
HAL Id: hal-01288796
https://hal.science/hal-01288796v2

Submitted on 7 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Ballistic motion planning
Mylène Campana, Jean-Paul Laumond

To cite this version:
Mylène Campana, Jean-Paul Laumond. Ballistic motion planning. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2016), Oct 2016, Daejeon, South Korea.
�10.1109/IROS.2016.7759230�. �hal-01288796v2�

https://hal.science/hal-01288796v2
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Ballistic motion planning

Mylène Campana1,2 Jean-Paul Laumond1,2

Abstract— This paper addresses the motion planning problem
of a jumping point-robot. Each jump consists in a ballistic
motion linking two positions in contact with obstacle surfaces. A
solution path is thus a sequence of parabola arcs. The originality
of the approach is to consider non-sliding constraints at contact
points: slipping avoidance is handled by constraining takeoff
and landing velocity vectors to 3D friction cones. Furthermore
the magnitude of these velocities is bounded. The ballistic
motion lying in a vertical plane, we transform the 3D problem
into a 2D one. We then solve the motion equations. The solution
gives rise to an exact steering method computing a jump path
between two contact points while respecting all constraints. The
method is integrated into a standard probabilistic roadmap
planner. Probabilistic completeness is proven. Simulations il-
lustrate the performance of the approach.

I. INTRODUCTION

Geometrical motion planning is a well-known problem [1].
Today, most motion planners are inspired by the random sam-
pling seminal approaches [2], [3]. They can also be adapted
for systems that handle special types of paths (e.g. spline-
based approach [4]), or which embed special constraints (e.g.
constrained optimization [5]).

In this paper we consider the ballistic motion planning
for a jumping robot in environments containing slippery
surfaces. It is well-known that ballistic motion results in
a parabola trajectory. According to the Coulomb friction
law, a condition for the robot not to slide during its takeoff
is that the contact force belongs to a so-called friction
cone. This latter property extends to the landing phase. We
consider a simple point mass robot with simplified contact
dynamics: we assume that the robot is submitted to an
impulse force as soon as it lands, so that the transition
between landing and takeoff is instantaneous. This gives rise
to a discontinuity between the contact forces and the contact
velocities. Moreover we assume that the robot has limited
energy resources, which limit the velocity at takeoff. The
landing velocity is also constrained to avoid requiring to
dissipate too much energy (and damaging the robot). These
energy restrictions are realized by limiting the magnitude of
the velocity vectors during the takeoff and landing phases.
Constraints on the velocity vector magnitudes are named
velocity constraints.

How to plan a collision-free path satisfying both sliding
and velocity constraints in such a context? This is the
question addressed by this paper.

*This work has been supported by the project ERC Advanced Grant
340050 Actanthrope

1{mcampana, jpl}@laas.fr
CNRS, LAAS, 7 avenue du colonel Roche, F–31400 Toulouse, France
2Univ. de Toulouse, LAAS, F–31400 Toulouse, France

Ballistic motion planning has been relatively little ad-
dressed. [6] shows a one-legged robot hopping while keeping
balance. [7] makes a miniature robot jump to climb horizon-
tal stairs. In [8], a multi-articulated gymnast robot jumps over
obstacles on a horizontal surface, while taking into account
the whole-body angular momentum. In [9]–[13] ballistic
motion is considered from a character animation viewpoint.
Focus is done on jump motion preparation and adaptation.
The authors of [14] present a simulated humanoid robot that
runs and jumps on a horizontal platform. The takeoff leg
angle and intensity are computed to cross the large gap. [15]
and [16] produce near optimal hopping motions online for
quadrupeds from reinforcement based learning techniques.
However, as they simplify the location of the contacts, the
method cannot deal with arbitrary 3D environments. [17] and
[18] consider how existing motions may be edited of re-timed
to consider friction. Motion planning and obstacle avoidance
are considered in [19]. The method computes a sequence of
parabolas. It consists of tuning the parabola heights in order
to reach different levels while avoiding obstacles.

This paper does not consider the full dynamics of articu-
lated avatars, but is restricted to point-robots. With respect
to the state of the art, the contribution is to account for
slipping prevention as well as takeoff and landing velocity
limitations. Furthermore, the proposed approach applies on
3D environments and rough terrains without any restriction.

