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In this report, we highlight the epistemic actions and 
concomitant discursive shifts of four students as they 
reinvent the fundamental idea and technique in Euler’s 
method. We use this case to further the theoretical and 
methodological coordination of the Abstraction in 
Context (AiC) approach, with its associated model com-
monly used for the analysis of processes of constructing 
knowledge by individuals, and small groups and the 
Documenting Collective Activity (DCA) approach, with 
its methodology commonly used for identifying norma-
tive ways of reasoning with groups of students. In this 
report, we show students’ first steps towards re-inventing 
Euler’s method and explicate the theoretical and meth-
odological commonalities of AiC and DCA.

Keywords: Documenting collective activity, abstraction in 

context, networking theories, Euler’s method.

INTRODUCTION

Research at the undergraduate level is moving beyond 
the documentation of student difficulties towards the 
design, implementation, and analysis of innovative 
learning environments where students reinvent im-
portant mathematical ideas and methods. For example, 
in differential equations, research has documented 
that students are able to reinvent, given appropriate 
task sequences and learning environments, Euler’s 
method, bifurcation diagrams, and even an analytic 
approach for solving systems of linear differential 
equations (e.g., Rasmussen, 2007). Such reinventions 
are, from our perspective, both individual and collec-
tive accomplishments. Methodological approaches 
for analysing such accomplishments, however, are 
sorely needed. In this report, we highlight the epis-
temic actions and concomitant argumentation of four 
students as they reinvent the fundamental idea and 

technique in Euler’s method. We use this case to fur-
ther the theoretical and methodological coordination 
of the Abstraction in Context (AiC) approach and the 
Documenting Collective Activity (DCA) approach 
(see Hershkowitz et al., 2014; Tabach et al., 2014 for 
initial attempts at coordinating these two approach-
es). The two approaches have various theoretical and 
methodological commonalities that we will refer to as 
environmental and underlying ones; the analysis in 
the present paper led to the discovery of additional 
commonalities that we will refer to as environmental 
and underlying internal ones. We explicate these com-
monalities to set the stage for the analysis of student 
reinvention, but first begin with a brief summary of 
the AiC and DCA approaches. 

ABSTRACTION IN CONTEXT 
AND THE RBC+C MODEL

Abstraction in Context (AiC) is a theoretical frame-
work for investigating processes of constructing 
and consolidating abstract mathematical knowledge 
(Hershkowitz et al., 2001). Abstraction is defined 
as an activity of vertically reorganizing previous 
mathematical constructs within mathematics and 
by mathematical means, interweaving them into a 
single process of mathematical thinking so as to lead 
to a construct that is new to the learner. According 
to AiC, the genesis of an abstraction passes through 
three stages (ibid): (i) the arising of the need for a new 
construct, (ii) the emergence of the new construct, and 
(iii) the consolidation of that construct. AiC includes a 
theoretical/methodological model, according to which 
the description and analysis of the emergence of a 
new construct and its consolidation relies on a limited 
number of epistemic actions: Recognizing, Building-
with, and Constructing (RBC). 
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These epistemic actions are often observable as they 
are expressed by learners verbally, graphically, or 
otherwise. Recognizing takes place when the learner 
recognizes a specific previous knowledge construct as 
relevant to the problem currently at hand. Building-
with is an action comprising the combination of rec-
ognized constructs in order to achieve a localized goal, 
such as the actualization of a strategy or the solution 
of a problem. The model suggests Constructing as the 
central epistemic action of mathematical abstraction. 
Constructing consists of assembling and interweav-
ing previous constructs by vertical mathematization 
to produce a new construct. It refers to the first time 
the new construct is expressed by the learner. 

Recognizing actions are nested within building-with 
actions, and recognizing and building-with actions 
are nested within constructing actions. Moreover, 
constructing actions are at times nested within more 
holistic constructing actions. Therefore the model is 
called the nested epistemic actions model of abstrac-
tion in context, or simply the RBC+C model. The sec-
ond “C” stands for Consolidation. The consolidation 
of a new construct is evidenced by students’ ability to 
progressively recognize its relevance more readily 
and to use it more flexibly in further activity.

