
Analysis of the MQQ Public Key Cryptosystem

Jean-Charles Faugère2, Rune Steinsmo Ødegård1 ?, Ludovic Perret2, and Danilo
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Abstract. MQQ is a multivariate public key cryptosystem (MPKC) based on
multivariate quadratic quasigroups and a special transform called “Dobbertin
transformation” [17]. The security of MQQ, as well as any MPKC, reduces to
the difficulty of solving a non-linear system of equations easily derived from
the public key. In [26], it has been observed that that the algebraic systems ob-
tained are much easier to solve that random non-linear systems of the same size.
In this paper we go one step further in the analysis of MQQ. We explain why
systems arising in MQQ are so easy to solve in practice. To do so, we consider
the so-called the degree of regularity; which is the exponent in the complexity
of a Gr̈obner basis computation. For MQQ systems, we show that this degree is
bounded from above by a small constant. This is due to the fact that the com-
plexity of solving the MQQ system is the minimum complexity of solving just
one quasigroup block or solving the Dobbertin transformation. Furthermore, we
show that the degree of regularity of the Dobbertin transformation is bounded
from above by the same constant as the bound observed on MQQ system. We
then investigate the strength of a tweaked MQQ system where the input of the
Dobbertin transformation is replaced with random linear equations. It appears
that the degree of regularity of this tweaked system varies both with the size of
the quasigroups and the number of variables. We conclude that if a suitable re-
placement for the Dobbertin transformation is found, MQQ can possibly be made
strong enough to resist pure Gröbner attacks for adequate choices of quasigroup
size and number of variables.
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1 Introduction

The use of polynomial systems in cryptography dates back to the mid eighties with
the design of Matsumoto and Imai [25], later followed by numerous other proposals.
Two excellent surveys on the current state of proposals for multivariate asymmetric
cryptosystems has been made by Wolf and Preneel [33] as well as Billet and Ding
[6]. Basically the current proposals can be classified into four main categories, some of
which combine features from several categories: Matsumoto-Imai like schemes [28,30],
Oil and Vinegar like schemes [29,20], Stepwise Triangular Schemes [31,18] and Polly
Cracker Schemes [11]. In addition Gligoroski et al. has proposed a fifth class of trapdoor
functions based on multivariate quadratic quasigroups [17].

As pointed out in [6], it appears that most multivariate public-key cryptosystems
(MPKC) suffer from obvious to less obvious weaknesses. Some attacks are specific and
focus on one particular variation and breaks it due to specific properties. One example
is the attack of Kipnis and Shamir against the Oil and Vinegar scheme [21]. However,
most attacks use general purpose algorithms that solve multivariate system of equations.
Generic algorithms to solve this problem are exponential in the worst case, and solving
random system of algebraic equations is also known to be difficult (i.e. exponential) in
the average case. However, in the case of multivariate public-key schemes the designer
has to embed some kind of trapdoor function to enable efficient decryption and signing.
To achieve this, the public-key equations are constructed from a highly structured sys-
tem of equations. Although the structure is hidden, it can be exploited for instance via
differential or Gr̈obner basis based techniques.

Using Gr̈obner basis [8] is a well established and general method for solving poly-
nomial systems of equations. The complexity of a Gröbner basis computation is ex-
ponential in the degree of regularity, which is the maximum degree of polynomials
occurring during the computation [4]. The first published attack on multivariate public-
key cryptosystems using Gröbner basis is the attack by Patarin on the Matsumoto-Imai
scheme [27]. In this paper Patarin explains exactly why one is able to solve the system
by using Gr̈obner bases. The key aspect is that there exists bilinear equations relating
the input and output of the system [6]. This low degree relation between the input and
the output means that only polynomials of a low degree will appear during the com-
putation of the Gr̈obner basis. Consequently, the complexity of solving the system is
bounded by this low degree.