We formally state our problem in Section II. In Section III,
we detail the unconstrained parabola trajectory equations.
Then, we present and solve the non-sliding constraints as
well as the velocity limitations in Section IV. Finally, this
resolution is integrated into a motion planner (Section V)
whose probabilistic completeness is proven. Simulation re-
sults are provided in Section VI.

II. PROBLEM STATEMENT

Let us consider a point-robot moving in a 3D environment.
The robot begins from a starting position cs and wants to
reach a goal position cg , only by performing jumps from
one contact to another. Both cs and cg are assumed to
be in contact with the environment. There is no distinction
between ground and obstacles. The purpose of this paper
is to determine a sequence of jumps, under the following
assumptions:
• The robot is modeled by a point mass m of position c

with respect to the origin.
• The only force that applies to the robot during a jump

is mg.
• Contact phases are instantaneous, so that the velocity

at a contact point is discontinuous, i.e. transition from

cs

robot

cg cs cg

cs cg

Fig. 1. Three sequences of parabolas between cs and cg positions for
different constraints. In the case illustrated on the right, friction cones are
narrower than those on the left, so that the parabola on top is not admissible
anymore, and a waypoint has to be used. In the bottommost case, the initial
velocity has been limited compared to the left case, resulting in a sequence
with numerous jumps.

landing to takeoff results from an impulsion.
• The non-sliding constraint is modeled by a friction cone.

According to the contact model, the robot is not sliding
as soon as its impulsion vector belongs to the friction
cone. The direction of the impulsion vector is the same
as the difference between the takeoff and the landing
velocity vectors. Then, if both velocity vectors belong
to the convex friction cone, so does the impulsion di-
rection. We detail the benefit of this sufficient condition
in the motion planning section. Moreover, the surface
material is uniform in the environment, i.e. the non
sliding constraints can be modeled everywhere by a
friction cone with a constant coefficient. We denote by
µ the tangent of the cone half-angle.

• Takeoff and landing velocity magnitudes are bounded
by the same value, so that an admissible jump path can
be followed in a reversed direction.

• There is no constraint on the energy balance between
one jump and the next.

• The robot cannot collide with the obstacles.

Fig. 1 illustrates the effects of the friction and velocity
constraints on the existence of parabola sequences. The
following section reminds the basics of ballistic motion and
details the equations of parabolas linking two points.

III. UNCONSTRAINED BALLISTIC MOTION

A. Accessible space of ballistic motion

We denote the global frame basis by (ex, ey, ez). When
Newton’s second law of motion is integrated with respect to
time for a ballistic shot from the cs position with a ċs initial
velocity, the following robot trajectory is obtained:

c(t) = −g
2
t2 ez + ċs t+ cs (1)

ez

ex

ey

ċs
αs

θ

cs
exθ

πθ

(xθ, z)

-g ez

Fig. 2. The parabola always belongs to the plane πθ defined by
(cs; exθ ; ez), where exθ = cos(θ)ex + sin(θ)ey .

cs

vs = 5 m/s

cs

αs = 0.8 rad

Fig. 3. Accessible space from cs = (0, 0)T when varying takeoff angle αs
(left), or when varying initial velocity vs (right). On left, the bold parabola
leads to the maximal range at given initial velocity, and is obtained for
αs = π

4
.

Let (x, y, z)T be the coordinates of c. The ballistic motion
belongs to a vertical plane denoted by πθ. The orientation
of the plane is given by the initial velocity components as
follows:

θ = atan2(ẏs, ẋs) ∈ [−π;π]

Considering Θ = [cos(θ) sin(θ) 0]T , we introduce the fol-
lowing variable changes involving the scalar product:

xθ = c.Θ, xθs = cs.Θ

xθg = cg.Θ, ẋθs = ċs.Θ

Thus from (1), one can rewrite the main equations of
motion determining the robot coordinates (xθ, z)

T in πθ (see
Fig. 2):

z = −g
2

(xθ − xθs)2
ẋ2θs

+
żs
ẋθs

(xθ − xθs) + zs (2)

ż

ẋθs
= −gxθ − xθs

ẋ2θs
+

żs
ẋθs

(3)

Let us denote the takeoff angle by αs = atan2(żs, ẋθs)
and the velocity value ||ċs|| by vs. Equations (2)-(3) high-
light the two parameters αs and ẋθs that determine a parabola
in πθ. For instance, Fig. 3 presents the parabola beams
when vs (resp. αs) is fixed. This can also be viewed as the
accessible space of the robot performing ballistic motions.

