APPENDIX: results of the intersection between a 3D cone and a vertical plane passing by the cone apex.

Mylène Campana (mcampana@laas.fr)

March 15, 2016

This section details the computation of a plane-cone intersection, knowing that the plane always contains the cone apex. The purpose is to compute the half-apex angle δ of the resulting intersection.

Figure 1: Illustration of a 3D cone of apex O, orientation \mathbf{n} and half-apex angle ϕ so that $\tan (\phi)=$ μ. The case of an intersection with a vertical plane π_{θ} resulting in a 2 D cone (formed by the two 'intersection lines') is presented.

Let us denote the origin by $O=(0,0,0)^{T}$. Considering a cone ${ }^{1}$ of apex O, orientation \mathbf{n} and tangent coefficient μ (see Figure 1). Its equation can be written as:

$$
\begin{equation*}
\left(y n_{z}-z n_{y}\right)^{2}+\left(z n_{x}-x n_{z}\right)^{2}+\left(x n_{y}-y n_{x}\right)^{2}=\mu^{2}\left(n_{x} x+n_{y} y+n_{z} z\right)^{2} \tag{1}
\end{equation*}
$$

[^0]Which can be rewritten as:

$$
\begin{equation*}
A z^{2}+B(x, y) z+C(x, y)=0 \tag{2}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
A=n_{x}^{2}+n_{y}^{2}-n_{z}^{2} \mu^{2} \\
B(x, y)=2\left(1+\mu^{2}\right) n_{z}\left(n_{x} x+n_{y} y\right) \\
C(x, y)=n_{x}^{2} \mu^{2} x^{2}+n_{y}^{2} \mu^{2} y^{2}-n_{y}^{2} x^{2}-n_{x}^{2} y^{2}+2 n_{x} n_{y}\left(1+\mu^{2}\right) x y-n_{z}^{2}\left(x^{2}+y^{2}\right)
\end{array}\right.
$$

The equation of a vertical plane π_{θ} defined by $\left(O ; \cos (\theta) \mathbf{e}_{x}+\sin (\theta) \mathbf{e}_{y} ; \mathbf{e}_{z}\right)$ is:

$$
\begin{equation*}
x \sin (\theta)-y \cos (\theta)=0 \tag{3}
\end{equation*}
$$

We define:

$$
\psi=\frac{\pi}{2}-\operatorname{atan} 2\left(n_{z}, n_{x} \cos (\theta)+n_{y} \sin (\theta)\right)
$$

A cone is vertical when $-\arctan (\mu) \leq \psi \leq \arctan (\mu)$ or $\pi-\arctan (\mu) \leq \psi \leq \pi+\arctan (\mu)$.

1 Case $A \neq 0$

1.1 Case $\theta \neq \pm \frac{\pi}{2}$

For now, we assume that $A \neq 0$ and $\theta \neq \pm \frac{\pi}{2}$. A solution to the system of (1)-(3) exists if and only if $\Delta \geq 0$, where:

$$
\Delta=\left(n_{x}^{2}+n_{z}^{2}\right) \mu^{2}-n_{y}^{2}-\left(n_{x}^{2}+n_{y}^{2} n_{z}^{2} \mu^{2}\right) \tan (\theta)^{2}+2 n_{x} n_{y}\left(1+\mu^{2}\right) \tan (\theta)
$$

If $\Delta>0$, the intersection results in a 2 D cone. Then, the half-cone selection can be performed considering the direction of \mathbf{n}. If $\Delta=0$, the intersection gives a line which is not relevant for our application. $\Delta<0$ yields an intersection reduced to O, which is also not relevant.

The equations of the lines forming the 2 D cone are:

$$
\left\{\begin{array}{l}
y=\tan (\theta) x \\
z=K^{ \pm} x
\end{array}, \quad K^{ \pm}=\frac{n_{x} n_{z}\left(1+\mu^{2}\right)+n_{y} n_{z}\left(1+\mu^{2}\right) \tan (\theta) \pm \sqrt{\Delta}}{A}\right.
$$

Thus, one can compute the half-apex angle δ of the 2 D cone:

$$
\cos (2 \delta)=\varepsilon \frac{1+\tan (\theta)^{2}+K^{+} K^{-}}{\sqrt{\left(1+\tan (\theta)^{2}+K^{+2}\right)\left(1+\tan (\theta)^{2}+K^{-2}\right)}}
$$

where ε is equal to -1 when the cone is vertical and $A<0$. It is equal to 1 otherwise.