DOCUMENTING COLLECTIVE 
ACTIVITY OVERVIEW 

The methodological approach of documenting collec-
tive activity (DCA) is theoretically grounded in the 
emergent perspective (Cobb & Yackel, 1996), a basic 
premise of which is that mathematical learning is a 
constructive process that occurs while participating 
in and contributing to the collective activity of the 
classroom. The collective activity of a class refers to 
the normative ways of reasoning that develop as stu-
dents work together to solve problems, explain their 
thinking, represent their ideas, etc. These normative 
ways of reasoning can be used to describe the mathe-
matical activity of a group and may or may not be ap-
propriate descriptions of the characteristics of each 
individual student in the group. A mathematical idea 
or way of reasoning becomes normative when there is 
empirical evidence that it functions in the classroom 
as if it is shared. The empirical approach makes use of 
Toulmin’s model of argumentation, the core of which 
consists of Data, Claim, and Warrant. Typically, the 
data consist of facts or procedures that lead to the con-
clusion that is made. To further improve the strength 

of the argument, speakers often provide more clar-
ification that connects the data to the claim, which 
serves as a warrant. It is not uncommon, however, 
for rebuttals or qualifiers to arise once a claim, data, 
and warrant have been presented. Backing provides 
further support for the core of the argument.

The following three criteria are used to determine 
when a way of reasoning becomes normative: 1) When 
the backing and/or warrants for particular claim are 
initially present but then drop off, 2) When certain 
parts of an argument (the warrant, claim, data, or 
backing) shift position within subsequent arguments, 
or 3) When a particular idea is repeatedly used as 
either data or warrant for different claims across mul-
tiple days. See Rasmussen and Stephan (2008) for an 
illustration of the first two criteria. 

ENVIRONMENTAL COMMONALITIES 

The use of both methodologies, AiC and DCA, requires 
very explicit classroom norms. First, they require 
classrooms in which students are routinely explaining 
their thinking, listening to and indicating agreement 
or disagreement with each other’s reasoning, etc. If 
such norms are not in place, then evidence is unlikely 
to be found of challenges, rebuttals, and negotiations 
that lead to ideas where knowledge is constructed and 
starts functioning as if shared by the whole class. We 
call such classrooms “inquiry classrooms.” Second, 
they require the intentional use of tasks that were 
purposefully designed to offer students opportuniti-
es for constructing new knowledge by engaging them 
in problem solving and reflective activities allowing 
for vertical mathematiziation.

Both methodologies focus on the ways in which math-
ematical progress is achieved and spreads in the class-
room. RBC+C focuses on individuals or small groups 
working in the classroom and DCA focuses on group 
discussions. In this sense, the two methodologies 
complement each other in analyzing a sequence of 
lessons including individual and group work and in 
tracing how knowledge is constructed and becomes 
normative along this sequence.

UNDERLYING COMMONALITIES

Other characteristics of a classroom culture in which 
DCA and RBC+C methodologies might be enacted to-
gether are that the tasks are designed to afford inquiry 
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and the emergence of new constructs by vertical math-
ematization from previous constructs; such learning 
materials allows for interweaving collaborative work 
in both small-group work and whole-class discussions, 
where the teacher adopts a role that encourages in-
quiry in the above sense.

Another underlying characteristic relates to the cen-
trality of the shared knowledge. AiC defined shared 
knowledge as “a common basis of knowledge which 
allows the students in the group to continue together 
the construction of further knowledge in the same 
topic” (Hershkowitz et al., 2007, p. 42). This definition 
relates to cognitive aspects. We find its counterpart in 
sociological terms, in the phrase “function as if shared” 
used by the DCA approach. What is common between 
the two constructs is the point that each operational-
izes when particular ideas or ways of reasoning are, 
from a researcher’s viewpoint, beyond justification 
for participants. At the collective level, ideas or ways 
of reasoning that function as if shared have the status 
of accepted mathematical truths for the group.  At the 
individual level, consolidation results in individuals 
accepting something as a mathematical truth.

