condition of the system is completely random, does
the system reach the same steady state? For a random initial condition, we cannot expect a
steady state with a unique direction of motion. We assume that two main opposite direction
of motion emerge, α0 and α0 + π, and that the angular dynamics of the i-th particle is simply
given by:

θt+∆t
i =

{
α0 + ηti with probability p+
(α0 + π) + ηti with probability p−

(21)

In consequence, P (θ) = (p+/η)g(θ, α0, η) + (p−/η)g(θ, α0 + π, η). Using this expression to
compute the order parameters SF and SLC , we find that SF = (2/η) sin(η/2)(p+ − p−), while
SLC is given by Eq. (20). This hypothesis is tested in Fig. 4. The simulations were performed
with N = 212 particles at high density (ρ = 4) in a box with periodic boundary conditions.
The initial condition was random and the simulations were carried out for 106 time steps. The
solid curve corresponds to the approximation given by Eq. (20), where no fitting parameter is
used. The dot-dashed curve is a fitting of the first 8 data points to the left of ηc = 2 assuming

SLC ∼ (ηc − η)
β
, where β = 0.46±0.03. This assumption may turn to be wrong for large system

sizes. The figure shows that Eq. (20) provides a good approximation of SLC for small values
of η, but fails to describe orientational order at large values of the noise intensity, i.e., close to
the transition point. In summary, Fig. 4 shows that at least for small system sizes the ordering
dynamics can be described through the above approach for low noise intensity, i.e., far away
from the the critical point. The obtained results cannot be used to extrapolate the behavior
of the system to very large system sizes, though well in the ordered phase they may still hold.
This would require a systematic analysis of finite-size effects in large-scale simulations, which is
beyond the scope of this work. Moreover, we known from [21] that in large systems of particles
obeying Eqs.(5) and (6), fluctuations play a crucial role in the emerging macroscopic dynamics.
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Fig. 5. Snapshots of simulations with self-propelled particles with nematic alignment at density ρ =
0.25 after 2.5 105 times units. The values of η are: 1.4 in (a), 1.3 in (b), and 0.6 in (c). The spatial
arrangement of particles seen in the figures is representative of what is observed at the steady state.

3 Cluster size distribution at low density

In this section we derive a simple theory to understand the emergence of steady state cluster
size distributions in self-propelled particle systems. We illustrate the phenomenon of cluster
formation in these systems by performing simulations of self-propelled particles with nematic
alignment. Fig. 5 shows simulation snapshots for three values of the angular noise η. Notice
that as η is decreased, clusters become significantly larger.

Formally, the cluster dynamics of these systems can be described by deriving a master
equation for the evolution of the probability p(n(t)), where n(t) = n1(t), n2(t), ..., nN (t), with
n1(t) being the number of isolated particles, n2(t) the number of two-particle clusters, n3(t) the
number of three-particle clusters, etc. This kind of approach has also been used to understand
equilibrium nucleation in gases, where the transition probabilities between states are function
of the associated free energy change [33,34,35]. Here, however, we will adopt an alternative
more phenomenological strategy for our non-equilibrium problem. Instead of looking for the
complete description of the clustering process in terms of p(n(t)), we will derive equations for
the time evolution of the mean value of n1(t), n2(t), ..., nN (t). To ease the notation, we will refer
to 〈n1(t)〉, 〈n2(t)〉, ..., 〈nN (t)〉 simply as n1(t), n2(t), etc.

The simulations were performed with N = 214 particles at low density, ρ = 0.25. We observe
a transition from an apparently homogeneous density at large noise values to pronounced for-
mation of clusters at low noise (see Fig. 5). Fig. 6 shows the (weighted) cluster size distribution
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p(m) = (mnm(t))/N for various values of the noise intensity η. We have considered that a
cluster is an ensemble of connected particles. Two particles are connected whenever they are
separated a distance less or equal to d - in Fig. 6, d = 2ǫ. The figure indicates that there is
transition in the cluster size distribution from a monotonically decreasing distribution for large
values of η to a distribution with a peak at large cluster sizes for small enough noise values.
Interestingly, at the transition point the cluster size distribution follows a power-law.

We look for an explanation for the observed clustering phenomena. Through the study of
the coherence of an initially perfectly oriented swarm, we have learned that clusters have a finite
life-time before they break into parts. Now we incorporate the fact that a moving cluster collects
particles whose relative direction of motion is such that |∆θ| < π/2, provided the noise intensity
η is low enough. If the topology of the system is a finite torus, these two effects, spreading of
particles due to fluctuations in the direction of motion and collection of particles due to random
collisions of clusters, reach an equilibrium and the cluster size distribution (CSD) becomes a
steady distribution. As mentioned above, we look for a description of the process in terms of
the number ni(t) of clusters with i particles at time t. The time evolution equations for the
ni(t) have the following form:

ṅ1 = 2B2n2 +

N∑

k=3

Bknk −
N−1∑

k=1

Ak,1nkn1

ṅj = Bj+1nj+1 −Bjnj −
N−j∑

k=1

Ak,jnknj

+
1

2

j−1∑

k=1

Ak,j−knknj−k for j = 2, ....., N − 1

ṅN = −BNnN +
1

2

N−1∑

k=1

Ak,N−knknN−k (22)

where the dot denotes the time derivative, Bj represents the rate for a cluster of mass j to
loose a particle, and is defined as

Bj =
Deff (η)

d2

√
j , (23)
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Fig. 7. Steady state cluster size distributions obtained from numerical integration of Eqs.(22) with

N = 128 for various values of the dimensionless parameter P , where P = 2ǫd2v0
aDeff (η)

. Notice the transition

from a monotonically decreasing distribution for small values of P to a non-monotonic distribution with
a peak at large cluster sizes for large values of P .

and Aj,k is the collision rate between clusters of mass j and k, defined by

Aj,k =
v02ǫ

a

(√
j +

√
k
)
, (24)

where a = L2 is the area of the two-dimensional space where particles move. In Eq. (23),
d denotes, as before, the maximum distance that two particles can be separated apart to be
considered as connected. In this way, d2/Deff (η) is the characteristic time a particle on a cluster
boundary needs to detach from a cluster. The splitting rate Bj is proportional to the inverse
of this characteristic time multiplied by the number of particles on the boundary, which we
estimate as

√
j. On the other hand, the collision rate Aj,k is derived in analogy to the collision

rate in kinetic gas theory [30] between two disk-like particles A and B which is known to be
proportional to the relative velocity of the particles and the sum of their diameters. We have
approximated the diameter of a cluster of mass j by ǫ

√
j.

Direct numerical integration of these equations shows that Eq.(22) produces qualitatively
similar distributions as the one observed in individual-based simulations, see Fig. 7. The
different curves correspond to various values of the dimensionless parameter P , defined as

P = 2ǫd2v0
aDeff (η)

. For small values of P , which correspond to large values of η, the distribution

p(m) monotonically decreases with m, while for large values of P , resp. small values of η, a peak
at large cluster sizes emerges. A quantitative comparison between Eq.(22) and individual-based
simulations is beyond the scope of this work.

4 Conclusions

Clusters play a fundamental role in the macroscopic dynamics of self-propelled particle sys-
tems. Particularly, clusters are capable to transport orientation information for long distances.
Orientational order and cluster dynamics are often closely linked.

Here we have addressed the problem of cluster dynamics in self-propelled particle systems in
a systematic way. We have first studied single isolated clusters and learned that their dynamics
can be understood in terms of simple mean-field arguments. We have derived expression for the
diffusion coefficients of clusters and found that the spatial spreading of clusters is anisotropic,
with the long axis of the cluster perpendicular to its moving direction. We have also shown that
the mean-field approaches used to characterize the cluster dynamics can be applied to describe
the behavior of self-propelled particles for small system sizes far away from the transition point.



Will be inserted by the editor 11

Finally, we have analyzed the emergence of steady state cluster size distributions in systems
of self-propelled particles that obey Eqs. (1) and (2). Particularly, we have derived a set of
equations of the Smoluchowski type to describe the cluster dynamics in the system. From
direct numerical integration of these equations, we have shown that this approach leads to
qualitatively similar distributions.

This study presents a first step towards the understanding of the complex clustering behavior
exhibited by self-propelled particle systems. Several key aspects have been left out in this first
approach. For instance, a system size analysis is required to check the validity of these results
in large systems. Correlations among clusters have been completely ignored, though they may
be crucial to the macroscopic dynamics. Finally, we suspect that clustering effects may induce
giant number fluctuations as the ones predicted in [36]. However, a link between these two
phenomena has not been still stablished. All these issues shall be the subject of future studies.

References

1. Three Dimensional Animals Groups, edited by J.K. Parrish and W.M Hamner (Cambridge Uni-
versity Press, Cambridge, England, 1997).

2. A. Cavagna et al., Proc. Natl. Acad. Sci. 107, 11865 (2010).
3. K. Bhattacharya and T. Vicsek, New J. Phys. 12, 093019 (2010).
4. D. Helbing, I. Farkas, and T. Vicsek, Nature (London) 407, 487 (2000).
5. J. Buhl et al., Science 312, 1402 (2006).
6. P. Romanczkuk, I.D. Couzin, and L. Schimansky-Geier, Phy. Rev. Lett. 102, 010602 (2009).
7. H.P. Zhang et al., Proc. Natl. Acad. Sci. 107, 13626 (2010).
8. V. Schaller et al., Nature 467, 73 (2010).
9. V. Narayan, S. Ramaswamy, and N. Menon, Science 317, 105 (2007).

10. A. Kudrolli, G. Lumay, D. Volfson, and L.S. Tsimring, Phys. Rev. Lett. 100, 058001 (2008).
11. A. Kudrolli, Phys. Rev. Lett. 104, 088001 (2010).
12. J. Deseigne, O. Dauchot, and H. Chaté, Phys. Rev. Lett. 105, 098001 (2010).
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