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The Adaptive Controlled Stratification Method

Applied to the Determination of Extreme

Interference Levels in EMC Modeling with Uncertain

Input Variables
Mourad Larbi, Philippe Besnier, Senior Member, IEEE and Bernard Pecqueux

Abstract— This paper deals with electromagnetic
compatibility simulations at early design stage of equip-
ment or systems development. In this context, ex-
pensive simulations based on rigorous modeling are
performed, including numerous uncertain variables.
The most important configurations are those associated
to extreme values of the observed quantity. In this
paper we introduce a variance reduction technique to
accelerate the estimation of an extreme quantile of the
output probability distribution. The approach is based
on using a simple model (at a low computational cost)
to identify relevant realizations of uncertain variables
in strata partitioning the output space of the model.
Application of the method is detailed on a rather simple
cable system in order to estimate an extreme quantile
level of an interfering current. We show that extreme
current values are obtained at a reduced computational
cost compared to a standard empirical quantile estima-
tion.

Index Terms— computational electromagnetics,
crosstalk, electromagnetic interference, electromag-
netic susceptibility, quantile estimation, uncertainty
propagation, variance reduction.

I. Introduction

One of the main challenges for electromagnetic compat-
ibility (EMC) modeling consists in giving, in a probabilis-
tic sense, the better solution according to a given risk
of interference. This estimation depends on many input
parameters, including various unknown ones that may be
considered as random in a first place. These evaluations
require sophisticated models at different scales of a system
(electromagnetic field distribution, interaction with cables,
electronic circuits) taking a lot of modeling resources
including in terms of software and computation time.

Obtaining with efficiency the moments of the response
probability distribution of a system stressed by a source
of interference, has been the scope of research for some
researchers in the recent years. Different techniques have
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been introduced such as polynomial chaos, stochastic col-
location, unscented transforms and design of experiments
[1]–[8]. Experimental design techniques aim at building
metamodels of the interest response. Such metamodels
were also used in a series of works on space-mapping
technique introduced by [9] for antenna applications. Most
of these methods were developed to identify the main trend
of the response. They are therefore not suitable for the
assessment of extreme events probability. Since only a few
techniques deal with the estimation of extreme values [10],
[11], we recently suggested the use of a reliability approach
which aims at approximating the failure domain that cor-
responds to the probability of exceeding a threshold value
[12]. These techniques are well suited to determine the
sensitivity of observations with respect to many random
variables or combination of them.

This paper is dedicated to an alternative approach called
controlled stratification (CS) which was recently proposed
and enhanced in the field of applied statistics [13]. This
approach has two main features of interest for EMC
applications. First, it aims specifically at accelerating the
process of estimating an extreme quantile of the output
probability distribution, which could represent values at
risk for an EMC point of view. Second, this method aims at
using a rigorous but time consuming computation method
in a less intensive way, through the control of a much less
sophisticated model, but still correlated, in a certain way,
to the original one. Once such a model exists, it helps in
elaborating a sampling pattern that will accelerate in a
very significant manner the estimation of the probability
of extreme events with the same uncertainty as a standard
Monte Carlo simulation (MCS) with a large sample size
would provide.

This paper is composed as follows. First, the detailed
principle of the CS method is presented in Section II. A
specific attention is paid to the definition of a correlation
coefficient between the simple and the rigorous calculation
method. Furthermore, this section introduces a refined al-
gorithm called the adaptive controlled stratification (ACS)
that potentially enhances the efficiency of the method.
Section III presents the case study and Section IV and V
are application sections highlighting the properties of the
CS method and its ACS version. The considered scenario
is that of a propagation of interference within a network



2

of electrical wires above a ground plane. In both sections,
the rigorous method is based on a Method of Moments
(MoM) Maxwell’s equations solver. The simple model is
based on the transmission line theory (TLT) in Section
IV or on a coarse mesh for the numerical solution of MoM
solver in Section V. Finally, Section VI illustrates that the
amount of extreme values obtained from the CS method
allows fitting a Generalized Pareto distribution.

II. Controlled Stratification

A. Presentation of the Controlled Stratification Method

Readers not acquainted with probability theory and
statistics, may refer to [14], [15].

Suppose that Y = f(X), where X of size q is a random
vector describing the uncertainties of input parameters,
Y is the random response of a rigorous but expensive
computer code f . We also assume that a simple model
fs exists: Z = fs(X). The response Z of this substitute
model is a rough approximation of f .
The CS method proposes a strategy allowing to use the
simple model fs, to estimate extreme values with a re-
duced number of calls to the expensive computer code f .

1) Quantile Estimation by Empirical Method: Let us
consider that we want to estimate the quantile of order
α of the output Y , denoted yα. Generally, the quan-
tile estimation is performed via the estimation of the
cumulative distribution function (cdf), which leads then
to an estimator of the quantile yα. Let us define a n-
sample (Y1, . . . , Yn), which is a set of n independent and
identically distributed (i.i.d) random variables with the
pdf p(y) of Y . The empirical estimator (EE) of the cdf
F (y), denoted F̂EE(y), is obtained as:

F̂EE(y) =
1

n

n
∑

i=1

1Yi≤y (1)

where 1Yi≤y is the indicator function that equals 1 when
Yi ≤ y, and 0 otherwise. It is asymptotically normal by

√
n(F̂EE(y) − F (y)) −→

n→+∞
N (0, σ2

EE),

σ2
EE = F (y)(1 − F (y)).

