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Ballistic motion planning

Myléne Campana'-?

Abstract— This paper addresses the motion planning problem
for a jumping point-robot. Each jump consists in a ballistic
motion linking two positions in contact with obstacle surfaces. A
solution path is thus a sequence of parabola arcs. The originality
of the approach is to consider non-sliding constraints at contact
points: slipping avoidance is handled by constraining takeoff
and landing velocity vectors to belong to 3D friction cones.
Furthermore the magnitude of these velocities is bounded. A
ballistic motion lying in a vertical plane, we transform the 3D
problem into a 2D one. We then solve the motion equations.
The solution gives rise to an exact steering method computing
a jump path between two contact points while respecting
all constraints. The method is integrated into a standard
probabilistic roadmap planner. Probabilistic completeness is
proven. Simulations illustrate the performance of the approach.

I. INTRODUCTION

Geometrical motion planning is a well-known problem [1].
Today, most motion planners are inspired by the random sam-
pling seminal approaches [2], [3]. They can also be adapted
for systems that handle special types of paths (e.g. spline-
based approach [4]), or which embed special constraints (e.g.
constrained optimization [5]).

In this paper we consider the ballistic motion planning
for a jumping robot in environments containing slipping
surfaces. It is well-known that a ballistic motion results in a
parabola trajectory. According to the Coulomb friction law, a
sufficient condition for the robot not to slide during its takeoff
is that the contact force belongs to the so-called friction cone.
This latter property extends to the landing phase. We consider
a simple point mass robot with simplified contact dynamics:
we assume that the robot is submitted to an impulse force as
soon as it lands, so that the transition between landing and
take-off is instantaneous. This gives rise to a discontinuity
between the contact forces and the contact velocities. In this
simplified contact model, we consider that the robot is not
sliding as soon as its landing and take-off velocity vectors
belong to the friction cone. Note that the impulse force is also
contained in the friction cone. The constraint on the velocity
direction is then named non-sliding constraint. Moreover we
assume that the robot has limited energy resources, which
limit the velocity at takeoff. The landing velocity is also
constrained to avoid requiring to dissipate too much energy
(and damaging the robot). These energy restrictions are
materialized by velocity vector magnitude limitations during
the takeoff and landing phases. Constraints on the velocity
vector magnitudes are named velocity constraints.
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How to plan a collision-free path satisfying both sliding
and velocity constraints in such a context? This is the
question addressed by this paper.

Ballistic motion planning has been relatively little ad-
dressed. [6] shows a one-legged robot hopping while keeping
balance. [7] is processing jumps on a miniature robot to
climb horizontal stairs. In [8] a multi-articulated gymnast
robot jumps above obstacles on a horizontal ground, while
taking into account the whole-body angular momentum. In
[9]-[13] ballistic motion is considered from a character ani-
mation viewpoint. Focus is done on jump motion preparation
and adaptation. [12] presents a simulated humanoid robot
that is running and jumping on a horizontal platform. The
takeoff leg angle and intensity are computed to cross the large
gap. Motion planning and obstacle avoidance are considered
in [14]. The method computes a sequence of parabolas. It
consists in tuning the parabola heights in order to reach
different levels while avoiding obstacles.

This paper does not consider the full dynamics of articu-
lated avatars. It is restricted to point-robots. With respect
to the state of the art, the contribution is to account for
slipping prevention as well as takeoff and landing velocity
limitations. Furthermore, the proposed approach applies on
3D environments and rough terrains without any restriction.

We formally state our problem in Section II. In Section III,
we detail the unconstrained parabola trajectory equations.
Then, we present and solve the non-sliding constraints as
well as the velocity limitations in Section IV. Finally, this
resolution is integrated into a motion planner (Section V)
whose probabilistic completeness is proven. Simulations are
provided in Section VI.

II. PROBLEM STATEMENT

Let us consider a point-robot moving in a 3D environment.
The robot begins from a starting position ¢, and wants to
reach a goal position cg4, only by performing jumps from
one contact to another. Both c¢; and ¢, are assumed to
be in contact with the environment. There is no distinction
between grounds and obstacles. The purpose of this paper
is to determine a sequence of jumps, under the following
assumptions:

« The robot is modeled by a point mass m of position c
with respect to the origin.

o The only force that applies to the robot during a jump
is mg.

