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Use of mathematics in engineering contexts: 
An empirical study on problem solving 
competencies

Malte Lehmann, Bettina Roesken-Winter and Sven Schueler

Humboldt-Universität zu Berlin, Berlin, Germany, malte.lehmann@hu-berlin.de

The research field of problem solving in mathematics 
is highly relevant in mathematics education. There 
are manifold approaches to understand the process of 
problem solving like Polya’s phase model or Bruder and 
Collet’s heuristic methods. In two studies, we investi-
gate how engineering students’ performances in higher 
mathematics and technical mechanics are connected 
(study 1, n=37) and what role their problem solving com-
petencies play (study 2, n=8). In the first study, we as-
certained that mathematical competencies and beliefs 
about physics are substantial for success in technical 
mechanics. In the second study, students had to com-
plete sequences of tasks and their usage of heuristics was 
investigated. The results show that successful students’ 
heuristic tools and strategies are more elaborated.

Keywords: Problem solving, engineering education, 

technical mechanics, qualitative content analysis.

INTRODUCTION

Mathematics is an important subject in engineering 
education. The first courses of study are character-
ized by a high usage of mathematics, be it in math-
ematics, in physics or further engineering lectures. 
Besides continuously improving their declarative and 
procedural knowledge in the respective fields, it is 
important for students to develop their problem solv-
ing competencies as this is one of eight competencies 
that engineering students need to learn according to 
the SEFI1 (2013) framework: thinking mathematically, 
reasoning mathematically, posing and solving math-
ematical problems, modelling mathematically, repre-
senting mathematical entities, handling mathematical 
symbols and formalism, communicating in, with and 

1  European Society for Engineering Education

about mathematics and making use of aids and tools. In 
accordance with findings in mathematics education 
(cf. Törner, Schoenfeld, & Reiss, 2007), in SEFI (2013) 
problem solving as competency for engineering stu-
dents is characterized as follows: 

This competency [mathematical problem solving] 
includes on the one hand the ability to identify 
and specify mathematical problems […] and on 
the other hand the ability to solve mathematical 
problems (including knowledge of the adequate 
algorithms). What really constitutes a problem 
is not well defined and it depends on personal 
capabilities whether or not a question is consid-
ered as a problem. (p. 13)

The formation of these competencies is, however, of-
ten hampered by an asynchronicity of mathematical 
and engineering education. The overarching aim of 
the project KoM@ING2 is to measure mathematical 
competencies of engineering students and the rela-
tions between the different lectures by combining 
a quantitative and a qualitative perspective. In the 
quantitative approach (project partners from IPN3 
Kiel and University Stuttgart), IRT-based measures 
for higher mathematics and technical mechanics are 
developed to capture students’ development in their 
first year of study (Nickolaus, Behrendt, Dammann, 
Ştefănică, & Heinze, 2013). Thus, individual competen-
cies are measured reliably and validly, but no insight 
is provided into the students’ actual problem solving 
processes. This paper reports on the work of the qual-
itative project that scrutinizes these processes.

2  German acronym for “Modelling Competences of Engineering 

Students”, funded by BMBF (Ministry of Education and 

Research) 

3  Leibniz Institute for Science and Mathematics Education
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THEORETICAL FRAMEWORK

Mathematical problem solving is an important field 
in mathematics even at school and at university (cf. 
Halmos, 1980). There are many different approach-
es for research on this topic (cf. Schoenfeld, 1985; 
Chinnappan & Lawson, 1996; Rott, 2013). One perspec-
tive focuses on the inner structure of problem solving 
processes considering heuristics and beliefs, another 
perspective elaborates on the outer structure in terms 
of timing and organizing of processes. In our study, 
we focus on both aspects by investigating phases of the 
problem solving process (cf. Polya, 1945) and the use 
of heuristics (cf. Bruder & Collet, 2011). In his seminal 
work, Polya (1945) differentiates understanding the 
problem, devising a plan, carrying out the plan, and 
looking back as essential phases of any problem solv-
ing cycle. Schoenfeld (1985) extends the model of Polya 
by adding an exploration phase which interacts closely 
with the planning phase, but also allows a throwback 
to the first phase. Likewise, Chinnappan and Lawson 
(1996) stress the importance of the first two phases: 