B. Goal-oriented ballistic motion

Now we want our robot to reach the goal position cg with
a jump starting from cs. Therefore, the value θ = atan2(yg−
ys, xg − xs) is now known. Let Xθ equal xθg − xθs and Z
equal zg − zs. Since Z is fixed, it appears that from (2), αs
is the only remaining variable to compute the parabola beam
leading to cg . In fact, the initial velocity ẋθs can be obtained
with the following equation:

ẋθs =

√
gX2

θ

2(Xθ tan(αs)− Z)
(4)

Equation (4) implies that ẋθs is only defined for top-curved
parabolas, which is consistent with gravity. Non-physically-
feasible parabolas such as down-curved ones are not consid-
ered. Therefore we impose:

atan2(Z,Xθ) < αs <
π

2
(5)

An example of a goal-oriented parabola beam is presented
Fig. 4. Finally, we denote a parabola starting from cs and
its parameters by Ps(θ, α, v).

IV. BALLISTIC MOTION WITH CONSTRAINTS

So far we have defined a beam of feasible parabolas
to connect two positions. In this section, the non-sliding
and velocity constraints are introduced, and the resulting
reduction of the space of admissible parabola beams is
detailed.

A. Non-sliding constraints

1) 2D reduction: Let us consider two points cs and cg at
the contact of environment surfaces. Non-sliding constraints
impose the robot to land and take off along velocity vectors
that belong to 3D friction cones of apexes based on cs and
cg .

Since the motion has to lie in a vertical plane πθ, the
problem of computing a parabola between the two 3D
friction cones is reduced to a 2D problem. Corresponding
2D cones result from the intersections of the 3D cones with
the plane πθ (see Fig. 5 top). If one of both intersection
sets is reduced to a point, there is no possible jump between

cs

cg

Fig. 4. Physically-feasible parabolas linking cs and cg , for multiple values
of αs in [0.91; 1.27] rad.

ez

exθ

αs

cs

cg

start cone

goal cone

2δg2δs

ns

γs

ng

γg

Fig. 5. (Top) Representation of the intersection between πθ and two 3D
cones. (Bottom) 2D cones resulting of the intersection and an example of
parabola belonging to both cones.

cs and cg . Otherwise, let us denote their half-apex angles1

respectively by δs and δg , and their directions projected in
πθ respectively by ns and ng . Note that δs and δg may be
smaller that arctan(µ). For the 2D start cone of direction
ns = (nxs , nys , nzs)

T , let us denote by γs the angle between
the cone direction and the horizontal line:

γs = atan2(nzs , nxs cos(θ) + nys sin(θ))

γg is similarly defined, respectively to the 2D goal cone.
Thus the problem of slippage avoidance is reduced to the
problem of finding a parabola going through the 2D cones
(see Fig. 5 bottom).

2) Constraint formulation: Since the equation of a
parabola starting at cs and ending at cg only depends on
αs, the four constraints are just formulated relatively to αs.

For the non-sliding takeoff constraint, the inequalities on
αs are immediate:

α−1 ≤ αs ≤ α+
1 with

{
α−1 = γs − δs
α+
1 = γs + δs

To express the three remaining constraints according to
αs, (2)-(3) are brought back to the parabola origin cs. Thus
constraints are still expressed as inequalities:

α−i ≤ αs ≤ α+
i , i ∈ {2..4}

For the landing cone constraint, different cases appear, de-
pending on the accessibility of the cone. They are tackled by

1Detailed computation of δs and δg is presented in the appendix file.

Algorithm 1 Resolution of the landing cone constraint.