Another multivariate cryptosystem which has been broken by Gröbner bases crypt-
analysis is the MQQ public key block cipher [17]. The cipher was broken both by
Gröbner bases and MutantXL independently in [26]. Given a ciphertext encrypted us-
ing the public key, the authors of [26] were able to compute the corresponding plaintext.
However, the paper did not theoretically explain why the algebraic systems of MQQ are
easy to solve in practice. In this paper we explain exactly why the MQQ cryptosystem is
susceptible to algebraic cryptanalysis. This is of course interesting from a cryptanalysis
perspective, but also from a design perspective. If we want to construct strong multi-
variate cryptographic schemes we must understand why the weak schemes have been
broken.
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1.1 Organisation of the paper

This paper is organized as follows. In Section 2 we give an introduction to multivariate
quadratic quasigroups. After that we describe the MQQ public key cryptosystem. In
Section 3 we give a short introduction to the theory of Gröbner bases and reiterate the
generic complexity of computing such bases. In Section 4 we show that the degree of
regularity of MQQ systems is bounded from above by a small constant. We then explain
this charcteristic by looking at the shape of the inner system. In Section 5 we further
elaborate on the weaknesses of MQQ, and investigate if some tweaks can make the
system stronger. Finally, Section 6 concludes the paper.

2 Description of the MQQ public key cryptosystem

In this section we give a description of the multivariate quadratic quasigroup public key
cryptosystem [17]. The system is based on previous work by Gligoroski and Markovski
who introduced the use of quasigroup string processing in cryptography [23,24].

2.1 Multivariate quadratic quasigroups

We first introduce the key building block of the MQQ PKC, namely multivariate quadratic
quasigroups. For a detailed introduction to quasigroups in general, we refer the inter-
ested reader to [32].

Definition 1 A quasigroup is a set Q together with a binary operation∗ such that for
all a,b ∈ Q the equations̀ ∗ a = b and a∗ r = b have unique solutions̀and r in Q
respectively. A quasigroup is said to be of order n if there are n elements in the set Q.

Let (Q,∗) be a quasigroup of order 2d, andβ be a bijection from the quasigroup to the
set of binary strings of lengthd, i.e

β : Q→ GF(2d)
a 7→ (x1, . . . ,xd)

(1)

Given such a bijection, we can naturally define a vector valued Boolean function

∗vv : GF(2d)×GF(2d)→ GF(2d)
(β (a),β (b)) 7→ β (a∗b)

(2)

Now letβ (a∗b) = (x1, . . . ,xd)∗vv(xd+1, . . . ,x2d) = (z1, . . . ,zd). Note that eachzi can be
regarded as a 2d-ary Boolean functionzi = fi(x1, . . . ,x2d), where eachfi : GF(2d)→
GF(2) is determined by∗. This gives us the following lemma [17].

Lemma 1 For every quasigroup(Q,∗) of order 2d and for each bijectionβ : Q→
GF(2d) there is a unique vector valued Boolean function∗vv and d uniquely determined
2d-ary Boolean functions f1, f2, . . . , fd such that for each a,b,c∈Q:

a∗b = c
m

(x1, . . . ,xd)∗vv(xd+1, . . . ,x2d) = ( f1(x1, . . . ,x2d), . . . , fd(x1, . . . ,x2d)).
(3)
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This leads to the following definition for multivariate quadratic quasigroups.

Definition 2 ([17]) Let (Q,∗) be a quasigroup of order2d, and let f1, . . . , fd be the
uniquely determined Boolean functions under some bijectionβ . We say that the quasi-
group is a multivariate quadratic quasigroup (MQQ) of type Quadd−kLink (underβ ) if
exactly d− k of the corresponding polynomials fi are of degree 2 and k of them are of
degree 1, where0≤ k≤ d.