(2)

The quantile estimation of order α is given by

ŶEE(α) = inf{y, F̂EE(y) > α} (3)

which is also asymptotically normal:
√

n(ŶEE(α) − yα) −→
n→+∞

N (0, σ2
EE),

σ2
EE =

α(1 − α)

p2(yα)
.

(4)

This asymptotic result highlights that the variance is
higher when an extreme quantile is researched since p(yα)
is small.

In order to reduce the quantile variance, different ap-
proaches such as quantile estimation by control variate
(CV), and quantile estimation by CS have been intro-
duced. These techniques are now presented.

2) Quantile Estimation by Control Variate: This section
presents the variance reduction approach based on using
the simple model Z = fs(X) as a control variate. Relying
on the simple model Z, it is possible to evaluate the
quantiles zα or any expectation E[h(Z)] of a function of Z
by MCS. An estimator of the cdf F (y) given by a control
variate Z is written as:

F̂CV (y) = F̂EE(y) − C(ĥn − E[h(Z)]), (5)

where the function h : R −→ R is defined by the user
[16] and ĥn = 1

n

∑n
j=1 h(Zj). The optimal parameter C is

the correlation coefficient between h(Z) and 1Y ≤y. This
value is unknown in practice, therefore it is estimated by
the parameter Ĉ, defined as the slope estimator obtained
from a least-squares regression of 1Yj≤y on h(Zj):

Ĉ =

∑n
j=1 (1Yj≤y − F̂EE(y))(h(Zj) − ĥn)

∑n
j=1(h(Zj) − ĥn)2

. (6)

It is shown in [17] that the estimator F̂CV (y) with the
estimated correlation coefficient Ĉ can be rewritten by
introducing the weights Wj as

F̂CV (y) =

n
∑

j=1

Wj1Yj≤y, (7)

where Wj =
1

n
+

(ĥn − E[h(Z)])(ĥn − h(Zj))
∑n

i=1(h(Zi) − ĥn)2
with

∑n
j=1 Wj = 1.

If we choose h(Z) = 1Z≤zα
, then E[h(Z)] = α and

ĥn =
N0

n
with

N0 =
n

∑

j=1

1Zj≤zα
and Wj =

α

N0
1Zj≤zα

+
1 − α

n − N0
1Zj>zα

.

(8)

The estimator (7) has been shown by [18], as equivalent
to the maximum likelihood estimator for probabilities.
Since the estimators of Monte Carlo are convergent [16],
we obtain

√
n(F̂CV (y) − F (y)) −→

n→+∞
N (0, σ2

CV ),

σ2
CV = F (y)(1 − F (y))(1 − ρI(α)2),

(9)

where ρI(α) is the correlation coefficient between 1Y ≤y

and 1Z≤zα
given by

ρI(α) =
P(Y ≤ y, Z ≤ zα) − αF (y)
√

F (y)(1 − F (y))
√

α − α2
. (10)

The objective is now to estimate the α-quantile of Y
using the CV estimator F̂CV (y) of the cdf of Y . Let the
order statistics (Y(1), . . . , Y(n)), where the sample is sorted
in ascending order with the corresponding weights W(i)

given in (8). Relying on the estimator (7) of the cdf F (y),
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the CV estimator of the α-quantile is

ŶCV (α) = Y(l), l = inf







k,

k
∑

j=1

W(j) > α







. (11)

Using the results from the variance reduction for Monte
Carlo techniques [15], this estimator ŶCV (α) is also asymp-
totically normal

√
n(ŶCV (α) − yα) −→

n→+∞
N (0, σ2

CV ),

σ2
CV =

α(1 − α)

p(yα)2
(1 − ρ2

I(α)),
(12)

where σ2
CV is the reduced variance and ρI(α) is the

correlation coefficient between 1Zi≤zα
and 1Yi≤yα

:

ρI(α) =
P(Y ≤ yα, Z ≤ zα) − α2

α − α2
. (13)

We can see that the variance of ŶCV (α) is reduced by
a factor of (1 − ρ2

I(α)) with respect to the variance of the
empirical estimator ŶEE given in (4). This underlines that
the higher is the correlation coefficient ρI(α), the more the
quantile variance σ2

CV is reduced [13].
Finally, the estimator ρ̂I(α) of the correlation coefficient
is then given at the top of the following page by (14), with
ĥn = 1

n

∑n
j=1 1Zj≤zα

.
3) Quantile Estimation by Controlled Stratification:

Both simple model Z = fs(X) and rigorous model Y =
f(X) provide response realizations. The simple model may
lead to significant deviation of the response with respect
to that of the rigorous model. However, it is required
that its sensitivity to input realizations, remain similar to
that of the rigorous model, especially for extreme response
realizations of Y . This is quantified, only a posteriori, with
the correlation criterion given by (14).

Thereby, we introduce the CS technique consisting in
combining the simple model and the rigorous model for
an extreme quantile estimation. More precisely, the simple
model is used to stratify the output space of Z = fs(X)
in r particular intervals I1, . . . , Ir called strata. Once these
intervals are identified, realizations of X are chosen in each
of them and exploited to assess the rigorous model Y =
f(X). By doing so, we increase the number of adequate
realizations for the estimation of the researched quantile
[13].