« Contact phases are instantaneous, so that the velocity at
a contact point is discontinuous, i.e. robot takeoff results
from an impulsion.
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Fig. 1. Three sequences of parabolas between cs and cg positions for
different constraints. In the case illustrated in the middle, friction cones are
narrower than the top ones, so that the parabola on top is not admissible
anymore and a waypoint has to be used. On the bottom case, the initial
velocity has been limited compared to the top case, resulting in a sequence
with numerous waypoints.

o The non-sliding constraint is modeled by a friction cone.
We assume that a position is non-sliding as soon as
its arrival and restart velocity vectors belong to the
friction cone. Moreover, the surface material is uniform
in the environment, i.e. the non sliding constraints can
be modeled everywhere by a friction cone with constant
coefficient. We denote by p the tangent of the cone half-
angle.

o Takeoff and landing velocity magnitudes are bounded
by the same value, so that an admissible jump path can
be traveled in reverse.

o There is no constraint on the energy balance between a
jump and the next one.

o The robot cannot collide the obstacles.

Fig. 1 illustrates the effects of the friction and velocity
constraints on the existence of parabola sequences. The
following section reminds the basics of ballistic motion and
details the equations of parabolas linking two points.

Fig. 2. The parabola always belongs to the plane 7y defined by
(cs; €xy;ez), where ez, = cos(f)ey + sin(f)ey.

III. UNCONSTRAINED BALLISTIC MOTION

A. Accessible space of ballistic motion

We denote the global frame basis by (e;, ey, e.). When
the Newton second law of motion is integrated with respect
to time for a ballistic shot from the ¢, position with a ¢,
initial velocity, the following robot trajectory is obtained:

c(t):—gt2ez+ést+cs (1)

Let (x,y, z)T be the coordinates of c. The ballistic motion
belongs to a vertical plane denoted by 7. The orientation
of the plane is given by the initial velocity components as
follows:

0 = atan2(ys, &s) € [—m; 7]

Considering © = [cos(f) sin(#) 0]7, we introduce the fol-
lowing variable changes:

Tp =c.0, z9, =cC;.0

xeg = Cg.@, x'gb = és.@

Thus from (1), one can rewrite the main equations of
motion determining the robot coordinates (x4, 2)” in 7y (see
Fig. 2):

z=—= - + —(zg —xg,) + 2 2
2 2 3095( 0 — To,) + 2s 2)

z Tg— Z
g e 3)

xes xes xes

Let us denote the takeoff angle by o, = atan2(Zs, dg,)
and the velocity value ||¢;|| by vs. Equations (2)-(3) high-
light the two parameters o and @y, that determine a parabola
in my. For instance, Fig. 3 presents the parabola beams
when vy (resp. ;) is fixed. This can also be viewed as the
accessible space of the robot performing ballistic motions.
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Fig. 3. Accessible space from cs = (0,0)7 when varying s (left), or
when varying initial velocity vs (right). On left, the bold parabola leads to

the maximal range at given initial velocity, and is obtained for as = 7.

B. Goal-oriented ballistic motion

Now we want our robot to reach the goal position ¢, with
a jump starting from c,. Therefore, the value § = atan2(y,—
Ys, g — &) is now known. Let Xy equal Ty, — Ty, and Z
equal z, — zs. Since Z is fixed, it appears that from (2), o
is the only remaining variable to compute the parabola beam
leading to c,. In fact, the initial velocity % can be obtained
with the following equation:

. 9Xj
o, —
: 2(Xp tan(as) — 2)

Equation (4) implies that Zp, is only defined for top-
curved parabolas, which is consistent with the gravity. Non-
physically-feasible parabolas as down-curved ones are not
considered. Therefore we impose:

“4)

atan2(Z, Xp) < ag < g (5)

An example of a goal-oriented parabola beam is presented
Fig. 4. Finally, we denote a parabola starting from cs and
its parameters by Ps(6, a, v).