Gligoroski et al. [17] mention that quadratic terms might cancel each other. By this we
mean that some linear transformation of( fi)1≤i≤n might result in polynomials where
the number of linear polynomials is larger thank, while the number of quadratic poly-
nomials is less thand− k. Later Chen et al. [9] have shown that this is more common
than previously expected. In their paper they generalizes the definition of MQQ above
to a family which is invariant by linear transformations, namely:

Definition 3 Let (Q,∗) be a quasigroup of order2d, and let f1, . . . , fd be the unique
Boolean functions under some bijectionβ . We say that the quasigroup is a multivari-
ate quadratic quasigroup (MQQ) of strict type Quadd−kLink (under β ), denoted by
Quads

d−kLins
k, if there are at most d− k quadratic polynomials in( fi)1≤i≤d whose lin-

ear combination do not result in a linear form.

Chen et al. also improved Theorem 2 from [17] which gives a sufficient condition for a
quasigroup to be MQQ. We restate this result below.

Theorem 1 LetA1 = [ fi j ]d×d andA2 = [gi j ]d×d be two d×d matrices of linear Boolean
expressions with respect to x1, . . . ,xd and xd+1, . . . ,x2d respectively. Letc be a binary
column vector of d elements. If det(A1) = det(A2) = 1 and

A1 ∙ (xd+1, . . . ,x2d)
T +(x1, . . . ,xd)

T = A2 ∙ (x1, . . . ,xd)
T +(xd+1, . . . ,x2s)

T , (4)

then the vector valued Boolean operation(x1, . . . ,xd)∗vv(xd+1, . . . ,x2d) =

B1A1 ∙ (xd+1, . . . ,x2d)
T +B2 ∙ (x1, . . . ,xd)

T +c (5)

defines a quasigroup(Q,∗) of order2d which is MQQ for any two non-singular Boolean
matricesB1 andB2

In addition Chen et al. [9] proved that no MQQ as in Theorem 1 can be of strict type
QuadsdLins

0. This result uncovered a possible weakness in [17] as the proposed scheme
used 6 quasigroups of type Quad5Lin0.

Notice that the vector valued Boolean function defining the MQQ in Theorem 1
have no terms of the formxixj with i, j ≤ d or i, j > d. This means that if we set the
first or the last half of the variables to a constant, we end up with only linear terms in
the MQQ. It is still an open question if there exists MQQ that are not as in Theorem 1.

The MQQs used in this paper have been produced using the algorithm provided in
Appendix A. The algorithm is based on the paper [9], and produces MQQs that are
more suitable for encryption since they are guaranteed to be of strict type Quads

d−kLins
k

for 0 < k≤ d.
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2.2 The Dobbertin bijection

In addition to MQQs, [17] also uses a bijection introduced by Dobbertin in [12]. Dob-
bertin proved that the following function, in addition to being multivariate quadratic
overGF(2), is a bijection inGF(22r+1):

Dr : GF(22r+1)→ GF(22r+1)
x 7→ x2r+1+1 +x3 +x

(6)

2.3 A Public Key Cryptosystem Based on MQQ

We are now ready to describe the public key cryptosystem presented by Gligoroski et al.
in [17]. LetN = nd be the desired number of variables(x1, . . . ,xN), and let{∗1vv, . . . ,∗

k
vv}

be a collection of MQQs of size 2d represented as 2d-ary vector valued Boolean func-
tions. The public key is constructed as follows.

Algorithm MQQ public key construction.
1. SetX = [x1, . . . ,xN]T . Randomly generate anN×N non-singular Boolean matrix

S, and computeX←S∙X.
2. Randomly choose an-tupleI = {i1, . . . , in}, wherei j ∈ {1, . . . ,k}. The tupleI will

decide which MQQ,∗
i j
vv, to use at each point of the quasigroup transformation.

3. RepresentX as a collection of vectors of lengthd, X = [X1, . . . ,Xn]T . Compute

Y = [Y1, . . . ,Yn]T whereY1 = X1,Y2 = X1 ∗
i1
vv X2, andYj+1 = Xj ∗

i j
vv Xj+1 for j =

1, . . . ,n−1.
4. SetZ to be the vector of all the linear terms ofY1, . . . ,Yn. HereY1 will be all

linear terms, while eachYj has between 1 andk linear terms depending on the type
Quadsd−kLins

k of MQQ used. TransformZ with one or more Dobbertin bijections of
appropriate size. For example ifZ is of size 27 we can use one Dobbertin bijection
of dimension 27, three of dimension 9, or any other combination summing up to
27. Finally, setW ←Dob(Z).