Let r + 1 quantiles −∞ = zα0 < zα1 < . . . < zαr
= ∞

related to the probabilities 0 = α0 < α1 < . . . < αr = 1.
We define by strata the intervals ]zαj−1 , zαj

]. Using the
formula of total probability, the cdf of Y can be given by

F (y) =

r
∑

j=1

P(Y ≤ y|Z ∈]zαj−1 , zαj
]) · (αj − αj−1). (15)

Thus, the estimation of F (y) requires the computation of
the following conditional probabilities

pj(y) = P(Y ≤ y|Z ∈]zαj−1 , zαj
]). (16)

This leads to introduce a sequence of integers N1, . . . , Nr

such as
∑r

j=1 Nj = n. At the beginning, we draw Nj

realizations of input random variables (X
(j)
i )i=1,...,Nj

to

obtain Nj responses Z
(j)
i in the stratum ]zαj−1 , zαj

]. Then,
we compute for these input realizations, the responses
of the rigorous model Y

(j)
i . Once these responses are

obtained, the quantities pj(y) are estimated by

p̂j(y) =
1

Nj

Nj
∑

i=1

1
Y

(j)

i
≤y

. (17)

Finally, the estimator F̂CS(y) of the cdf F (y) is obtained
from:

F̂CS(y) =

r
∑

j=1

p̂j(y)(αj − αj−1). (18)

This estimator is unbiased, i.e. E[F̂CS(y)] = F (y) and its
variance is:

Var[F̂CS(y)] =
r

∑

j=1

(αj − αj−1)2

Nj

(

pj(y) − pj(y)2
)

. (19)

When the number of strata r is defined, we introduce posi-
tive real numbers βj such as

∑r
j=1 βj = 1 and Nj = [nβj ],

where [a] is the integer closest to a, then the estimator
F̂CS(y) is asymptotically normal by

√
n(F̂CS(y) − F (y)) −→

n→+∞
N (0, σ2

CS),

σ2
CS =

r
∑

j=1

(αj − αj−1)2

Nj

(

pj(y) − pj(y)2
)

.
(20)

If Z and Y are independent then pj(y) = F (y) and the
variance of F̂CS(y) becomes

Var[F̂CS(y)] =

r
∑

j=1

(αj − αj−1)2

Nj

(

F (y) − F (y)2
)

. (21)

Taking Nj = (αj − αj−1) · n, it can be noticed that the
variance of the estimator (21) would be identical to that of
the empirical estimator: Var[F̂CS(y)] = 1

n [F (y)−F (y)2] =

Var[F̂EE(y)]. In this case, the CS technique is therefore
useless.

Otherwise, if Z and Y are positively correlated, this
leads to ∀ y ∈]yαj−1 , yαj

]:

Var[F̂CS(y)] =
(αj − αj−1)2

Nj

(

pj(y) − pj(y)2
)

≤ (αj − αj−1)2

4Nj
.

(22)

Fixing αj = j
r and Nj = n

r and if the outputs Z and Y are

strongly correlated, the variance of the estimator F̂CS(y)
becomes Var[F̂CS(y)] = 1

4rn . We notice that the variance is
reduced by a factor r with respect to that of the empirical
estimator (2). This underlines that the variance reduction
can be quite large when the variables Z and Y are well
correlated.

Moreover, we show now that it is relevant to raise the
realization number in the distribution tail of the output Z
in order to have a better estimation of an extreme quantile
yα of the output Y . Let us suppose that we are interested
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ρ̂I(α) =

∑n
j=1(1Yj≤y − F̂EE(y))(1Zj ≤zα

− ĥn)
√

∑n
j=1(1Yj≤y − F̂EE(y))2

√

∑n
j=1(1Zj ≤zα

− ĥn)2

∣

∣

∣

∣

∣

∣

y=ŶCV (α)

(14)

in estimating the distribution tail of the cdf F (y), in the
zone where F (y) ≈ 1 − ε with 0 < ε ≪ 1. To present the
technique benefit, we define r = 4 strata with α1 = 1/2,
α2 = 1 − 2ε, α3 = 1 − ε, and we take Nj = n/4 (j =
1, . . . , 4) realizations in each stratum. This strategy locates
n
2 realizations in the distribution tail, where Z > z1−2ε.
Two situations may be assumed:

1) If Z and Y are independent, this strategy means that
the variance given by (21) is Var[F̂SC(y)] ≈ 2ε/n.
This leads to a raising variance with respect to the
empirical estimation: Var[F̂EE(y)] = ε/n.

2) If Z and Y are largely correlated, the variance given
in (22) is then reduced with respect to the empirical
estimation since Var[F̂CS(y)] = ε2/n. In this situa-
tion, the variance reduction is very significant.

From the estimator F̂CS(y) of the cdf F (y), the estimator
of the quantile of order α given by CS, denoted ŶCS(α)
writes as:

ŶCS(α) = inf{y, F̂CS(y) > α}. (23)

This quantile ŶCS(α) is asymptotically normal
√

n(ŶCS(y) − yα) −→
n→+∞

N (0, σ2
CS),

σ2
CS =

∑r
j=1

(αj − αj−1)2

βj

(

pj(yα) − pj(yα)2
)

p(yα)2
.

(24)

In summary, the benefit of the CS method relies on the
correlation between simple and rigorous models, and the
allocation strategy chosen in the strata.