Output: Defined constraint bounds α−2 , α+
2

if γg > 0 then
α−g = γg − π − δg
α+
g = γg − π + δg

if α+
g < −π2 then
No solution

else
α−2 = arctan(2Z

Xθ
− tan(α+

g))
if α−g > −π2 then

α+
2 = arctan(2Z

Xθ
− tan(α−g))

else
α+
2 not defined

else
α−g = γg + π − δg
α+
g = γg + π + δg

if α+
g >

π
2 then

No solution
else

α+
2 = arctan(2Z

Xθ
− tan(α−g))

if α+
g <

π
2 then

α−2 = arctan(2Z
Xθ
− tan(α+

g))
else

α−2 not defined

Algorithm 1, which returns the constraint bounds (α−2 , α
+
2).

Note that one of the bounds may not exist, and that the
constraint may also not be satisfied.

B. Velocity constraints

Takeoff velocity limitation is expressed as vs ≤ Vmax.
Equation (2) leads to:

gX2
θ tan(αs)

2 − 2XθV
2
max tan(αs)

+ gX2
θ + 2ZV 2

max ≤ 0 (6)

∆ = V 4
max − 2gZV 2

max − g2X2
θ

If ∆ < 0, (6) has no solution. In other words, it means that
the goal position is not reachable with an initial velocity
satisfying the limitation. In the case where the constraint is
solvable, we write:{

α−3 = (V 2
max −

√
∆)/gXθ

α+
3 = (V 2

max +
√

∆)/gXθ

The same argument can be applied for the landing velocity
limitation (see Fig. 6). Using (3)-(4), we can rewrite the
constraint equation vf ≤ Vmax as:

gX2
θ tan(αs)

2 − (4XθZg + 2XθV
2
max) tan(αs)

+ gX2
θ + 2ZV 2

max + 4gZ2 ≤ 0 (7)

Λ = V 4
max + 2gZV 2

max − g2X2
θ

cs cs

ċg
cg

ċg

cg

Fig. 6. The landing velocity limitation allows to reject parabolas that have
too important an impact velocity magnitude vg (right).

If Λ < 0, (7) has no solution. Otherwise, we write:{
α−4 = (V 2

max + 2gZ −
√

Λ)/gXθ

α+
4 = (V 2

max + 2gZ +
√

Λ)/gXθ

A symmetry property of the parabola implies that, given
one parabola from cs to cg determined by ċs, the same
parabola can be obtained from cg to cs with −ċg as initial
velocity. In the latter case, the contact velocity becomes −ċs.
We use this property to apply the same bound Vmax for
the takeoff and landing velocities. Thus the parabola can be
traveled both ways without violating the velocity limitation
constraints.

C. Constraints collection and solution existence

The domains where constraints are satisfied are convex.
Thus, we intersect these domains to determine if an interval
]α−s ;α+

s [of αs values complying with all the constraints
exists. The interval bounds are given by:{

α−s = max(α−1 , α
−
2 , α

−
3 , α

−
4)

α+
s = min(α+

1 , α
+
2 , α

+
3 , α

+
4)

Note that (5) has to be simultaneously satisfied to consider
an admissible parabola. Fig. 7 presents an illustration of this
constraint intersection. Constraint bounds (α−i , α

+
i)i∈{1..4}

are used to plot parabolas, representing the domains where
constraints are satisfied. The intersection of these domains
leads to the set of possible solutions.

Finally, the existence of an admissible jump between two
points is guaranteed as soon as:
• Neither of the intersections between both friction cone

and πθ is reduced to a point.
• (α−s , α

+
s) are defined and α−s ≤ α+

s .
The two conditions are necessary and sufficient. The inter-

val]α−s ;α+
s [gives a simple parametrization of the solution

beam. Choosing αs as the average 0.5(α−s + α+
s) allows to

optimize the distance to the constraints, e.g. to be far from
the limits of the friction cones, and so far from sliding. Fig. 8
illustrates the constraint effects on a simple example.

Topological Property: Let us consider an admissible parabola
Ps(θ, α, v) starting at cs and ending at cg . There exists a
neighborhood Ns (resp. Ng) of cs (resp. cg) such that any
pair of points (c∗s ,c∗g) belonging to Ns × Ng can be linked
by an admissible parabola.