“[…] the planning process forced the solver to make 
optimum use of information that was identified and 
information that was generated” (p. 13). In addition, 
Chinnappan and Lawson (1996) could show that not 
only the single use of heuristics is important, but also 
a training in management strategies that allows for 
effectively coordinating different phases. However, 
Rott (2013) could show that completely linear mod-
els are not always suitable to describe problem-solv-
ing processes and provides empirical evidence for 
applying a more flexible model. Bruder and Collet’s 
(2011) work on heuristics places the methods in the 
center and explains the process of problem solving 
by heuristic tools (e.g., informative figure), heuristic 
strategies (e.g., using analogies) and heuristic princi-
ples (e.g., symmetry principle). In addition, the prob-
lem solving process is influenced by the interplay of 
mathematics and physics as described in the frame-
work by Tuminaro and Redish (2007) that elaborates 
on so-called epistemic games. These epistemic games 
like, for instance, mapping mathematics to meaning, 
allow the description of how students make the tran-
sition from novices to experts, and contribute lenses 
to elaborate on either individual-related or task-relat-
ed characteristics. In order to solve problems with 
physical contexts, students need adequate beliefs 
about the physical concepts involved. From beliefs 
research we know that pre-service teachers “who ap-
proach learning physics with a more favourable belief 

structure are more likely to achieve higher learning 
gains” (Mistades, 2007, p. 185). An instrument to reveal 
students’ beliefs about the force concept is provided 
by Hestenes, Wells, and Swackhamer (1992) which 
proved to be useful in several studies. Based on these 
theoretical foundations, we investigate how students’ 
performances in higher mathematics and technical 
mechanics are connected and what role their problem 
solving skills play:

Research question 1: Do students’ performances at 
school, their mathematical skills, and their beliefs 
about physics concepts (related to the force concept) 
predict their achievement in technical mechanics?

Research question 2: Can task difficulties in higher 
mathematics and technical mechanics be described 
through analysing occurrences of Polya’s phases and 
students’ use of different heuristics? 

Research question 3: Does working on task variations 
in technical mechanics that imply increasing difficul-
ty requires using more and different heuristics?  

The first and second research question will be an-
swered using the results from study 1. Research ques-
tion 3 is answered by referring to the results of study 2.

METHODOLOGY

The research comprises two different, but related sur-
veys. The first one is taken from our larger study to 
investigating the development of students’ problem 
solving competencies in their first year at universi-
ty. That is, students work on the IRT-scaled test for 
higher mathematics (HM) and technical mechanics 
(TM) from the quantitative project. The other sur-
vey is task-related and investigates four sequences of 
tasks about statics and the different usage of problem 
solving competencies. Here, students are observed 
while working on and discussing tasks of increasing 
difficulty.

Our project partners developed TM/HM pre-tests 
delivered at the beginning of students’ studies. The 
pre-tests consist of 28 (TM) and 36 (HM) items with a 
combination of closed (multiple choice, multiple true-
false) and (semi-) open questions. The TM pre-test cov-
ers items on statics, kinematics, kinetics, energy and 
momentum, oscillations and basic concepts, all on a 
higher school level. For example, one task is: 
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Draw a possible amplitude curve of a damped os-
cillation in the diagram. 

The HM pre-test, based on work by Hauck (2012), asks 
questions on mathematical basics, calculus and geom-
etry. One example is:

Given is a plane E: 6x1+6x2–3x3= –12 and the point 
A (3/6/4)

a) Determine the distance d of the point from the 
plane.

b) Calculate the coordinates of A’ (A mirrored at 
the plane).

These tests are IRT-scaled (pilot study with N=1069 
students) and thus enable us to categorize our par-
ticipants in terms of their mathematical, physical 
and technical competencies at the beginning of their 
university course. Additionally, the scaling affords 
us selecting the five easiest and most difficult tasks.