FIRST STEPS TO REINVENTING 
EULER’S METHOD

We begin with the following excerpt, used also in 
Stephan and Rasmussen (2002) and in Tabach and 
colleagues (2014) but for different purposes. It is a 
discussion between Liz, Joe, Deb and Jeff, four stu-
dents in a class of 29 STEM, first year undergraduate 
students, working on the following problem during 
group work on the first lesson: 

Consider the following rate of change equation, where 
P(t) is the number of rabbits at time t (in years): dP/dt = 
3P(t) or in shorthand notation dP/dt = 3P. Suppose that at 
time t = 0 we have 10 rabbits (think of this as scaled, so we 
might actually have 1000 or 10,000 rabbits). Figure out a 
way to use this rate of change equation to approximate 
the future number of rabbits at t = 0.5 and t = 1. 

Prior to this task students received no instruction on 
Euler’s method, but the class did develop graphical 
depictions of what the exact solution should more 
or less look like (e.g., not linear but increasing at an 
increasing rate). The excerpt includes a DCA analysis 
and an RBC analysis. The DCA analysis classifies the 
shaded parts according to Toulmin’s model as data 

[D], claim [C], warrant [W], backing [B], or qualifier 
[Q ]. For example, D2 is the Data used for Claim 2. We 
indicate at the end of a turn if one of the three crite-
ria has been met. The RBC analysis is based on an a 
priory analysis of the activity that yielded the follow-
ing knowledge elements intended to be constructed: 
Csy – establishing connection between P and dP/dt 
(if you know P you can find dP/dt); Cpit – population 
iteration (given P and dP/dt at a moment in time allows 
one to find P at a later time); and Crit – rate of change 
iteration (applying Csy at that later time one can find 
the corresponding dP/dt); and finally Cit: Cpit and Crit 
can be combined into a repeating loop. We conjectu-
re that in previous courses students constructed dP/
dt as a ratio (Crat) and hence they can recognize and 
build-with this construct. To keep things transparent 
we omit mentioning previous constructs to which our 
analysis does not explicitly refer. RBC actions were ita-
licized in students’ talk and coded in the third column 
as recognising (R), building-with (B), constructing (C) 
or consolidating (CC). This side-by-side analysis was 
done to facilitate coordination between the RBC+C 
and DCA methodologies. This coordination is then 
helpful for analysing student’s re-invention of Euler’s 
method.

1 Liz I would plug in the population of 
rabbits for P to determine the rate of chan-
ge initially. What is the rate of change 
when time equals zero [W1]. So if we had 
a graph, its kind of like what we were just 
talking about, we are trying to determine 
the rate of change when this time is equal 
to zero [B1]. R B

2 Joe Oh ok. This is where 10 rabbits at 
zero [D1]. R

3 Liz What do you think?
4 Deb Oh ok, so I get the rate of change at 

time initially the rate of change would be 
3 [sic] [C1]. Did I multiply it right? R B Csy

5 Liz And then I guess the simple …
6 Joe How did you do that?
7 Liz Okay, well this [D2] [differential 

equation] is the change in the population 
over the change in time [C2]. Rrat

8 Joe Right.
9 Liz Okay, and this 3 I’m taking as 

being the constant or whatever you call 
the growth rate. And this P of t is the po-
pulation at any given point of time t, but 
this is just short hand notation for it . So I 
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thought, if we know the population is ten 
when our time equals zero [D1 & D2 elabo-
rated], can we plug in the P(t) population 
at time zero and find out what initially the 
rate of change is [W1]? B Csy

10 Joe It would be 10 = 3…
11 Liz Times 10 Csy
12 Jeff Okay I see so it would be 30 [C1]. Csy
13 Liz 30, I mean does that,
14 Jeff Yeah that does make sense.
15 Joe Well, wouldn’t 10 = 3P(t)? [C3]  At 

time zero we have 10 rabbits [D3]. (Note 
that his claim is incorrect) R B

16 Liz Well 10 is actually the population 
[D4] so I’m taking that that has to actually 
be the population at time t. I don’t think 
it’s telling us how the population is chan-
ging which would be dP/dt [C4]. CCsy

17 Liz So if we have that [initial rate of 
change is 30] [D5], the question is how 
can we use that to help us figure out the 
population after a half unit elapsed? [32 
sec pause] (identifies a need to construct 
Cpit)  Rsy