B. Adaptive Controlled Stratification (ACS)

As mentioned above, the allocation strategy in the
r strata impacts directly the efficiency of the quantile
estimation yα of Y . Thus, we present in this section an
adaptive strategy allowing to identify a possibly better
allocation of realizations of input random variables for
the quantile estimation yα. The choice of this allocation
depends on probabilities pj(y) that we have to estimate.
This adaptive technique is described as follows:

1) Apply the CS technique with an a priori choice of
ñ = nµ, µ ∈]0, 1[ and a number of allocation βj

in the strata; Then, we estimate the conditional
probabilities pj(y) by

p̃j(y) =
1

[βj ñ]

[βj ñ]
∑

i=1

1
Y

(j)

i
≤y

.

2) The estimation of the optimal allocation denoted β̃j

is then given by

β̃j =
(αj − αj−1)

[

p̃j(y) − p̃j(y)2
]1/2

∑r
k=1(αj − αj−1) [p̃k(y) − p̃k(y)2]

1/2

3) Use the n − ñ last simulations in allocating them in
each stratum so that we get the estimation of the
optimal number

[

nβ̃j

]

for all j.
4) The estimation of pj(y) and F (y) is then given by

p̂j(y) =
1

[β̃jn]

[β̃jn]
∑

i=1

1
Y

(j)
i

≤y
,

F̂ACS(y) =

r
∑

j=1

p̂j(y)(αj − αj−1).

The estimator F̂ACS(y) is asymptotically normal:
√

n(F̂ACS(y) − F (y)) −→
n→+∞

N (0, σ2
ACS),

σ2
ACS =





r
∑

j=1

(αj − αj−1)
[

pj(y) − pj(y)2
]1/2





2

.
(25)

The a priori choice of the positive numbers βj does not
affect the ACS method convergence but a good choice of
these one speeds it up.

C. Discussion about the Choice of a Good Simple Model

The correlation between simple and rigorous models
is a key point of the CS method efficiency. As already
mentioned, the simple model has to reproduce the same
sensitivity related to input realizations providing extreme
values. More precisely, a set of input realizations having
response quantities above the quantile of order α of the
simple model, has to provide (i.e. with a high probability)
output realizations above the associated quantile of the
rigorous model. For this reason, a simple model is said to
be well correlated to the rigorous one, if it can reproduce
the same trend related to input variables than the rigorous
one, for the estimation of rare events.

In practice, this level of correlation is quantified through
the operator defined in (14), once computations are per-
formed for the same sample, with the two models. This
correlation estimation is only carried out to control the
quality of the simple model, and to confirm that it will
speed up the identification of extreme response realiza-
tions. Once a good simple model is identified, this step
does not need to be performed. In a real case study, only
a rough estimation of this correlation is available due to
expensive computation time of rigorous models. However,
in Sections IV and V, for the only purpose of validation,
we will use a large sample size to estimate that correlation.
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Identification of relevant simple models for EMC pur-
poses is out of the scope of this paper but a few tracks
may be followed. A physical model based on a 1D or
2D approximation for a complex 3D computation is a
possibility. An engineer model of a complex situation is
another track (for example a circuit model of interference
propagation on a chip of a printed circuit board). A
coarse mesh approximation is also another candidate as
illustrated in Section V.

III. Case study

A case study is used throughout the rest of this article
to highlight the application of the CS/ACS techniques.

The electromagnetic interference problem chosen deals
with a crosstalk issue within an interconnected wire system
above a perfect electric conductor (pec) ground (Fig. 1).
Wire n◦1 is composed of a first section of length L1 parallel
to (Ox) until the junction, and a second section of length
L3 deviating of an angle a1 = 30◦ with respect to (Ox).
This wire is situated at a height h1 above the pec ground
being fed by an electromotive force e = 1 V. Wire n◦2
also consists of a first section of length L1 parallel to (Ox)
until the junction. At the level of the junction, wire n◦2
is then divided into two branches (with a perfect electric
connection): a branch of length L3 deviated of a1 = 30◦

with respect to (Ox), and a second branch veered to a2 =
45◦ with respect to (Ox) in the opposite direction. This
wire is located at a height h2 above the pec ground. Wire
n◦3, situated at a height h3 above the pec ground, is also
composed of two sections: the first one of length L1 is
parallel to (Ox), the second one of length L2 makes an
angle a2 = 45◦ with (Ox). Wire n◦4 is at a height h4

above the pec ground. It is composed of only one section
of length L2 carrying out an angle a2 = 45◦ with (Ox).

Furthermore, wire n◦1 is loaded by two resistances R11

and R12 at its ends while wire n◦2 is directly linked to
the pec ground at its ends. Wire n◦3 is loaded by two
impedances R31 and R32, and wire n◦4 is connected to
two loads R41 and R42. Wires n◦1 and n◦2, n◦2 and n◦3,
n◦3 and n◦4 are separated by the distances d12, d23, d34,
respectively (Fig. 1).

In this crosstalk problem, the purpose is to compute
the extreme induced current I42 at the opposite end of
the wire n◦4, at the input of a device which has an
impedance R42 = 75 Ω. Thus, we aim at estimating
the quantile of order 95% denoted I0.95 verifying Pf =
P (max∆f I42 > I0.95) = 0.05, where ∆f = [70-110 MHz]
is the widened FM frequency band.