The Force Concept Inventory (FCI; Hestenes, Wells, 
& Swackhamer, 1992) investigates students’ beliefs 
about the concept of force which is an important part 
of competences in mechanics. It consists of 30 items, 
each of them describing a physical situation. One must 
choose among five possible answers, one relating to 
the correct Newtonian concept and four relating to 
alternative concepts. Opportunities to analyse the 
scores vary. Either the raw score of correct answers 
can be used or special attention can be paid to how the 
wrong answers relate to misconceptions. We decided 
to use the raw score to investigate students’ changes 
during their first year (cf. Hestenes & Halloun, 1995), 

because we have been interested in analysing the 
changes in students’ beliefs during the first year.

Design of study 1: Development of 
problem solving competencies
In the first study data was collected at three points 
(Table 1). In September 2013, the students (n=37; 
male=27, female=10) worked on four tests: the TM 
pre-test, the HM pre-test, an intelligence test (CFT-3, 
Culture Fair Intelligence Test) and the FCI. In this pa-
per, we only focus on this first measurement point, but 
provide an overview on the whole study in Table 1. The 
longitudinal design was chosen to capture students’ 
development of their mathematical and physical skills, 
and problem solving competencies. These results will 
be presented elsewhere.

In addition, the students worked in groups of two or 
three on the five easiest and five most difficult tasks 
of the two pre-tests (Table 2). 

The group work was recorded on video for later anal-
ysis. The thinking aloud-method (Ericsson & Simon, 
1984) rendered thoughts and ideas observable. In or-
der to analyse the video data and the students’ work, 
we developed a category system based on the theoret-
ical framework described above (Table 3). 

The category system was carefully tested and opti-
mized in a pilot study. As a result we arrived at 38 
categories as an assessable selection with reasonable 
frequencies. 

Time Content

09/2013 TM/HM pre-test, IQ-test, FCI; Video: easy/difficult tasks (pre-test)

04/2014 Video: easy/difficult tasks (pre-test)

09/2014 TM/HM post-test, FCI; Video: easy/average/difficult tasks (post-test)

Table 1: Overview study 1

HM-Topic Difficulty TM-Topic Difficulty

Equation -3.71 Kinetic energy -1.98

Number line -3.39 Deflection curve -1.89

Reflection at a plane (see above) 2.80 Trajectory 1.80

Exponential function – Extremum 3.22 Load 3.17

Table 2: Overview on topics of the chosen tasks (in excerpts: 2 easy/2 difficult tasks)
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Design of study 2: Task-related 
problem solving competencies
The second study investigates characteristics of tasks 
by special sets of TM tasks at two measurement points 
(cf. Table 4). The set consists of two to four tasks with 
increasing difficulty for the four topics of gravity, 
reaction forces, displacement and deformation, free 
body diagrams and force systems (cf. Figure 1). Four 
students handled every sequence. These tasks are 
taken from the piloting phase of the TM post-tests 
where they showed inadequate model fit and therefore 
were rejected in the IRT-model. In our study we inves-
tigate how slightly changing task features influence 
students’ problem solving behaviour. 

To control for students’ competences we considered 
their first term grades (calculus, linear algebra and 
mechanics) as indicators. The participants (n=8, 
male=6, female=2) worked alone on the tasks and 
received in advance a detailed introduction into the 
thinking aloud-method (Ericsson & Simon, 1984), in-
cluding a preceding practice task. After that, students 
chose a topic, were given two to four tasks accordingly 

(cf. Figure 1), and processed the tasks in ascending 
difficulty. Finally, all students were interviewed and 
asked to reflect their courses of action. The video 
data was analysed by using the category system (see 
study 1). While students’ work was analysed as in 
study 1, the interview data was also checked for task 
characteristics and the conscious use of problem solv-
ing strategies.