IV. BALLISTIC MOTION WITH CONSTRAINTS

So far we have defined a beam of feasible parabolas
to connect two positions. In this section, the non-sliding
and velocity constraints are introduced, and the resulting
reduction of the space of admissible parabola beams is
detailed.

Fig. 4. Physically-feasible parabolas linking cs and cg, for multiple values
of as in [0.91;1.27] rad.

goal cone

start cone

Vg

Fig. 5. (Top) Representation of the intersection between mg and two 3D
cones. (Bottom) 2D cones resulting of the intersection and an example of
parabola belonging to both cones.

A. Non-sliding constraints

1) 2D reduction: Let us consider two points cs and ¢, at
the contact of environment surfaces. Non-sliding constraints
impose the robot to land and take off along velocity vectors
that belong to 3D friction cones of apexes based on c,; and
Ccg.

Since the motion has to lie in a vertical plane 7y, the
problem of computing a parabola between the two 3D
friction cones is reduced to a 2D problem. Corresponding
2D cones result from the intersections of the 3D cones with
the plane 7y (see Fig. 5 top). If one of both intersection sets
is reduced to a point, then there is no possible jump between
¢, and c,. Otherwise, let us denote their half-apex angles'
respectively by d, and d,, and their directions projected in
my respectively by ng and n,. Note that s and J, may be
smaller that arctan(u). For the 2D start cone of direction
n, = (ng,,ny,,n.,)", let us denote by v, the angle between
the cone direction and the horizontal line:

vs = atan2(n,,, ng, cos(0) + n,_ sin(0))

g is similarly defined, respectively to the 2D goal cone.
Thus the problem of slipping avoidance is reduced to the
problem of finding a parabola going through the 2D cones
(see Fig. 5 bottom).

2) Constraint formulation: Since the equation of a
parabola starting at c, and ending at c, only depends on
«s, the four constraints are just formulated relatively to .

"Detailed computation of §s and &4 is presented in the appendix file.



Algorithm 1 Resolution of the landing cone constraint.

Output: Defined constraint bounds ay, ay
if 4 > 0 then
Q, =7 — T — 04
g =g — T+
1f af <% then
No solutlon

else
ay = arctan(i(—z — tan(a,))
ifay > -3 then
oz;r = arctan(X — tan(ay))
else
oy not defined
else
a, =g+ 7T =0y
ay =7y +m+dy
if af > 7 then
No solution
else
ay = arctan(X —tan(a,))
if o < 7 then
ay = arctan(ize tan(a)))
else

a5 not defined

For the non-sliding takeoff constraint, the inequalities on
a s are immediate:
_ . ] =79 — 0s
a7 <o, <o with !
1 = s = g {ai"_'yg+5s
To express the three remaining constraints according to
Q. (2)-(3) are brought back to the parabola origin c,. Thus
constraints are still expressed as inequalities:

af <as<af ,ie{2.4}

For the landing cone constraint, different cases appear, de-
pending on the accessibility of the cone. They are tackled by
Algorithm 1, which returns the constraint bounds (o , ).
Note that one of the bounds may not exist, and that the
constraint may also not be satisfied.

B. Velocity constraints

Takeoff velocity limitation is expressed as vs < Vg
Equation (2) leads to:

g X7 tan(a,)? — 2XoV2 . tan(ay)
+9Xg+22V2.. <0 (6)
A= VrzrlmT 2gZV’r?L(1’I‘ - 92X9

If A <0, (6) has no solution. In other words, it means that

the goal position is not reachable with an initial velocity

satisfying the limitation. In the case where the constraint is
solvable, we write:

{ g (V772mw - \/>)/ng

; - ( max T \/7)/9X0

Fig. 6. The landing velocity limitation allows to reject parabolas that have
a too important impact velocity magnitude vg (right).