The impact of uncertain input parameters on the in-
duced current I42 is studied from the following random
variables:

• R11 and R31 are uniform random variables between 1
Ω and 10 Ω;

• R12 and R32 are uniform random variables between 1
kΩ and 10 kΩ;

• L1, L2 and L3 are variables uniformly distributed
respectively between 0.9 m and 1.1 m, 1.8 m and 2.2
m, 1.35 m and 1.65 m;

wire n°1

wire n°2 wire n°3

wire n°4

I42

y

z

x

(a)

wire n°1

wire n°2
wire n°3

wire n°4

junction

I42

R11

R31
R41

R32

R42

R12

a1

a2

d12

d
23

d
3
4

L1

L3

L
2

e

x

y

z

(b)

Fig. 1. Overview (a) and top view (b) of the four wires above a
perfect electric conductor ground.

• h1, h2, h3, and h4 are variables uniformly distributed
between 12 mm and 18 mm, and varying indepen-
dently from each other;

• d12, d23 and d34 are uniform random variables be-
tween 4.8 mm and 7.2 mm, and varying also indepen-
dently from each other.

Furthermore, the diameter of each wire is 1 mm and the
load R41 has an impedance of 75 Ω.

In total, this crosstalk problem deals with 14 random
variables. In the following, an application of the CS
technique and the ACS method will be used in order to
estimate an extreme interference level represented by the
quantile I0.95 of the induced current I42.

IV. Application to the Case of a Full-Wave

Simulation with a Transmission Line Model as a

Simple Model for the Controlled

Stratification

In this section, the simple model used is a computer
code called PERL, which is based on the transmission line
theory (TLT) using the Baum-Liu-Tesche (BLT) equation
formalism. As rigorous model, we have chosen FEKOr, a
computer code relying on a method of moments (MoM)
solver applied to the integral form of Maxwell’s equations.
In the following, the two computer codes will be denoted
TLT and MoM.

A. Controlled Stratification



6

1) Estimation of the Correlation between Simple and
Rigorous Models: In this section, the simple model used
relies on the TLT. It disregards the effect of vertical wires,
the presence of other modes than the transverse electro-
magnetic (TEM) mode (i.e. no radiation), and neglects
the coupling between the three sets of coupled wires of
the network. Regarding the rigorous model, it is based on
a full wave numerical simulation (MoM). TLT computes the
induced current in around 0.4 seconds, while MoM calculates
it in around 35 seconds (using a fine mesh of wires λ

27 ≈ 10
cm, where λ is the wavelength).

In order to emphasize the levels of the induced current
I42 obtained by TLT and MoM, we represent them for
the same random realization of the 14 input variables.
Selecting a first random combination of input variables,
we plot the induced currents I42 over the [70-110 MHz]
frequency band with TLT (curve with the red asterisks,
see Fig. 2(a)) and with MoM (curve with the blue squares,
see Fig. 2(a)). The maximum induced current is slightly
higher in MoM than in TLT with a resonance occuring at
almost the same central frequency (≈ 94 MHz). The lower
induced current computed by TLT may be partly explained
by the role of the vertical wires, which are not taken into
account.

We first estimate reference-like quantiles from empir-
ical estimations (3) with a very large sample. The 95%
quantiles of TLT (ẐEE(0.95) = 0.3560 mA) and of MoM

(ŶEE(0.95) = 0.4521 mA) computed from 7000 realiza-
tions by MCS are rather different. Looking at Fig. 2(a), we
notice that the maximum levels of the induced current I42

computed by TLT and MoM for that particular combination
of input variables, i.e. zmax = 0.5104 mA and ymax =
0.5395 mA, are higher than their 95% quantiles. This
highlights that the correlation level ρ̂I(0.95) (14) between
the two computer codes is not negligible.

Performing a new simulation with TLT and MoM for
another random configuration of input variables, we see
that the currents I42 evaluated by TLT (curve with the red
asterisks, see Fig. 2(b)) and by MoM (curve with the blue
squares, see Fig. 2(b)) are totally different with respect to
their quantiles. On the one hand, zmax = 0.3099 mA is
smaller than its 95% quantile, ẐEE(0.95) = 0.3560 mA.
On the other hand, ymax = 0.4678 mA is larger than its
95% quantile, ŶEE(0.95) = 0.4521 mA. This emphasizes
that the correlation coefficient ρ̂I(0.95) (14) is not equal
to 1. In order to measure the general tendency between
TLT and MoM around their quantiles, an estimation of the
correlation coefficient ρ̂I(0.95) = 0.52 has been obtained
by 1000 realizations from MCS. It is worth emphasizing
that the differences between maximum current magnitudes
obtained from the two models may be considerable when
estimating extreme interference events. These differences
may be mainly explained by the simplifying assumptions
used in the transmission line theory at frequencies for
which resonances occur.

2) Uniform Allocation Strategy: Let us now apply the
CS method. We propose to select 50 realizations by strata
from the simple TLT model. For this, we evaluate the
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Fig. 2. Evaluation of the induced current I42 within the [70-110
MHz] frequency band. Two random configurations of input variables
are considered in (a) and (b) for the computation of the currents I42

with the simple TLT model (curve with the red asterisks) and with
the rigorous MoM model (curve with the blue squares).

quantiles of TLT from MCS with 7000 realizations of X:










α = 0.5 −→ zα = 0.1639 mA

α = 0.9 −→ zα = 0.2981 mA

α = 0.95 −→ zα = 0.3560 mA.