18 Jeff How would we work time into the 
equation?

19 Liz If we think of it right now as our 
time equals zero, we could say…  B

20 Deb We have the 30 [D5]. Rsy
21 Liz We have the 30 to work [D5] with, so 

couldn’t we say we don’t [5 second pause] Bsy
22 Deb You said the population is 10 right 

[D5]?  B
23 Liz um hm.
24 Deb So three times ten would give us 

our rate of change [D5]. Say 0.5 years pas-
ses, this is our rate of change. Then we’ll 
take that 0.5 times the rate of change [W5] 
which will give us what, the new amount 
of rabbits plus the old amount of rabbits. 
[C5] [Criterion 2 met for Csy, see turn 12 
where this was C1] Cpit

25 Liz So the old amount of rabbits is ten 
[D6]  R

26 Deb Am I making sense?
27 Jeff I think so, so that would be 25 [C5], 

is that what you’re saying? Cpit
28 Liz Okay I think I get what you’re say-

ing. So we’re at time zero and we have 10 
rabbits, and the rate of change is 30 [D6] 
so its going to grow at a rate of 30 rabbits 

per year [C6]? [Criterion 2 met for Csy, 
similar to turn 24 by Deb] Cpit

29 Deb Right. So we’ll have 30 more rab-
bits.[D7]

30 Liz But we only want to go a half a year.
31 Deb So it’ll be 0.5 times 30,[W7] which is 

15 [C7]. [Criterion 2 met for part of Cpit 
(namely that 30 is also the change over 
one year), claim C6 is now D7] CCpit

32 Liz And so we’re really not figuring 
out the rate of change we figuring…Well 
this is the rate of change and we’re using 
the rate of change to figure out the number 
of rabbits we are going to increase by in 
half a year [B5]. Cpit

33 Deb Well the new population…
34 Joe Well if t is 0 [D8] then we have 0 

[C8]. But you said when t is zero we have 
10 [Rebuttal to Argument 1]. (note that 
his assertion is incorrect) Rsy

35 Liz I think it just means initially we 
have 10 [Rebuttal to C8]. R

36 Joe Well according to this when t is zero 
[D8] we would have zero rabbits. Or the 
rate of change would be 0 [C8]. B

37 Liz Well actually we’re going to multi-
ply it by a half a year [B5, continuation 
of turn 32]. Cpit

38 Deb This is what I did. First I looked at 
the fact that this is a rate of change equati-
on. So this is telling me how many rabbits 
are being produced every year [W10].  So 
If I know 3 times the original population 
is produced every year, then I have 3 times 
10 is produced every year [Criterion 3 met 
for Csy].  But I want to know how many is 
produced in 0.5 years [D10]. So I know how 
many rabbits are produced per year, so if 
I multiply that by 0.5 then I’ll know how 
many more rabbits have been produced. 
So I take that new number that I get and 
add it to the old population [C10] CCpit

39 Deb Uh huh, so then I find the one with 
my new rate of change [W11], so I just take 
that population and put it in for p [D11]. 
And that is 3 times whatever that is [C11]. Bsy

40 Liz Do you get what Deb is saying?
41 Jeff Yeah you get 25 and then you get 55 

(sic) [W11]. Bsy
42 Deb I think we should make a chart like 

he did. [showing her paper to Jeff ] But 
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this would be your equation. This would 
be your 0.5, and then rabbits per year, and 
that will be your new amount of rabbits 
that’s been added, then you add that to 
your old amount of rabbits, and you’ll get 
your new population [B11]. CCpit

43 Jeff I think you can go dp/dt=30, actu-
ally your dt will be 0.5, and then you do it 
again for the next one [C12]. [Criterion 1 
met for Csy] Bsy

44 Liz What do you have right there?
45 Deb You take your old rate of change 

which we already know is 30 rabbits per 
year, and how much time that has passed 
equals 0.5. So 0.5 times 30 will get me how 
many new rabbits I have [D13]. So I take 
the new amount of rabbits I have and add 
it to the old amount of rabbits I have and 
that will give me the new population. And 
once I know the new population I know 
the new rate of change because I know the 
rate of change is right here. [C13] CCpit Crit