RESULTS

Study 1
As mentioned earlier, only the findings from the first 
measurement point can be reported at the moment, as 
the data from the second and third survey have not 
yet been completely analysed. Our participants are 
comparable with the students from the larger pilot 
study conducted by the quantitative project. In de-
tail, they received the following mean personal ability 
estimates and results: MHM=-0.11 (SD=1.38), MTM=-0.86 
(1.01), FCI=11.35 (5.78) out of 30 points. To clarify which 
factors affect students’ performance in the process-
ing of tasks due to physical contexts, several multiple 
linear regressions and the corresponding correla-
tion matrices were calculated. For the correlations 
of pre-test results and prior knowledge, represented 

Structure Category Sub-categories

Inner 
Structure

Heuristic tools Informative figure, Table, Equation

Outer 
Structure

Polya’s phases Understanding the problem, devising a plan, Carrying out the plan, 
Looking back

Table 3: Category system (in excerpts)

Time Content

05/2014 Video: easy tasks

06/2014 Video: more difficult tasks; FCI

Table 4: Overview study 2

Figure 1: Task sequence: “reaction forces”
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by the final grade in school certificate, the results are 
provided in Table 5. 

Collinearity analysis detected that the factor Grade 
School Certificate contains the same information as the 
factor result HM pre-test, it is therefore not important 
for further calculations (cf. Table 6).

The model explains 60% of the variance in the TM pre-
test results. In particular, beliefs about physics have a 
great influence on these results. In contrast, only 20% 
of all observed uses of heuristic strategies occurred 
when students worked on physics problems. Thus, the 
mathematical problem solving approaches, such as 
problem solving strategies and Polya’s phase model, 
are only partly suitable for describing processes in 
solving physics problems. Here analyses by guide of 
the epistemic games framework, which are reviewed 
in a forthcoming analysing step, will probably deliver 
further explanations. However, when just looking 
at the use of heuristic tools and heuristic principles, 
we can conclude that these are used in a similar way 
when solving both mathematical problems and phys-
ics tasks. Table 7 shows the distribution of heuristics 
for the processing of easy and difficult tasks. 

The results show that the students are increasingly 
using both tools and principles for difficult tasks. The 
situation is similar for mathematical tasks when us-
ing heuristic strategies. Overall, the students used 
heuristics rather rarely. Only in slightly more than 
half of the task processing of the difficult tasks, the use 
of heuristics could be observed (tools: 54%, strategies: 
55%, principles: 27% of all difficult tasks). When solv-
ing the easy tasks, heuristics were less observed (tools: 
30%, strategies: 45%, principles: 0% of all easy tasks).

Applying Polya’s phase model to analyse the mathe-
matics tasks, it becomes clear that for difficult tasks, 
students worked much more in cycles (for example, 
between carrying out a plan and devising a plan) in 
their solution process than for easy tasks, where they 
tend to go through the problem solving process lin-
early.

Study 2
For the sake of brevity we limit ourselves to present-
ing only the results of the sequence of tasks to reaction 
forces (see Figure 1). All students successfully solved 
the first task, using one specific algorithm. At the end 
of their solving process, only two students recognized 

Results TM 
pre-test

Results HM 
pre-test

Results FCI Grade School 
Certificate

Results TM pre-test 1

Results HM pre-test .676** 1

Results FCI .744** .696** 1

Grade School Certificate -.382* -.612* -.372* 1

**p < .01, *p < .05

Table 5: Correlation matrix (first measurement point)

Predictor bi βi Sig.

(Constant) -1.883 p = .00

Results HM pre-test .236 .306 p = .05

Results FCI .093 .531 p < .01

R2=0.602

Table 6: Multiple linear regression

Easy tasks Difficult tasks

Heuristic Tools (HM/TM pre-test) 31% 69% 

Heuristic Strategies (HM pre-test) 37% 63% 

Heuristic Principles (HM/TM pre-test) 0% 100%

Table 7: Distribution of heuristics
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the symmetry aspect of the task. Students’ work dif-
fered only slightly concerning the amount of the heu-
ristic tools and strategies used. It is remarkable that 
the students who had mastered the more difficult tasks 
of the sequence, switched more frequently between 
the heuristic tools used when solving the simple task 
(here informative figure and equations). Table 8 sum-
marizes the results that the four students received. 
As it is shown in Figure 1 and Figure 2, students were 
asked to compute the three forces AH, AV and B in each 
task; yielding the correct result was coded 1, otherwise 
0 (see Table 8). 