5. Replace the linear terms ofY = [Y1, . . . ,Yn]T with the terms inW. Randomly gen-
erate anN×N non-singular Boolean matrixT, and computeY←T ∙Y

6. return the public keyY. The private key isS,T,{∗1vv, . . . ,∗
k
vv} andI .

3 Gröbner bases

This section introduces the concept of Gröbner bases as well as a complexity bound to
compute such bases. We refer to (for instance) [10] for basic definitions, and a more
detailed description of the concepts.

Let K be a field andK[x1, . . . ,xN] be the polynomial ring overK in the variables
x1, . . . ,xN. Recall that amonomialin a collection of variables is a productxα = xα1

1 ∙ ∙ ∙x
αN
N

whereαi ≥ 0. Let> be an admissiblemonomial orderonK[x1, . . . ,xn]. The most com-
mon example of such ordering is thelexicographical orderwherexα > xβ if in the dif-
ferenceα−β ∈ ZN, the leftmost nonzero entry is positive. Another frequently encoun-
tered order is thegraded reverse lexicographicalorder wherexα > xβ iff ∑i αi > ∑i βi or
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∑i αi = ∑i βi and in the differenceα−β ∈ ZN the rightmost nonzero entry is negative.
For different monomial orderings Gröbner bases hold specific theoretical properties
and show different practical behaviors. Given a monomial order>, theleading termof
a polynomialf = ∑α cαxα , denotedLT>( f ), is the productcαxα wherexα is the largest
monomial appearing inf in the ordering>.

Definition 4 ([10]) Fix a monomial order> onK[x1, . . . ,xN], and let I⊂K[x1, . . . ,xN]
be an ideal. A Gr̈obner basis for I (with respect to>) is a finite collection of polynomials
G = {g1, . . . ,gt} ⊂ I with the property that for every nonzero f∈ I, LT>( f ) is divisible
by LT>(gi) for some i.

Let
f1(x1, . . . ,xN) = ∙ ∙ ∙= fm(x1, . . . ,xN) = 0 (7)

by a system ofm polynomials inN unknowns over the fieldK. The set of solutions in
K, which is thealgebraic variety, is defined as

V = {(z1, . . . ,zN) ∈ k| fi(z1, . . . ,zN) = 0∀1≤ i ≤m} (8)

In our case we are interested in the solutions of the MQQ system, which are defined
overGF(2).

Proposition 1 ([15]) Let G be a Gr̈obner basis of[ f1, . . . , fm,x2
1− x1, . . . ,x2

N − xN].
Then the following holds:

1. V = /0 (no solution) iff G= [1].
2. V has exactly one solution iff G= [x1−a1, . . . ,xN−aN] where ai ∈ GF(2). Then

(a1, . . . ,aN) is the solution in GF(2) of the algebraic system.

It is clear that as we are solving systems overGF(2) we have to add the field equations
x2

i = xi for i = 1, . . . ,N. This means that we have to compute Gröbner bases ofm+ N
polynomials andN variables. This is quite helpful, since the more equations you have,
the more able you are to compute Gröbner bases [15].

3.1 Complexity of Computing Gröbner Bases

Historically, the concept of Gröbner bases, together with an algorithm for computing
them, was introduced by Bruno Buchberger in his PhD-thesis [8]. Buchberger’s algo-
rithm is implemented in many computer algebra systems. However, in the last decade,
more efficient algorithms for computing Gröbner bases have been proposed. Most no-
table are Jean-Charles Faugère’sF4[13] andF5 [14] algorithms. In this paper we have
used the magma [22] 2.16-1 implementation of theF4 algorithm on a 4 core Intel Xeon
2.93GHz computer with 128GB of memory.