46 Liz And the reason for putting in the 
new population would be what? (iden-
tifying  a need to build Cpit which Deb 
has already constructed)

47 Deb Because now my population is larg-
er and I know the population changes at 
a constant of 3 times whatever that pop-
ulation is [W13]. CCrit

48 Liz Okay, so basically, I get you up into 
the point where you say you want to put 
in, what I understand is that we found 
our rate of change initially at time zero 
and that we are using that to find out what 
our population is after half a year. If we 
are expected to grow by 30 rabbits in a year 
then, in a half a year we grow by 15 rabbits. 
So we’ll have 15, [D14]. CCpit

49 Deb No no
50 Liz I mean 25 because 15 plus 10 is 25 

[D14]. CCpit
51 Jeff Then we have to do it again [C14]. 

[turns 48–51 repeat with specific values 
Argument 13] Crit

52 Liz Then you start over again [C14], so 
its kind of like our new initial population, 
so we could label it time equals zero if we 
wanted to [B14]. Crit

Since space constraints prohibit a complete account-
ing of the individual constructions and normative 
ways of reasoning evidenced in this episode we only 
highlight individual constructing actions associated 
with Cpit, the method for computing the next popu-
lation value. By recognizing and building-with pre-
vious constructs (e.g., turns 1, 4, 7, 9, 20) we see Deb 
first construct Cpit in turn 24, followed by Jeff in turn 
27 and Liz in turns 28+32+37. Per the DCA methodol-
ogy we see that “knowing P means you can find dP/
dt” (Csy) functions as if shared at the collective level 
per Criterion 2 (in turns 24 and 31 this idea was Data 
whereas in turn 4 it was a Claim). Even in this brief 
analysis we see how the coordination of the RBC+C and 
DCA traces well the individual and collective process-
es in mathematical progress. 

The epistemic actions and concomitant discursive 
shifts resulted in these students reinventing the core 
idea of Euler’s method, namely Cit. One way to express 
this core idea is in the following algorithm: Pnext = Pnow 
+ ((dP/dt)|now)*0.5. Indeed, this particular formulation 
of Euler’s method would be a viable extension of stu-
dents’ natural language. In particular, in turns 25–32, 
three of the four students essentially co-create the 
first step of the iterative process and then in turn 45 
Deb succinctly provides a verbal summary of the al-
gorithm. In turns 51 and 52 Jeff and Liz respectively 
highlight the iterative nature of the algorithm (“we 
have to do it again” and “then you start over again”). 
The use of “next” and “now” in the algorithm closely 
resembles students’ verbal description of the process. 
This however, is only the first step in developing a 
comprehensive understanding of Euler’s method. 

We now further the theoretical and methodological 
advance for analysing individual and collective math-
ematical progress that was started in Tabach and col-
leagues (2014) and Hershkowitz and colleagues (2014). 
In particular, we use the previous episode to show how 
the various individual epistemic actions are inter-
twined with the collective production of arguments. 
This intertwining reflects the internal commonalities 
between the RBC+C and DCA methodologies.

RBC+C AND DCA INTERNAL 
COMMONALITIES 

We begin by relating each of the RBC constructs to the 
DCA approach and then we relate the three criteria 
of the DCA approach to consolidation. 
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Relationship between Recognizing and Data. 
Theoretically, we argue that Recognizing actions are 
largely associated with Data. One uses some piece 
of information as Data because that piece of infor-
mation makes sense to him/her. Recognizing action 
means recognizing a piece of information as relevant 
as data. Empirically, in the above example, parts of 
students’ talk which were coded as Data were also 
coded as Recognizing. However in some cases, when 
a construction takes place, it happens that part of the 
argument is coded as Data (e.g., turns 21–24). In the 
previous example, we see that Recognizing actions 
are primarily associated with Data. In some cases (e.g., 
turn 1), Recognizing actions can be associated with 
Warrants, which are at times difficult to disentangle 
from Data. 