The following transcript of Denise’s work shows the 
alternating use of the two heuristic tools mentioned 
above. She was able to determine the first two equa-
tions for calculating the x- and y- directions, and thus 
AH, and started to calculate the third equation for the 
momentum.

From her think aloud protocol we gain the following 
explanations:

So, for example, the sum of all momentums, what 
will be best? So you have to have any equation 
with only one unknown that you are looking for, 
yes. Then you could take, for example, the point 
(showing on the point, AV and AH point to), be-
cause the two go through that, then they do not 

have to be calculated. [The] Sum of all momen-
tums in point A which is here (draws a point to 
the place to which AV and AH point and labels it 
with A) must be 0. So the positive direction of ro-
tation is this (draws a curved arrow). F1 (redraws 
arrow F1) rotates negatively with the lever arm 
1m, meaning minus F1 times 1m, F2 negative with 
2m, and B (indicates B) is positive with 3m equals 
0. F1 and F2 on the other side mean B times 3m is 
equal to F1 times 1m minus F, plus F2 times 2m. 
Then, you need to convey the 3m here (indicates 
the side of the equation with F1 and F2), by divid-
ing, and then we have B alone in the end.

This procedure of combining heuristics is also seen 
in the processing of the two other tasks. The two other 
students (Alice, Bob) do not connect the informative 
figure and the equations in a similar way. They fail 
to solve the third task, since they apparently cannot 
transfer all the information from the figure correctly 
into their equations.

DISCUSSION

We were able to provide evidence for the expected 
influence of mathematical skills and beliefs about 
physics on the achievements in technical mechanics 
even in our small sample. In view of the above-men-
tioned asynchronicity of engineering education, this 

Figure 2: Student D’s work on task 1

Alice1 Bob Chris Denise

Task 1 (AH/AV/B) 1/1/1 1/1/1 1/1/1 1/1/1

Task 2 (AH/AV/B) 1/0/0 1/1/1 1/1/1 1/0/0

Task 3 (AH/AV/B) 1/0/0 1/0/0 1/1/1 1/0/1

Table 8: Results of the task sequence “reaction force”
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means that students first need to master the mathe-
matical basics to be able to successfully work on phys-
ics problems and not, as is often the case, learn them 
at the same time or after encountering the physics 
contents. The results about problem solving in our 
first study suggest two conclusions. On average, more 
difficult tasks require a greater use of heuristic tools, 
strategies and principles. In addition, we noticed that 
in some tasks which are assigned a high difficulty esti-
mate by the IRT scaling, the students’ use of heuristics 
is comparable to their processing of the easy tasks. 
Overall, the students rarely use heuristics in solving 
the tasks, both in the easy and in the difficult tasks. We 
note that only in just over half of the difficult tasks 
the students use tools and strategies when working 
on them. The cause may lie in a low consideration of 
problem-solving tasks in mathematics education at 
school. 

The results of the second study clearly show that it 
is not enough to simply master heuristics, although 
the use of individual heuristics helps solving tasks, 
as can be seen in the first item of the task sequence 

“reaction forces”. Only when these heuristics are mean-
ingfully connected, in a way that they support and 
enhance each other, students are able to solve chal-
lenging tasks successfully. An exemplary situation 
is the following one: first, a student used the diagram 
to understand the situation. The situation requires a 
certain algorithm which the student formulated in a 
general form. Then the components were adjusted 
using the diagram in the given situation. After that 
the result was checked for plausibility referring to 
the diagram. Therefore learning heuristics should 
attend to two competencies: Students must be able 
to use some heuristics deliberately, and they need to 
be able to effectively combine tools, strategies and 
principles.
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ENDNOTE

1. All students’ names are changed to preserve ano-
nymity. 