α−sα+
scs

cg

4. Landing velocity limitation

1. Takeoff from initial cone

3. Takeoff velocity limitation
2. Landing in final cone

4.

3.

1.

2.

Fig. 7. Illustration of the constraints on a practical example: each constraint
bound is used as αs and represents a bold parabola. Between these bounds,
the constraint is satisfied, out of them not. The constraint intersection is
given by the bounds (α−

s , α
+
s) and illustrated by the gray zone: blue

parabolas belonging to it are admissible solutions to the problem.

Proof: Let us consider the parabola family {Ps(θ +
e1, α + e2, v + e3), ei ∈] − ε, ε[} starting at cs. The
function giving the three parabola parameters from the three
coordinates of cg is an homeomorphism. Therefore such a
family spans a neighborhood of cg . Let c∗g be a point of this
neighborhood and Ps(θ+e∗1, α+e∗2, v+e∗3) the parabola from
cs to c∗g . c∗g may be chosen close enough from cg to guaran-
tee that e∗ is small enough, and then Ps(θ+e∗1, α+e∗2, v+e∗3)
is admissible. Because the construction is symmetric, let us
consider the same parabola as starting at c∗g and ending at
cs. We get a new parametrization of the same parabola, i.e.
Pg(θ∗, α∗, v∗). By using the same argument as above, the
parabola family {Pg(θ∗+ e1, α

∗+ e2, v
∗+ e3), e ∈]− ε, ε[}

starting at c∗g spans a neighborhood of cs. The property holds
for any point c∗g sufficiently close to cg . Therefore, there
exists a neighborhood Ns (resp. Ng) of cs (resp. cg) such
that any pair of points (c∗s ,c∗g) belonging to Ns×Ng can be
linked by an admissible parabola.

V. MOTION PLANNING

To find a sequence of parabola arcs between an initial
position cs and a final one cg , we use a simple PRM-based
probabilistic roadmap planner [2] (see Algorithm 2). Note
that the roadmap may contain cycles. The planner builds a
roadmap in the 3D space by randomly sampling contact po-
sitions similarly to [20] (RANDOMSAMPLE), and by linking
them (STEER) with admissible collision-free parabola arcs.
The roadmap construction is over as soon as either a path
linking cs and cg is found (ARECONNECTED), or compu-
tation time is over. Then, the function FINDSHORTESTPATH
explores the roadmap to return the shortest path sequence,
in terms of sum of parabola lengths.

Note that the sufficient non-slipping condition reduces the
dimensionality of the motion planning problem, because it
removes the relationship between the entering velocity and

Fig. 8. Three parabola examples linking cs to cg with different constraints.
Large (blue) and narrow (violet) friction cones are considered, forcing the
solution parabola to be adapted. With a large velocity limitation, cg can
be directly reached (blue). Otherwise, an intermediate position has to be
considered (red).

the exiting velocity of a node. With a classical kynodynamic
planner [21], to verify whether a trajectory can be connected
with another one, it is required to extend the state space with
the velocities and so it doubles the dimensionality of the
problem. In our case, this is only required to verify whether
there exists a velocity vector belonging to the cone each time
we want to add a new path.

The function BEAM is described in Algorithm 3. It com-
putes the interval of takeoff angles that generate constrained
parabolas to link cs and cg . The algorithm starts by calculat-
ing each cone and plane πθ intersection, and continues only if
both intersections are not reduced to the cone apexes. Then,
takeoff angle bounds related to constraints are computed as
in Section IV. A boolean fail conveys the feasibility of
constraints, i.e. if one constraint cannot be satisfied, fail
is set to true. At this stage, an admissible parabola exists if
the global constraint bounds verify α−s ≤ α+

s .
Then the steering method STEER detailed in Algorithm 4

selects a takeoff angle αs and tests the corresponding
parabola for collisions. If the parabola is not collision-
free (HASCOLLISIONS), then we select a new parabola αs
by dichotomy on the interval]α−s ;α+

s [until the resolution

Algorithm 2 Probabilistic roadmap planner for ballistic
motion planning.
Input: environment, cs, cg, µ, Vmax
Output: Collision-free solution sequence to problem
path←STEER(cs, cg)
finished← ARECONNECTED(cs, cg)
while not(finished) do

crandom ← RANDOMSAMPLE()
ADDTOROADMAP(crandom)
for cnode ∈ Roadmap do

path←STEER(cnode, crandom)
ADDTOROADMAP(path)

end for
finished← ARECONNECTED(cs, cg)

return sequence← FINDSHORTESTPATH()