The same argument can be applied for the landing velocity
limitation (see Fig. 6). Using (3)-(4), we can rewrite the
constraint equation vy < V4, as:

(4X9gZg + 2XyV?

max

+9X3 +22V?

max

) tan(a)
+49Z%<0 ()

gXZtan(ay)? —

A=V3,  +29ZV?

max

- 9° X}

If A <0, (7) has no solution. Otherwise, we write:

{ (V%a:v + 292 - \/K)/QXG
(V’I'?Lal‘ + 29Z + \/K)/QXH

A symmetry property of the parabola implies that, given
one parabola from c, to ¢, determined by ¢€,, the same
parabola can be obtained from c, to ¢, with —¢, as initial
velocity. In the latter case, the contact velocity becomes —
We use this property to apply the same bound V., for
the takeoff and landing velocities. Thus the parabola can be
traveled both ways without violating the velocity limitation
constraints.

C. Constraints collection and solution existence

The domains where constraints are satisfied are convex.
Thus, we intersect these domains to determine if an interval
Jag;af[ of as values complying with all the constraints
exists. The interval bounds are given by:

O[: - max(al ’ 042 ) OL3 ) 044)
e urne e M e
Note that (5) has to be simultaneously satisfied to consider
an admissible parabola. Fig. 7 presents an illustration of this
constraint intersection. Constraint bounds (o ,af)ie{l__él}
are used to plot parabolas, representing the domains where
constraints are satisfied. The intersection of these domains
leads to the set of possible solutions.

Finally, the existence of an admissible jump between two
points is guaranteed as soon as:
o Neither of the intersections between both friction cone

and 7y is reduced to a point.
o (a;,af) are defined and o < .



1. Takeoff from initial cone
2. Landing in final cone

4. Landing velocity limitation 4.

Fig. 7. Tllustration of the constraints on a practical example: each constraint
bound is used as a5 and represents a bold parabola. Between these bounds,
the constraint is satisfied, out of them not. The constraint intersection is
given by the bounds (s ,a3) and illustrated by the gray zone: blue
parabolas belonging to it are admissible solutions to the problem.

The two conditions are necessary and sufficient. The inter-
val |ag ;o[ gives a simple parametrization of the solution
beam. Choosing « as the middle 0.5(a; + o) allows to
optimize the distance to the constraints, e.g. to be far from
the limits of the friction cones, and so far from sliding. Fig. 8
illustrates the constraint effects on a simple example.

Topological Property: Let us consider an admissible parabola
Ps(8,a,v) starting at ¢, and ending at c,. There exists a
neighbor Ny (resp. Ny) of ¢, (resp. c,) such that any pair
of points (c},c;) belonging to N x N, can be linked by an
admissible parabola.

Proof: Let us consider the parabola family {Ps(6 +
e,a+e,v+e), e € —e e[} starting at cs. The functions
giving the parabola parameters from the coordinates of c, are
continuous. Therefore such a family spans a neighborhood
of ¢y. Let ¢} be a point of this neighbor and P,(0 +e*, a +
e*,v + e*) the parabola from c; to cj. c; may be chosen
close enough from c, to guarantee that e* is small enough,
and then Py (0 + e*, a0 + €*,v + e*) is admissible. Because
the construction is symmetric, let us consider the same
parabola as starting at c; and ending at c;. We get a new
parametrization of the same parabola, ie. Py (6%, a*, v*).
By using the same argument as above, the parabola family
{Pg(0" + e,a + e,v* +¢), e € — ¢,¢[} starting at c;
spans a neighbor of cg. The property holds for any point
c, sufficiently close to ¢cy. Therefore, there exists a neighbor
N (resp. Ny) of ¢, (resp. c,) such that any pair of points
(ct,c;) belonging to N x N, can be linked by an admissible
parabola. [ ]

V. MOTION PLANNING

To find a sequence of parabola arcs between an initial posi-
tion c; and a final one ¢4, we use a simple PRM-based prob-
abilistic roadmap planner [2] (see Algorithm 2). Note that the
roadmap can contain cycles. The planner builds a roadmap

Vinaz = 7 m/s

Cg
M= 0.5 Vinae =7 Hl/S
/Vmax =06 m/S

L

VRN :

4 | y

Fig. 8. Two parabola examples linking cs to cgy with different constraints.
(Top) large and narrow friction cones are considered, forcing the solution
parabola to be adapted. (Bottom) with a large velocity limitation, c4 can be
directly reached. Otherwise, an intermediate position has to be considered.

in the 3D space by randomly sampling contact positions
according to a standard uniform law (RANDOMSAMPLE),
and by linking them (STEER) with admissible collision-free
parabola arcs. The roadmap construction is over as soon as
either a path linking ¢, and c, is found (ARECONNECTED),
or computation time is over. Then, the function FINDSHORT-
ESTPATH explores the roadmap to return the shortest path
sequence, in terms of sum of parabola lengths.