The complexity of computing a Gröbner basis of an idealI depends on the maxi-
mum degree of the polynomials appearing during the computation. This degree, called
degree of regularity, is the key parameter for understanding the complexity of a Gröbner
basis computation [4]. Indeed, the complexity of the computation is polynomial in the
degree of regularityDreg, more precisely the complexity is:

O(NωDreg), (9)
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which basically correspond to the complexity of reducing a matrix of size≈NDreg. Here
2< ω ≤ 3 is the “linear algebra constant”, andN the number of variables of the system.
Note thatDreg is also a function ofN, where the relation betweenDreg andN depends
on the specific system of equations. This relation is well understood for regular (and
semi-regular) systems of equations [1,4,2,5]. However, as soon as the system has some
kind of structure, this degree is much more difficult to predict. In some particular cases,
it is actually possible to bound the degree of regularity (see the works done on HFE
[15,19]). But this is a hard task in general.

As already pointed out, the degree of regularity is abnormally small for algebraic
systems occuring in MQQ. This fact explains the weakness observed in [26]. In this
paper, we go one step further in the security analysis by explaining why the degree of
regularity is so small for MQQ.

Note that the degree of regularity is related to the idealI = 〈 f1, . . . , fm〉 and not the
equationsf1, . . . , fm themselves. In particular, for any non-singular matrixT, the degree
of regularity of [ f ′1, . . . , f ′m]t = T ∙ [ f1, . . . , fm]t is similar to the degree of regularity of
[ f1, . . . , fm]. More generally, we can assume that this degree is generically (i.e. with
high probability) invariant for a random (invertible) linear change of variables, and
an (invertible) combination of the polynomials. These are exactly the transformations
performed to mask the MQQ structure. Note that such a hypothesis has already been
used for instance in [19].

4 Why MQQ is Susceptible to Algebraic Cryptanalysis

In [26], MQQ systems with up to 160 variables was broken usin MutantXL (the same
result has aslo been obtained independently withF4). The most important point made
by [26] is that the degree of regularity is bounded from above by 3. This is much lower
than a random system of quadratic equations where the degree of regularity increases
linearly with the number of variablesN. Indeed, for a random system it holds thatDreg is
asymptotically equivalent to N

11.114 [2]. The authors of [26] observed that this low degree
is due to the occurrence of many new low degree relations during the computation of
a Gr̈obner basis. In Section 4.2, we will explain in detail how the very structure of
the MQQ system results in the apparance of the low degree relations. First, however,
we will show that same upper bound on the degree of regularity is obtained using the
improved quasigroups described in Section 2.1.

4.1 Experimental Results on MQQ

To test how the complexity of Gröbner bases computation of MQQ systems is related to
the number of variables, we constructed MQQ systems in 30,60,120 and 180 variables
following the procedure described in Section 2.3. In this construction we used 17 MQQs
of strict type Quads8Lins

2 and Dobbertin bijections over different extension fields of
dimension 7 and 9 respectively. We then tried to compute the plaintext given a ciphertext
encrypted with the public key. The results of this test are presented in Table 1. From the
table we see that the degree of regularity does not increase with the number of variables,
but remains constant at 3. This means breaking the MQQ system is only polynomial in
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Table 1.Results for MQQ-(30,60,120,180). Computed with magma 2.16-1’s implementation of
theF4 algorithm on a Intel Xeon 2.93GHz quad core computer with 128GB of memory.

VariablesDreg Solving Time (s) Memory(b)

30 3 0,06 15,50
60 3 1,69 156,47
120 3 379,27 4662,00
180 3 4136,31 28630,00

the number of variables. Once again, this is not the behaviour of a random system
of equations, for which the degree of regularity increases linearly with the number of
variables, and the solving time therefore increases exponentially. We explain the reason
of such difference in the next section.