Suppose that the quantile of order α = 0.95 has to
be estimated with no more than n = 200 calls to the
rigorous MoM model. Thus, relying on n = 200 realizations
of MoM, a first estimation of the quantile of order α = 0.95
provides ŶCS(0.95) = 0.4672 mA. The quality of this
first estimation is quite good since it is rather close to
the reference empirical quantile given by 7000 realizations
from MCS: ŶEE(0.95) = 0.4521 mA. Let now examine
the correlation level between TLT and MoM. To do so,
we plot in Fig. 3 the maximum current values obtained
in the 4th stratum, where Z > z0.95 = 0.3560 mA.
The histogram shows the occurrence probability of the
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current values observed in the 4th stratum of the response
space Y . From Fig. 3, we check that a very significant
number of extreme current values is reached: among the
50 current values computed, 33 of those are higher than the
reference quantile ŶEE(0.95) = 0.4521 mA. This is worth
emphasizing that a simple model, moderately correlated
to the rigorous one, is able to determine relevant input
realizations providing extreme current values. This feature
will be exploited in Section VI for fitting an extreme value
distribution.

Since ŶCS(0.95) = 0.4672 mA is only an estimation,
it would be convenient to check for its own statistical
uncertainty. It is normally not affordable but our rather
simple case study enables to perform many ŶCS(0.95)
estimations to evaluate its standard deviation.

Carrying out 10000 quantile estimations ŶCS(0.95) (us-
ing n = 200 realizations of MoM for each estimation),
we obtained a mean µ̂YCS(0.95) = 0.4532 mA and a
standard deviation σ̂YCS (0.95) = 0.0265 mA. Performing

10000 quantile empirical estimations ŶEE(0.95) with also
n = 200 realizations of MoM for each estimation, we
found a mean µ̂YEE(0.95) = 0.4550 mA and a standard
deviation σ̂YEE(0.95) = 0.0305 mA. It is worth noting
that 10000 quantile estimations were used in order to
estimate accurately the standard deviation of the quantile.
It validates the fact that the standard deviation of the
CS method σ̂YCS(0.95) is smaller than the one from an
empirical estimation. To obtain a standard deviation of
the same order (i.e. σ̂YCS (0.95) = 0.0265 mA) from an
empirical estimation, we would have carried out n = 260
realizations of MoM. In this case, the CS method brings
a gain of a bit more than a quarter of simulations of a
rigorous model. However, we have to take into account
the addition of computation time required for the simple
model. Nevertheless, our goal in this study is not to save
computation time for the quantile estimation associated
with that particular and simple test case. It is rather
to highlight the reduction of the number of calls to the
rigorous model assuming that the simple model would be
almost free in computation time.

3) Importance of Allocation Strategy: In the previous
section, the CS technique has been applied using an
uniform allocation strategy with 50 realizations in each
of the 4 strata. Let us apply again the CS method with a
new allocation strategy in order to obtain a better quan-
tile estimation. Thus, we select a proportional allocation
strategy with Nj = (αj − αj−1) · n, for j = 1, . . . , 4,
realizations in each stratum, which represents 100, 80,
10 and 10 realizations respectively in the 1st, 2nd, 3rd

and 4th stratum. Adopting this allocation strategy, and
carrying out 10000 CS quantile estimations, we get a
mean µ̂YCS(0.95) = 0.4504 mA and a standard deviation
σ̂YCS(0.95) = 0.0278 mA. Thus, we notice that this strategy
is worse than the uniform one since the standard deviation
is higher.

We instead choose another allocation strategy with a
larger allocation in the tail of the distribution, i.e. 100,
60, 20 and 20 realizations respectively in the 1st, 2nd, 3rd
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Fig. 3. The histogram represents the number of current values
obtained in the 4th stratum. Among 50 current values computed,
33 values are higher than the reference quantile ŶEE(0.95) = 0.4521
mA.

and 4th stratum. Using 10000 CS quantile estimations,
we obtain then a mean µ̂YCS(0.95) = 0.4547 mA and a
standard deviation σ̂YCS (0.95) = 0.0250 mA. This time,
we observe a better quantile estimation compared to the
uniform one insofar as the standard deviation has been
reduced. It would have been possible to get a standard
deviation of the same order using n = 280 realizations
with an empirical estimation. The gain of this allocation
strategy is around 40% of simulations if we neglect the
computation time required by TLT.

This highlights the fact that this allocation strategy
allows a more accurate quantile estimation reducing its
standard deviation. This leads to the application of the
ACS technique in the following section, which allows to
estimate the optimal allocation strategy in each stratum.

B. Adaptive Controlled Stratification

The aim of this section is to estimate the best allocation
strategy in each stratum using the ACS technique from
Section II-B.

First, we apply the CS technique with an a priori choice
of ñ = 100 simulations with an allocation of 25 realizations
in each of the 4 strata. Then, estimating the optimal
allocation in each stratum β̃j , for j = 1, . . . , 4, we are
called to add 0, 67, 12 and 21 realizations respectively
in the 1st, 2nd, 3rd and 4th stratum. Once these simu-
lations are carried out, we obtain a quantile estimation
of ŶACS(0.95) = 0.4272 mA from n = 200 realizations.
Then, we quantify the standard deviation of the ACS
technique as we performed for the CS method. Using 10000
ACS quantile estimations with an a priori choice of 25
realizations in each of the 4 strata, we found a mean
of µ̂YACS(0.95) = 0.4396 mA and a standard deviation
σ̂YACS(0.95) = 0.0267 mA. Thus, we obtain a similar
estimation than the one from the CS method with 50
realizations per strata. The ACS method does not bring



8

a significant contribution compared to the CS, possibly
because the quality of the simple model is quite weak.