Algorithm 3 BEAM(cs, cg): Computes the parabola beam
represented by the takeoff angle interval]α−s ;α+

s [.
Input: cs, cg, µ, Vmax
Output: Interval of takeoff angles Ibeam
cone2Ds ← COMPUTEINTERSECTION(cone3Ds , πθ)
cone2Dg ← COMPUTEINTERSECTION(cone3Dg , πθ)
if ISREDUCED(cone2Ds) or ISREDUCED(cone2Dg) then

return Ibeam ← ∅
(α−i α

+
i , fail)i∈{1..4} ← COMPUTECONSTRAINTS()

if fail = true then return Ibeam ← ∅
α−s ← max(α−1 , α

−
2 , α

−
3 , α

−
4)

α+
s ← min(α+

1 , α
+
2 , α

+
3 , α

+
4)

return Ibeam ←]α−s ;α+
s [

Algorithm 4 STEER(cs, cg): Steering method based on a
constrained parabola. Returns a collision-free path linking
cs and cg . Otherwise, returns an empty path.
Input: cs, cg, µ, Vmax, nlimit
Output: Collision-free parabola path path

]α−s ;α+
s [← Ibeam

n← 1
Ibeam ← BEAM(cs, cg)
if ISEMPTY(Ibeam) then return path← emptyPath
else
αs ← 0.5(α−s + α+

s)
path← COMPUTEPARABOLA(cs, cg, αs)
while HASCOLLISIONS(path) and n < nlimit do

αs ← DICHOTOMY(]α−s ;α+
s [, n)

path← COMPUTEPARABOLA(cs, cg, αs)
n← n+ 1

if HASCOLLISIONS(path) then path← emptyPath
return path

threshold nlimit is reached. In the worst case, the DI-
CHOTOMY function allows to span the almost entire parabola
beam. Doing so, the algorithm is probabilistically complete
as proven by the following property.
Convergence Property: Let us consider a sequence of
collision-free ballistic jumps between two points cs and cg in
a given environment. Let us assume that the entire path is at
a distance of about ε from the obstacles. Then the probability
for Algorithm 2 to find a sequence of collision-free ballistic
jumps between cs and cg converges to 1 when running time
tends to infinity.

Proof: The property is a direct consequence of the
topological property exposed in Section IV. Indeed, let us
consider a sequence of collision-free ballistic jumps between
two points cs and cg . Let ci and ci+1 two consecutive points
in the sequence. ci and ci+1 are linked by a collision-free
parabola Pi. From the topological property, there are two
neighborhoods Ni (resp. Ni+1) of ci (resp. ci+1) such that
any pair of points (c∗i ,c∗i+1) belonging to Ni ×Ni+1 can be
linked by an admissible parabola P∗i . Because Algorithm 2
tends to sample the environment uniformly, the probability
of sampling two points in Ni and Ni+1 respectively tends to

ex
ey

ez
Vmax = 5.3 m/s

µ = 1.2µ = 0.5

cs
cg

Vmax = 6.8 m/s

Fig. 9. Full path planning results in an environment containing two
windows to cross from right to left. The red solution is more constrained,
so it results in a longer sequence of parabolas. Number of triangles: 47 733.

Parameters Computation Collision Roadmap Path
µ Vmax time (s) found nodes length (m)

0.5 6.5 m/s 9.89 3270 1995 39.9
0.5 7 m/s 9.99 4002 1835 37.4
1.2 6.5 m/s 1.04 601 282 28.1
1.2 7 m/s 0.909 540 237 27.0

TABLE I
AVERAGES OF 40 BALLISTIC PLANNING OF THE EXAMPLE FIG. 10, FOR

FOUR COMBINATIONS OF THE PARAMETERS.