The function BEAM is described in Algorithm 3. It com-
putes the interval of takeoff angles that generate constrained
parabolas to link ¢, and c4. The algorithm starts by calculat-
ing each cone and plane 7y intersection, and continues only if

Algorithm 2 Probabilistic roadmap planner for ballistic
motion planning.

Input: environment, cs, cg, ft, Vinax
Output: Collision-free solution sequence to problem
path <—STEER(cs, C4)
finished < ARECONNECTED(c;, Cg)
while not(finished) do
Crandom  RANDOMSAMPLE()
ADDTOROADMAP(Crandom)
for c,,oq. € Roadmap do
path <;S’I‘EER(Cnode7 Crandom)
ADDTOROADMAP(path)
end for

finished <~ ARECONNECTED(c,, c)
return sequence <— FINDSHORTESTPATH()




Algorithm 3 BEAM(c,, c4): Computes the parabola beam
represented by the takeoff angle interval o ; o [.

Inmput: c,, cg4, i, Vinas
Output: Interval of takeoff angles Ipeqm
cone?P + COMPUTEINTERSECTION(cone3? | 1)
cone2P < COMPUTEINTERSECTION(cone3” , mq)
if ISREDUCED(cone2”) or ISREDUCED(coneZ”) then
return Ip.q,, < 0
(aj a;f, fail);eq1..4y ¢ COMPUTECONSTRAINTS()
if fail = true then return Iy, <
oy  max(ag, a5 ,05 ,0y )
af « min(af, a7, a7, af)

return lpeq,, <Jog ;o]

Algorithm 4 STEER(cs,c,): Steering method based on a
constrained parabola. Returns a collision-free path linking
¢, and c,. Otherwise, returns an empty path.

Input: ¢, cg, , Vinaws Mimit
Output: Collision-free parabola path path
n<+0
Iteam < BEAM(cg, Cg)
if ISEMPTY(Jpeqrn) then return path < emptyPath
else Ja; af [« Tpeam
as + 0.5(a; +af)
path <— COMPUTEPARABOLA(c;, Cg, ¢vs)
while HASCOLLISIONS(path) and n < Ny do
ag < DICHOTOMY (Ja ; af[)
path <~ COMPUTEPARABOLA(C;, ¢4, Ois)
n+<n+1

if HASCOLLISIONS(path) then path < emptyPath
return path

both intersections are not reduced to the cone apexes. Then,
takeoff angle bounds related to constraints are computed as
in Section IV. A boolean fail conveys the feasibility of
constraints, i.e. if one constraint cannot be satisfied, fail
is set to false. At this stage, an admissible parabola exists
if the global constraint bounds verify a; < o .

Then the steering method STEER detailed in Algorithm 4
selects a takeoff angle o, and tests the corresponding
parabola for collisions. If the parabola is not collision-
free (HASCOLLISIONS), then we proceed by dichotomy on
the interval Ja; ;o[ until the resolution threshold 7
is reached. In the worst case, the DICHOTOMY function
allows to span the almost entire parabola beam. Doing so,
the algorithm is probabilistically complete as proven by the
following property.

Convergence Property: Let us consider a sequence of
collision-free ballistic jumps between two points ¢, and ¢,
in a given environment. Let us assume that the entire path
is away about ¢ from the obstacles. Then the probability
for Algorithm 2 to find a sequence of collision-free ballistic
jumps between c, and ¢, converges to 1 when running time
tends to infinity.