In the following section, we use a better simple model
(i.e. better correlated to the rigorous one) in order to
verify the contribution of the CS, and the ACS techniques
compared to the EE one.

V. Application to the Case of a Full-Wave

Simulation with Another Full-Wave Simulation

with a Coarse Mesh as Simple Model for the

Controlled Stratification

A coarse mesh is a rather intuitive choice as a simple
model and may be adequate since calculated at a much
lower cost. Beyond that intuition, the more important
feature is the correlation criterion between both models.

In this section, the case study is still the one depicted
in Section III. The only difference is therefore the new
simple model. Indeed, the simple model used is the same
computation code FEKO using MoM with a coarse mesh of
wires, i.e. λ

5.5 ≈ 50 cm. This simple model will be denoted
MoMcoa in the following.

A. Estimation of the Correlation between Models

As in Section IV-A.1, we want to illustrate again the
difference between simple and rigorous models.

Therefore, for the same input realizations, we represent
the levels of the induced current I42 as a function of
frequency with MoMcoa (curve with the pink circles, see Fig.
4(a)) and with MoM (curve with the blue squares, see Fig.
4(a)). Once again, we can note a similar trend between
the 2 curves but there are differences in terms of peak
current magnitudes and frequencies computed by MoMcoa

(i.e. zmax = 0.4359 mA) and MoM (i.e. ymax = 0.5591
mA). Note that for this simulation a coarse mesh with 49
segments of wires was used by the simple MoMcoa model,
and a fine mesh with 150 segments of wires was used by
the rigorous one MoM.

Moreover, we also evaluated the 95% quantiles of MoMcoa

(ẐEE(0.95) = 0.3897 mA) and of MoM (ẐEE(0.95) =
0.4521 mA) from 7000 realizations by MCS. Once again,
the 95% quantiles are different. However, we can see in
Fig. 4(a) that the maximum current levels of the two
curves zmax = 0.4359 mA and ymax = 0.5591 mA,
respectively computed by MoMcoa and MoM, are larger than
their 95% quantiles. This configuration shows again a
certain correlation level (14) between the two simulations.

Carrying out simulations for another random configura-
tion of input variables, the currents I42 obtained by MoMcoa

(curve with the pink circles, see Fig. 4(b)) and MoM (curve
with the blue squares, see Fig. 4(b)) are this time rather
different with regard to their 95% quantiles. On the one
hand, zmax = 0.3599 mA (wires were meshed into 49
segments) is lower than its 95% quantile, ẐEE(0.95) =
0.3897 mA. On the other hand, ymax = 0.4598 mA
(with a mesh of wires of 147 segments) is larger than its
95% quantile, ŶEE(0.95) = 0.4521 mA. To quantify the
similarity between MoMcoa and MoM around their quantiles,
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Fig. 4. The induced current I42 is evaluated within the [70-110 MHz]
frequency band. Two random configurations of input variables in (a)
and (b), are used to compute the currents with the simple MoMcoa

model (curve with the pink circles) and with the rigorous MoM model
(curve with the blue squares).

we estimated the correlation coefficient ρ̂I(0.95) = 0.76 by
1000 realizations from MCS. In this case, the correlation
level between simple and rigorous models is quite high.
This should allow to identify many relevant realizations
with the simple model. We therefore expect a more signif-
icant improvement of the estimation of the 95% quantile
than in Section IV.

B. Controlled Stratification and its Adaptive Variant

As previously, we apply the CS method with an uniform
allocation strategy.

Let us choose 50 realizations by strata from the simple
MoMcoa model. Using 7000 realizations from MCS, we
identified the quantiles defining the strata of the output
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Z: 









α = 0.5 −→ zα = 0.1750 mA

α = 0.9 −→ zα = 0.3277 mA

α = 0.95 −→ zα = 0.3897 mA.

Performing 10000 quantile estimations ŶCS(0.95) (with
n = 200 computations of MoM at each estimation), we
obtained a mean µ̂YCS(0.95) = 0.4547 mA and a standard
deviation σ̂YCS (0.95) = 0.0202 mA. By comparison with
an empirical estimation, it would have required n =
400 computations of MoM at each estimation to obtain
a standard deviation of the same order. In this case,
the CS technique with an uniform allocation strategy
allows to save 50% of the computation time if we do
not count the simulation time used by MoMcoa. We notice
that the CS quantile estimation is better using the simple
MoMcoa model, instead of the TLT model (see Section IV,
the standard deviation of the CS method is larger, i.e.
σ̂YCS(0.95) = 0.0265 mA). This example confirms that the
larger is the correlation coefficient ρ̂I(0.95) (14), the more
efficient is the CS technique.

Having at our disposal a good simple model, we apply
the ACS technique with n = 200 realizations to verify its
additional contribution compared to the CS method. Note
that in Section IV, the ACS technique was not better than
the CS method, possibly because the simple model used
was quite poor.