1 when time tends to infinity. Ni and Ni+1 can be arbitrarily
small. As a consequence, P∗i can be arbitrarily close to
Pi. Because Pi is away about ε from the obstacles, P∗i is
guaranteed to be collision-free.

VI. RESULTS

The ballistic motion planner was tested in 3D envi-
ronments containing slippery surfaces, using the software
Humanoid Path Planner2. Graphical renderings were done
using Blender 2.7. In all described examples, the parameter
nlimit from Algorithm 4 was set to 6.

We planned sequences of parabolas for a point-robot in
three environments. For each example, we considered weak
and strong constraints. The results are shown in Fig. 9, 10
and 11. Movies of the trajectories are available in the
companion video3. Solutions under strong constraints tend
to increase the number of waypoints. It is not only a
consequence of the velocity limitation that forces to reach
closer positions (see also Fig. 8 bottom), but it is also a result
of the cone narrowness. In fact, as it is shown in Fig. 8 top,
narrow cones provide parabolas with greater heights, more
likely to produce collisions or to exceed the environment
bounds.

Table I presents the average performance results of the
ballistic motion planner run on the Fig. 10 benchmark. The
velocity limitation is less restrictive in terms of computation
time than the cone coefficient. However, the velocity limita-
tion cannot be reduced without endangering the existence of
a solution. In fact, the robot has to reach other platforms in
order to find a solution path sequence. Benchmarking was

2http://humanoid-path-planner.github.io/hpp-doc/index.html
3https://youtu.be/vv K7HqANmk

http://humanoid-path-planner.github.io/hpp-doc/index.html
https://youtu.be/vv_K7HqANmk

ex

ey
ez

Vmax = 6.5 m/s

µ = 1.2

µ = 0.5

cs

cg

Vmax = 7 m/s

Fig. 10. Full path planning results in an environment containing platforms
and a chimney. The blue path is constrained by large cones, the red path by
narrow cones. Reducing µ prevents the creation of a parabola linking two
low platforms with the same inclination. Number of triangles: 696.

ex
ey

ez Vmax = 4.5 m/s

µ = 1.2

µ = 0.5

cs

cg

Fig. 11. Path planning results in a cave. The robot has to avoid the
numerous stalactites, stalagmites and holes. Number of triangles: 33 513.

done on a PC with 15.8 GB of main memory and using one
core of an Intel Xeon E3-1240 processor running at 3.4 GHz

VII. CONCLUSION

We presented a method that analytically computes a non-
sliding jump for a point-robot, resulting in a parabola going
from one friction cone to another. The method has been
implemented as a steering method in a probabilistic-roadmap
motion planner in order to determine a sequence of jumps
between given start and goal positions.

We can easily extend the parabola-based steering method
to devise a diffusing type of probabilistic planner, such as
RRT [3]. Besides, our algorithm is the first stage of a more
ambitious challenge. Our final purpose is to address dynamic
motion planning for digital artifacts. The solution which we
provide can be used to compute the center of mass path when
the artifact is jumping. Now, it remains to consider more
realistic models of contacts (e.g. multiple contacts involving
feet and hands) and impacts (e.g. including energy balance).
Moreover, the steering method we consider in the motion

planner is assumed to be symmetric. This assumption is not
realistic. Indeed, for a given parabola, the energy required to
overcome the gravity effect from a position is greater than the
energy to dissipate when landing at the same position. The
extension of the motion planner to more realistic energetic
models is the purpose of future developments.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning. Boston, MA: Kluwer
Academic Publishers, 1991.

[2] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Rob. Autom., vol. 12, no. 4, pp. 566–580, 1996.

[3] S. M. LaValle and J. J. Kuffner, Jr., Algorithmic and Computa-
tional Robotics: New Directions, Wellesley (MA), 2001, ch. Rapidly-
Exploring Random Trees: Progress and Prospects, pp. 293–308.

[4] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion planning
for mobile robots using splines,” IEEE International Conference on
Intelligent Robots and Systems (IROS), pp. 2427–2433, 2009.