Relationship between Building-with and Warrants. 
Theoretically, Warrants establish a connection be-
tween data and claim; in order to establish such a 
connection, one needs to build-with what one has. 
In the example this commonality is largely the case. 
Sometimes Building-with is linked to Data, because 
oftentimes Warrants and data are interchangeable 
(e.g., turn 36). While the previous excerpt also shows 
some slight differences in the relationship between 
Building-with and Warrants (e.g., Building-with may 
be linked to Claims for which, by Criterion 1, the Data 
and/or Backing drops off (see turn 43), additional data 
sets are needed to empirically test the conjecture 
about the relationship between the two constructs.

The relationship between Constructing and Arguments 
as a whole. Constructing requires vertical mathema-
tization. Constructing actions are more global than 
Recognizing or Building-with actions; they incor-
porate sequences of interweaving Recognizing and 
Building-with actions (plus the glue between them). 
Similarly, arguments interweave Data-Claims-
Warrants and Backings as a whole. Hence, in a line 
by line coding it is not feasible to indicate the holistic 
nature of an argument and it is typically indicated 
after a line by line coding (see for example Tabach et 
al., 2014). Moreover, arguments are usually co-con-
structed by several participants over several turns. 
Such exchanges are similarly typical for constructing 
actions. 

Consolidating and the three criteria for identifying func-
tion-as-if-shared ideas. In processes of consolidating as 
well as across the three criteria for identifying when 

an idea functions as if shared, there is a repetition, 
reuse, revisiting, or repurposing of earlier ideas. To 
clarify, in Criterion 1 there is a repetition, but the 
repetition is partial in the sense that some parts of 
the argument (Data, Warrants) cease to be explicitly 
stated. In Criterion 2 there is repurposing of previ-
ous part of an argument (e.g., Claim) as either Data or 
Warrant. In this sense there is a repeating and reusing, 
but for a different purpose. In Criterion 3 there is 
a revisiting of either Data or Warrants to establish 
new Claims. In consolidation, previous constructs are 
recognized as relevant (i.e., revisited), and then built-
with (i.e. used, possibly repeatedly) for example for 
solving a problem, reflecting on a situation or result, 
or even in the framework and for the purpose of an 
additional constructing action (for example, in lines 
19–23, Csy is built-with as part of constructing Cpit). 

Further commonalities between consolidating and 
the three criteria can be seen by considering chara-
cteristics of consolidation: awareness, self-evidence, 
flexibility, immediacy, and confidence (Dreyfus & 
Tsamir, 2004). Self-evidence links to Criterion 1 – the 
evidence is the Data, which drops off in subsequent 
arguments. The subsequent argument also then re-
lates to immediacy and confidence in the validity of 
the idea. Flexibility links to Criterion 2 – components 
of an argument are being reused and repurposed (as 
sign of flexibility) in subsequent arguments. Similarly, 
Criterion 3 relates to flexibility in a different way. 
Flexibility lies in the fact that one is able to use an idea 
(e.g, Build-with) as Data or Warrant for a variety of 
different Claims. Hence close relationships exists bet-
ween the criteria and Consolidation characteristics

CONCLUSION

Students in undergraduate mathematics classrooms 
are increasingly experiencing inquiry based learn-
ing and research is pointing to the strong benefits on 
student success in terms of grades and subsequent 
coursework (Freeman et al., 2014; Kogan & Laursen, 
2013)2. While broad measures of student success are 
needed, there is also a need for methodologies that 
provide a fine-grained analysis of the individual and 
collective processes that make inquiry learning pos-
sible, and may have the potential to explain at the 
micro-level how such learning works and why it is 
beneficial. This report makes a contribution in this 
direction. The DCA analysis helps illuminate what is 
happening on the social or discursive plane, while the 
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RBC+C analysis helps illuminate what is happening 
on the cognitive side. 

In this report, we used the case of a group of students 
reinventing Euler’s method and we used this case to 
explicate the environmental, underlying, and internal 
commonalities between the AiC and DCA approaches. 
This represents considerable progress toward the call 
for what Prediger and colleagues (2008) refer to as 
the local integration of different theoretical/meth-
odological approaches as well as contributing to our 
understanding of how undergraduate students indi-
vidually and collectively reinvent important mathe-
matical ideas. 
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ENDNOTE

1. While acknowledging the teacher’s crucial role, we 
did not relate to it here, as this is the next step in our 
research plan.