4.2 Shape of the MQQ system

The non-random behavior described above can be explained by considering the shape
of the “unmasked” MQQ system. By unmasked we mean the MQQ system without
the linear transformationsSandT. As already explained in Section 3.1, the maximum
degree of the polynomials occurring in the computation of a Gröbner basis is invariant
under the linear transformationSandT.

In Figure 1 we show which variables appear in each equation for an unmasked
MQQ system of 60 variables. The staircase shape comes from the cascading use of
quasigroups, while the three blocks of equations at the bottom are from the Dobbertin
bijection of size 7. Obviously, a random multivariate system would use all 60 variables
in all equations. For this instance of MQQ, only1

3 of the variables are used in each
quasigroup and about2

3 is used in each block of the Dobbertin transformation.
Now assume that the Gröbner basis algorithm somewhere during the calculation

has found the solution for one of the quasigroup blocksYj = Xj ∗
i j
vv Xj+1. Due to the

cascading structure of the MQQ system, the variables ofXj are used in the blockYj−1 =

Xj−1 ∗
i j−1
vv Xj and the variables ofXj+1 are used in the blockYj+1 = Xj+1 ∗

i j+1
vv Xj+2. In

Section 2.1 we showed that if we set the first or the last half of the variables of an MQQ
to constant, all equations become linear. This means that if we have solved the block
Yj , the equations of the blocksYj−1 andYj+1 becomes linear. The blocksYj−1 andYj+1

can then be solved easily. This gives a solution for the variablesXj−1 andXj+2, which
again makes the equations in the blocksYj−2 andYj+2 linear. Continuing like this we
have rapidly solved the whole system.

Similarly, assume the Gröbner basis has solved the Dobbertin blocks at some step.
This gives us the solution to all the variables inX1 which makes the first quasigroup
block Y1 = X1 ∗

i1
vv X2 linear. Solving this gives us the first half of the equations of the

blockY2 and so on. As a conclusion, solving a MQQ system is reduced to either solv-
ing just one block of quasigroup equations, or solving the Dobbertin transformation.
The security of solving an MQQ system is therefore the minimum complexity between
solving the Dobbertin transformation or one MQQ block.
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Fig. 1.Shape of 60 variable MQQ public key system without the use ofSandT transformations.
The black color means that the corresponding variables is used in the equation. The system was
constructed using 4 MQQs of type Quads

8Lins
2, one MQQ of type Quads7Lins

3, and 3 Dobbertin
bijections defined over 3 different extension fields of dimension 7.

5 Weaknesses of MQQ

The goal of this part is to determine the weakest part of the system; the Dobbertin
transformation or the quasigroup transformation. We first look closer at the Dobbertin
block of equations. Since these equations constitutes a square system of equations, we
expect them to be easier to solve then the quasigroup block of equations, which is an
undetermined system of equations.

5.1 The Dobbertin transformation

Recall that the Dobbertin transformation is a bijection overGF(22r+1) defined by the
functionDr(x) = x2r+1+1+x3+x. For anyr, we can view this function as 2r +1 Boolean
equations in 2r + 1 variables. Using magma 2.16-1’s implementation of theF4 algo-
rithm4, we experimentally computed the degree of regularity for solving this system
of equations forr = 2, . . . ,22. We observed that the degree of regularity was 3 for all
computed instances. Therefore the Dobbertin transformation can be easily solved by
a Gr̈obner basis computation. In addition we learn that tweaking the MQQ system by
increasing the size of the extension field, over which the transformation is defined, will
have no effect on strengthening thesystem.