1.2 Case $\theta= \pm \frac{\pi}{2}$

Now we consider the case $\theta= \pm \frac{\pi}{2}$. The intersection type is about:

$$
\Lambda=\left(n_{y}^{2}+n_{z}^{2}\right) \mu^{2}-n_{x}^{2}
$$

The equations of the lines forming the 2 D cone become:

$$
\left\{\begin{array}{l}
x=0 \\
z=G^{ \pm} y
\end{array}, \quad G^{ \pm}=\frac{n_{y} n_{z}\left(1+\mu^{2}\right) \pm \sqrt{\Lambda}}{A}\right.
$$

The half-apex angle δ of the 2D cone:

$$
\cos (2 \delta)=\varepsilon \frac{1+G^{+} G^{-}}{\sqrt{\left(1+G^{+2}\right)\left(1+G^{-2}\right)}}
$$

where ε is equal to -1 when the cone is vertical and $A<0$. It is equal to 1 otherwise.

2 Case $A=0$

Now we consider that $A=0$, which is equivalent to $\left(1+\mu^{2}\right) n_{z}^{2}=1$. In such case, one of the intersection lines is parametrized by $(0,0, z)^{T}$. The following equations detail the expression of the second line, in order to compute δ.

2.1 Case $\theta \neq \pm \frac{\pi}{2}$

If $\theta \neq \pm \frac{\pi}{2}$, we have:

$$
B(x)=2\left(1+\mu^{2}\right) n_{z}\left(n_{x}+n_{y} \tan (\theta)\right) x
$$

If $n_{x}+n_{y} \tan (\theta)=0, B(x)=0$. From (2), we have $C(x)=0$. Thus, the second line is perpendicular to \mathbf{e}_{z}, and:

$$
\delta=\frac{\pi}{4} \mathrm{rad}
$$

Otherwise, if $n_{x}+n_{y} \tan (\theta) \neq 0$, since $n_{z} \neq 0$, we have:

$$
\forall x \neq 0, B(x) \neq 0
$$

Thus, we can write the equations of the second intersection line (restricted to the \mathbf{n} direction by the absolute values):

$$
\begin{gathered}
\left\{\begin{array}{l}
y=\tan (\theta) x \\
z=H x
\end{array}\right. \\
H=-\frac{\left(n_{x}^{2}+n_{y}^{2} \tan (\theta)^{2}\right) \mu^{2}-n_{x}^{2} \tan (\theta)^{2}-n_{y}^{2}+2 n_{x} n_{y}\left(1+\mu^{2}\right) \tan (\theta)-n_{z}^{2}\left(1+\tan (\theta)^{2}\right)}{2\left(1+\mu^{2}\right)\left|n_{z}\right|\left|n_{x}+n_{y} \tan (\theta)\right|}
\end{gathered}
$$

The half-apex angle of the 2D cone formed by the intersection lines can be computed as follows:

$$
\cos (2 \delta)=\frac{H}{\sqrt{\left(1+\tan (\theta)^{2}+H^{2}\right)}}
$$

2.2 Case $\theta= \pm \frac{\pi}{2}$

Now if $\theta= \pm \frac{\pi}{2}, x=0$ so we have:

$$
\left\{\begin{array}{l}
B(y)=2\left(1+\mu^{2}\right) n_{z} n_{y} y \\
C(y)=n_{y}^{2} \mu^{2} y^{2}-n_{x}^{2} y^{2}-n_{z}^{2} y^{2}
\end{array}\right.
$$

If $n_{y}=0, B(y)=0$. Thus $C(y)=0$ which results in $y=0$. So the second line is included in the first one $(0,0, z)^{T}$, it is not relevant to compute δ.

Otherwise, if $n_{y} \neq 0$, the second line (restricted to the \mathbf{n} direction by the absolute values) equations are:

$$
\left\{\begin{array}{l}
x=0 \\
z=L y
\end{array}, \quad L=-\frac{n_{y}^{2}\left(1+\mu^{2}\right)-1}{2\left(1+\mu^{2}\right)\left|n_{y}\right|\left|n_{z}\right|}\right.
$$

The half-apex angle becomes:

$$
\cos (2 \delta)=\frac{L}{\sqrt{\left(1+L^{2}\right)}}
$$

[^0]: ${ }^{1}$ Here we consider the classical shape of a cone corresponding to two symmetric half-cones with respect to the apex.