[5] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith,
C. Dellin, J. Bagnell, and S. Srinivasa, “CHOMP: covariant hamilto-
nian optimization for motion planning,” Int. J. Rob. Res., vol. 32, no.
9-10, pp. 1164–1193, 2013.

[6] M. Raibert, M. Chepponis, and H. B. Brown, “Experiments in balance
with a 3d one-legged hopping machine,” Int. J. Rob. Res., vol. 3, pp.
75–92, 1984.

[7] S. Stoeter and N. Papanikolopoulos, “Autonomous stair-climbing with
miniature jumping robots,” IEEE Transactions on Systems, Man, and
Cybernetics: Part B, vol. 35, no. 2, pp. 313–325, 2005.

[8] E. Papadopoulos, I. Fragkos, and I. Tortopidis, “On robot gymnastics
planning with non-zero angular momentum,” in IEEE International
Conference on Robotics and Automation (ICRA), 2007, pp. 1443–
1448.

[9] A. Lamouret and M. van de Panne, Motion Synthesis By Example.
Vienna: Springer Vienna, 1996, pp. 199–212.

[10] A. Sulejmanpašić and J. Popović, “Adaptation of performed ballistic
motion,” ACM Trans. Graph., vol. 24, no. 1, pp. 165–179, 2005.

[11] P. Reitsma and N. Pollard, “Perceptual metrics for character animation:
Sensitivity to errors in ballistic motion,” ACM Trans. Graph., vol. 22,
no. 3, pp. 537–542, 2003.

[12] P. Reitsma, J. Andrews, and N. Pollard, “Effect of character animacy
and preparatory motion on perceptual magnitude of errors in ballistic
motion,” Comput. Graph. Forum, vol. 27, no. 2, pp. 201–210, 2008.

[13] S. Levine, Y. Lee, V. Koltun, and Z. Popović, “Space-time planning
with parameterized locomotion controllers,” ACM Trans. Graph.,
vol. 30, no. 3, pp. 23:1–23:11, May 2011.

[14] P. Wensing and D. Orin, “Development of high-span running long
jumps for humanoids,” in IEEE International Conference on Robotics
and Automation (ICRA), 2014, pp. 222–227.

[15] X. B. Peng, G. Berseth, and M. van de Panne, “Terrain-adaptive loco-
motion skills using deep reinforcement learning,” ACM Transactions
on Graphics (Proc. SIGGRAPH 2016), vol. 35, no. 5, 2016, to appear.

[16] L. Liu, M. V. D. Panne, and K. Yin, “Guided learning of control graphs
for physics-based characters,” ACM Transactions on Graphics (TOG),
vol. 35, no. 3, p. 29, 2016.

[17] N. S. Pollard and F. Behmaram-Mosavat, “Force-based motion editing
for locomotion tasks,” in Robotics and Automation, 2000. Proceedings.
ICRA ’00. IEEE International Conference on, vol. 1, 2000, pp. 663–
669 vol.1.

[18] J. McCann, N. Pollard, and S. Srinivasa, “Physics-based motion re-
timing,” in ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, 2006.

[19] K. Yamane and K. W. Sok, “Planning and synthesizing superhero
motions,” in Conference on Motion in Games, 2010, pp. 254–265.

[20] N. Amato and Y. Wu, “A randomized roadmap method for path and
manipulation planning,” in IEEE International Conference on Robotics
and Automation (ICRA), vol. 1, 1996, pp. 113–120 vol.1.

[21] T. Kunz and M. Stilman, “Probabilistically complete kinodynamic
planning for robot manipulators with acceleration limits,” in IEEE
International Conference on Intelligent Robots and Systems (IROS),
September 2014, pp. 3713–3719.

	INTRODUCTION
	PROBLEM STATEMENT
	UNCONSTRAINED BALLISTIC MOTION
	Accessible space of ballistic motion
	Goal-oriented ballistic motion

	BALLISTIC MOTION WITH CONSTRAINTS
	Non-sliding constraints
	2D reduction
	Constraint formulation

	Velocity constraints
	Constraints collection and solution existence

	MOTION PLANNING
	RESULTS
	CONCLUSION
	References