4 The computer used was 4 processor Intel Xeon 2.93GHz computer with 128GB of memory
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Proving mathematically (if true) that the degree of regularity ofDr(x) is constant at
3 for all r is difficult. We can, however, explain why the degree of regularity is low for
all practicalr. LetK= Fq be a field ofq elements, and letL be an extension of degree
n overK. Recall that an HFE polynomialf is a low-degree polynomial overL with the
following shape:

f (x) = ∑
0≤i, j≤n
qi+qj≤d

ai, j x
qi+qj

+ ∑
0≤k≤n
qk≤d

bkx
qk

+c, (10)

whereai, j ,bk andc all lie in L. The maximum degreed of the polynomial has to be
chosen such that factorization overL is efficient [7]. Settingq = 2 andn = 2r + 1
we notice that the Dobbertin transformation is actually an HFE polynomial,Dr(x) =
x2r+1+20

+ x21+20
+ x20

. This is very helpful since a lot of work has been done on the
degree of regularity for Gröbner basis compuation of HFE polynomials [15,7]. Indeed,
it has been proved that the degree of regularity for HFE polynomial of degreed is
bounded from above by log2(d) [15,16]. For Dobbertin’s transformation this means the
degree of regularity is bounded from above byr +1 at least.

However, since the coefficients of the Dobbertin transformation all lie inGF(2),
we can give an even tighter bound on the degree of regularity. Similarly to the weak-
key polynomials in [7], the Dobbertin transformation commutes with the Frobenius
automorphism and its iteratesFi(x) : x 7→ x2i

for 0≤ i ≤ n, namely

Dr ◦Fi(x) = Fi ◦Dr(x). (11)

ThusDr(x) = 0 implies thatFi ◦Dr(x) = 0. This means for eachi we can add the 2r +1
equations overGF(2) corresponding to the equationDr ◦Fi(x) = 0 overGF(22r+1) to
the ideal. However, many of these equations are similar. Actually, we have thatFi and
Fj are similar if and only ifgcd(i,2r + 1) = gcd( j,2r + 1) [7]. Worst case scenario
is when 2r + 1 is prime. The Frobenius automorphism then gives us (only) 2(2r + 1)
equations in 2r +1 variables. From [3] we have the following formula for the degree of
regularity for a random system of multivariate equations overGF(2) when the number
of equationsm is a multiple of the number of variablesN. For m= N(k+ o(1)) with
k > 1/4 the degree of regularity is

Dreg

N
=

1
2
−k+

1
2

√
2k2−10k−1+2(k+2)

√
k(k+2)+o(1). (12)

Settingk = 2 we getDreg = −3
2 + 1

2

√
−13+16

√
2 ∙ (2r + 1) ≈ 0.051404∙ (2r + 1) =

0.102808∙ r + 0.051404. Note that the degree of regularity can not be smaller then 3.
This means we havemax(3,0.102808∙ r + 0.051404) as an upper bound for arandom
multivariate system with the same number of equations and variables as the Dobbertin
transformation. This provides a good indication that the degree of regularity for Dob-
bertin (which is not random at all) should be small, as observed in the experiments, and
even smaller than a regular HFE polynomial.

5.2 The Quasigroup Transformation

To get an idea how strong the quasigroup transformation is, we performed some exper-
iments where we replaced the input of the Dobbertin transformation by random linear
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equations. This means that solving a Dobbertin transformation block will no longer
make all the equations in the first quasigroup transformation linear. The result of our
experiment on this special MQQ system where the linear equations are perfectly masked
is listed in Table 2. Note that the degree of regularity of 5 is still too small to prevent
Gröbner bases attacks. What is important is how the degree of regularity increases when
we increase different parameters. From the table it appears that both the quasigroup size
and the number of variables have an effect on the degree of regularity. This tells us that
if we replace the Dobbertin transformation with a stronger function, the MQQ system
can possibly be made strong enough to resist pure Gröbner attacsk for adequate choices
of quasigroup size and number of variables.

Table 2. Effects of quasigroup size and the Dobbertin transformation on the observed degree of
regularity for different MQQ.Dreg is the observed degree of regularity of normal MQQ systems,
while D∗reg is the observed degree of regularity for the same system where the input to Dobbertin
has been replaced with random linear equations.