As above, we apply first the CS technique with an
a priori choice of ñ = 100 realizations with an allo-
cation of 25 realizations in each of the 4 strata. In a
second step, we estimate the optimal allocation (among
the remaining 100 realizations) in each stratum β̃j, for
j = 1, . . . , 4. Once this allocation is identified, we add
the realizations required in each stratum and estimate
the quantile ŶACS(0.95). Reproducing 10000 ACS quantile
estimations, we found a mean µ̂YACS(0.95) = 0.4452 mA
and a standard deviation σ̂YACS (0.95) = 0.0157 mA. To
get a similar standard deviation, it would have required
around n = 600 realizations. The gain of the ACS method
is 3 times in terms of computation time (without taking
into account the computation cost of the simple model).
This confirms that the ACS method can be very efficient
using a simple model highly correlated to the rigorous one
for the estimation of extreme events.

C. Discussion about the Performances of the Two Simple
Models

The CS technique for the case study has been performed
with a simple model based on the TLT, and another one
based on a MoM solver with a coarse mesh.

However, even if the estimations of quantiles were pretty
good with the TLT model, results were improved using the
simple MoMcoa model better correlated to the rigorous one,
according to the definition of ρ̂I(α) (14). The fact that
the TLT model is less correlated to the rigorous one could
be explained by some approximations of the TLT, which
neglects the effect of vertical wires, the radiation of wires
and ignore the coupling between the three branches of

the network. On the contrary, MoMcoa still considers them.
Having used a coarse mesh of λ

5.5 ≈ 50 cm (while the
rigorous model is meshed at λ

27 ≈ 10 cm), this allowed to
identify more accurately, some output realizations in the
last stratum, and therefore to estimate more efficiently the
95% quantile.

VI. Extreme Value Distribution

The set of extreme realizations above the quantile
ŶCS(0.95) = 0.4672 mA may be used as goodness-of-
fit test for a Generalized Pareto distribution in order
to get further insight about extreme events probability
distribution [19].

This is here applied as an example to one particular set
of realizations of Section IV-A.2.

Taking the current values greater than the quantile
ŶCS(0.95) = 0.4672 mA (i.e. the location parameter)
obtained in the 3rd and the 4th strata during the CS
quantile estimation, we fit a Generalized Pareto distribu-
tion. Among 100 values in the last two strata, 35 values
are larger than ŶCS(0.95) = 0.4672 mA and are used to
fit a Generalized Pareto distribution by the maximum-
likelihood technique [20], see Fig. 5(a). The shape ξ = 0.23
and the scale η = 0.12 mA parameters of the Generalized
Pareto distribution have been obtained with a 95% confi-
dence interval: ξ ∈ [-0.18; 0.64], and η ∈ [0.06; 0.18 mA].

The Generalized Pareto distribution fits reasonably well
the empirical extreme values distributions. Note also that
the CS method may help finding very rare events such
as a response at almost 1,6 mA. However, we cannot
deduce any probability of occurrence for such an extreme
value. A reasonable statement is to restrict the analysis
of the Generalized Pareto distribution to assess a higher
quantile probability, as long as there are enough realiza-
tions above that quantile, say typically 10. Since there
are 35 realizations above the estimated 95% quantile,
this limitation applies to (35-10)/35, i.e. about the 70%
quantile of these extreme realizations. This corresponds
to the 98.5% quantile of the parent distribution F (y).

Fig. 5(b) shows the cdf of the extreme current values
distribution compared to the one obtained from the Gener-
alized Pareto distribution. It confirms that the Generalized
Pareto distribution hardly follows the empirical distribu-
tion above the 71% quantile i.e. the validity limitation of
the fitting. The 70% quantile of these extreme realizations
estimated from the Generalized Pareto distribution is
0.6365 mA. By comparison with a direct empirical estima-
tion of the 98.5% quantile (obtained by 7000 realizations
from MCS) gives ŶEE(0.985) = 0.5722 mA. These values
are very consistent highlighting that we may look at even
more extreme quantile estimation, starting from a CS
sampling technique.

VII. Conclusion

This paper introduces the CS method and its variant the
ACS technique applied to EMC analysis. This approach
proposes a variance reduction for estimating the quantile
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Fig. 5. Fitting of (a) the pdf and (b) the cdf of the Generalized
Pareto distribution on the extreme current values identified by the
simple TLT model in the 3rd and the 4th strata.

of order α (α close to 1), when the output of the computer
code used is expensive in terms of computation time. This
method relies on a simple model which is an approximation
(supposed at a low computational cost) of the expensive
computer code to select relevant realizations in order to
estimate extreme events in the context of uncertain input
variables.

The quality of this estimation depends on the ability of
the simple model to replicate the same behaviour in terms
of input variables than the rigorous model according to a
specific definition of their correlation.

Relying on a simple model based on the TLT, and on a
rigorous model solving rigorously Maxwell’s equations, we
estimated an extreme quantile of an interfering current in a
cable bundle reducing the computation time (compared to
an empirical estimation). Moreover, using a simple model
allowed to fit an extreme value distribution in order to
estimate even more extreme quantiles. The same study was
also applied using a computer code with a coarse mesh,

even if this latest was rather costly. Since this coarse mesh
simulation is more correlated to the fine mesh simulation,
the reduction in terms of number of calls to this last one,
has been more significant. The object of future work may
consist in researching simple models, allowing to accelerate
the computation time of rigorous models for the estimation
of extreme events in EMC problems.

One of the main challenges about this CS method is to
find adequate simple substitute models for various EMC
modeling scenarios. We have seen that coarse versus fine
mesh of the spatial discretization for solving Maxwell’s
equations is a good candidate. Other models like circuits
models or analytical models including approximations
could be eligible as well as metamodels built up from
different statistical techniques. Identifying such models is
a track for future research.
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