Proof: The property is a direct consequence of the

Computation time: 0.085 s
Vinar = 6.8 m/s
Yy
pn=12

Computation time: 0.738 s

Jez

WV = 53 108 & e
pn=0.5 N

Fig. 9.  Full path planning results in an environment containing two
windows to cross from right to left. The green solution is more constrained,
so it results in a longer sequence of parabolas. Number of triangles: 47 733.

topological property exposed in Section IV. Indeed let us
consider a sequence of collision-free ballistic jumps between
two points ¢ and c,. Let ¢; and ¢, two consecutive points
in the sequence. c; and c;y; are linked by a collision-free
parabola P;. From the topological property, there are two
neighbors N (resp. N;11) of c; (resp. c;11) such that any
pair of points (c},c;, ;) belonging to N x N1 can be linked
by an admissible parabola P;. Because Algorithm 2 tends to
sample the environment uniformly, the probability to sample
two points in A; and A1 respectively tends to 1 when time
tends to infinity. A; and A1 can be arbitrarily small. As a
consequence, P; can be arbitrarily close to P;. Because P;
is away about € from the obstacles, P is guaranteed to be
collision-free. [ ]

VI. RESULTS

The ballistic motion planner has been implemented on
the software Humanoid Path Planner [15] and tested in 3D
environments containing sliding surfaces. In all described
examples, the parameter ny;,,;; from Algorithm 4 has been
set to 6.

We have planned sequences of parabolas for a point-robot
in three environments. For each example, we consider weak
and strong constraints. The results are shown? in Fig. 9, 10
and 11. Solutions under strong constraints tend to increase
the number of waypoints. It is not only a consequence of
the velocity limitation that forces to reach closer positions
(see also Fig. 8 bottom), but it is also a result of the cone
narrowness. In fact, as it is shown in Fig. 8 top, narrow
cones provide parabolas with higher heights, more likely to
produce collisions or to exceed the environment bounds.

Table I presents the average performance results of the
ballistic motion planner run on the Fig. 10 example. The
velocity limitation is less restrictive in terms of computation
time than the cone coefficient. However, the velocity limita-
tion cannot be reduced without endangering the existence of
a solution. In fact, the robot has to reach other platforms in
order to find a solution path sequence.

2Movies of the trajectories are available in the attached video and at https:
//homepages.laas.fr/mcampana/drupal/content/ballistic- motion-planning.
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Vinaz = 6.5 m/s
pn=0.5

Fig. 10. Full path planning results in an environment containing platforms
and a chimney. Top case involves large cones, bottom case narrow cones.
Reducing p prevents the creation of a parabola linking two low platforms
with the same inclination. Number of triangles: 696.

Fig. 11.  Path planning results in a cave. The robot has to avoid the
numerous stalactites, stalagmites and holes. Number of triangles: 33 513.

Parameters Computation ~ Collision =~ Roadmap Path
H Vinaw time (s) found nodes length (m)
0.5 6.5 m/s 9.89 3270 1995 39.9
0.5 7 m/s 9.99 4002 1835 37.4
1.2 6.5 m/s 1.04 601 282 28.1
1.2 7 m/s 0.909 540 237 27.0
TABLE I

AVERAGES OF 40 BALLISTIC PLANNING OF THE EXAMPLE FIG. 10, FOR
FOUR COMBINATIONS OF THE PARAMETERS.

VII. CONCLUSION

We presented a method that analytically computes a non-
sliding jump for a point-robot, resulting in a parabola going
from one friction cone to another. The method has been
implemented as a steering method in a probabilistic-roadmap
motion planner in order to determine a sequence of jumps
between given start and goal positions.

We can easily extend the parabola-based steering method
to devise a diffusing type of probabilistic planner, such as
RRT [3]. Besides, our algorithm is the first stage of a more
ambitious challenge. Our final purpose is to address dynamic
motion planning for digital artifacts. The solution which we
provide can be used to compute the center of mass path when
the artifact is jumping. Now, it remains to consider more
realistic models of contacts (e.g. multiple contacts involving
feet and hands) and impacts (e.g. including energy balance).
Moreover, the steering method we consider in the motion
planner is assumed to be symmetric. This assumption is not
realistic. Indeed, for a given parabola, the energy required to
overcome the gravity effect from a position is greater than the
energy to dissipate when landing at the same position. The
extension of the motion planner to more realistic energetic
models is the purpose of future developments.
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