Variables Quasigroup size Quasigroups type DobbertinDreg D∗reg

30
25 4 Quads3Lins

2 and 1 Quads2Lins
3 7,9 3 3

210 2 Quads8Lins
2 7,7 3 4

40
25 5 Quads3Lins

2 and 2 Quads2Lins
3 7,7,7 3 4

210 3 Quads8Lins
2 7,9 3 4

220 1 Quads17Lins
3 7,7,9 3 4

50
25 9 Quads3Lins

2 7,7,9 3 3
210 4 Quads8Lins

2 9,9 3 4

60
25 11 Quads3Lins

2 9,9,9 3 3
210 4 Quads8Lins

2 and 1 Quads7Lins
3 7,7,7 3 5

220 1 Quads18Lins
2 and 1 Quads17Lins

3 7,9,9 3 5

6 Conclusion

We further explained the results of [26] by showing that the degree of regularity for
MQQ systems are bounded from above by a small constant. Therefore even MQQ sys-
tems with large number of variables can easily be broken with Gröbner bases cryptanal-
ysis. The main result of this paper is an explanation of the underlying reason for this
abnormal degree of regularity. We demonstrated how the complexity of solving MQQ
systems with Gr̈obner bases is equal to the minimum of the complexity of solving the
Dobbertin transformation and the complexity of solving one MQQ block. Furthermore,
our experimental data showed that the degree of regularity for solving the Dobbertin
transformation is bounded from above by 3, the same as the bound on the MQQ sys-
tem. These experimental results were also explained mathematically. A natural interpre-
tation of the results of our investigation is that the Dobbertin transformation employed
is a serious weakness in the MQQ system.

From a design point of view, we also showed that if Dobbertin’s transformation is
replaced with an ideal function – which perfectly hides the linear parts of the system
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– the degree of regularity varies with the size of the quasigroups and the number of
variables. We conclude that if a suitable replacement for Dobbertin’s transformation is
found, MQQ can possibly be made strong enough to resist pure Gröbner attacsk for ad-
equate choices of quasigroup size and number of variables. This remains an interesting
open problem.
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A Algorithm for generating random MQQ

In this section we present the pseudo-code for how the MQQs used in this paper have
been generated. The code was implemented in magma.

Algorithm MQQ algorithm
1. n←{size of quasigroup}
2. L←{number of linear terms}
3. if L≤ 2
4. then Q = n
5. else Q = n−L
6. CorrectDeg←True
7. while CorrectDeg
8. do A1←IdentityMatrix(n) (∗ The identity matrix of sizen ∗)
9. X1←[x1, . . . ,xn]T

10. X2←[xn+1, . . . ,x2n]T

11. for i ←1 to Q
12. do for j ←i +1 to n
13. do for k←i +1 to (n)
14. r ∈R {0,1} (∗ random element from the set{0,1} ∗)
15. A1(i, j) = A1(i, j) + r ∗X1k

16. B←RandomNonSingularBooleanMatrix(n) (∗Random non singular Boolean
matrix of sizen ∗)

17. C←RandomBooleanVector(n) (∗ Random Boolean vector of sizen ∗)
18. A1←B∗A1
19. X1←B∗X1+C
20. L1←RandomNonSingularBooleanMatrix(n) (∗Random non singular Boolean

matrix of sizen ∗)
21. L2←RandomNonSingularBooleanMatrix(n) (∗Random non singular Boolean

matrix of sizen ∗)
22. A1←LinTrans(A1,L1) (∗ Lineary transform the indeterminates ofA1 ac-

cording toL1 ∗)
23. X1←LinTrans(X1,L1) (∗ Lineary transform the indeterminates ofX1 ac-

cording toL1 ∗)
24. X2←LinTrans(X2,L2) (∗ Lineary transform the indeterminates ofX2 ac-

cording toL2 ∗)
25. MQQ←A1∗X2+X1
26. GBMQQ←Gröbner(MQQ,2) (∗ The truncated Gr̈obnerbasis of degree 2

under graded reverse lexicographical ordering.∗)
27. Deg←{number of linear terms in GBMQQ}
28. if Deg= L
29. then CorrectDeg←False
30. return GBMQQ


