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ANALYTIC CURRENT-VORTEX SHEETS IN INCOMPRESSIBLE

MAGNETOHYDRODYNAMICS

OLIVIER PIERRE

March 15, 2016

Abstract. In this paper, we address the problem of current-vortex sheets in ideal incompressible magnetohydro-
dynamics. More precisely, we prove a local-in-time existence and uniqueness result for analytic initial data using a
Cauchy-Kowalevskaya theorem.

1. Introduction

1.1. Motivation. In this article, we are interested in a free boundary problem arising in magnetohydrodynamics
(MHD), namely the current-vortex sheet problem. We consider a homogeneous plasma (the density in constant),
assumed to be perfectly conducting, inviscid and incompressible. The equations of ideal incompressible MHD thus
read: 




∂tu+∇ · (u⊗ u−H ⊗H) +∇q = 0,
∂tH −∇× (u×H) = 0,
∇ · u = ∇ ·H = 0,

(1.1)

where u ∈ R3 and H ∈ R3 stand for the velocity and the magnetic field of the plasma respectively. The unknown q

defined by q := p+ |H|2

2 is called the “total pressure”, p being the physical pressure.
We are looking for a special class of (weak) solutions of (1.1): we want (u,H, q) to be smooth on either side of a

hypersurface Γ(t) (t is the time-variable), and to give rise to a tangential discontinuity across Γ(t). We shall assume
that the hypersurface Γ(t) can be parametrized by Γ(t) := {x3 = f(t, x′)}, where x′ is the tangential variable living

in the 2-dimensional torus T2 = R2/
Z2, and x3 denotes the normal variable. The unknown f is called the “front” of

the discontinuity later on. For all t ∈ [0, T ], we shall consider the MHD system (1.1) in the time-dependent domain

Ω(t) := Ω+(t) ⊔ Ω−(t), where Ω±(t) := {x3 ≷ f(t, x′)},

with appropriate boundary conditions on Γ(t) :

∂tf = u± ·N, H± ·N = 0, [q] = 0, ∀ t ∈ (0, T ). (1.2)

The notation [q] in (1.2) stands for the jump of q across Γ(t):

[q] := q+
∣∣
Γ(t)

− q−
∣∣
Γ(t)

,

and N is a normal vector to Γ(t), chosen as follows:

N := (−∂1f,−∂2f, 1).

The boundary conditions (1.2) correspond to a tangential discontinuity: the velocity ∂tf of the front is given by the
normal component of u, the normal magnetic field H ·N as well as the total pressure q are continuous across Γ(t),
and H ·N |Γ(t) = 0 on either side of Γ(t). We refer to [BT02] for other types of tangential discontinuities in MHD. For
simplicity, we assume that the normal variable x3 belongs to (−1, 1). Thus we shall assume that for all t and x′ we
have −1 < f(t, x′) < 1, and impose an additional condition on the “exterior” boundaries Γ± := {(x′,±1) , x′ ∈ T2}.
The system of current-vortex sheets eventually reads as follows:





∂tu
± + (u± · ∇)u± − (H± · ∇)H± +∇q± = 0 in Ω±(t), t ∈ (0, T ),

∂tH
± + (u± · ∇)H± − (H± · ∇)u± = 0 in Ω±(t), t ∈ (0, T ),

∇ · u±(t) = ∇ ·H±(t) = 0 in Ω±(t), t ∈ (0, T ),
∂tf = u± ·N, H± ·N = 0, [q] = 0 on Γ(t), t ∈ (0, T ),

u±3 = H±
3 = 0 on Γ±.

(1.3)

The superscript ± denotes the unknown u, H and q restricted to Ω±(t).
1
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Remark: In order to solve problem (1.3), a common procedure will be to reduce this free boundary problem into
the fixed domains Ω+ := T2× (0, 1) and Ω− := T2× (−1, 0), using a suitable change of variables (see Paragraph 1.3
below). Consequently, the reference domain we shall consider is Ω := T2 × (−1, 1). Besides, the (fixed) boundaries
will be noted as follows:

Γ := T
2 × {x3 = 0}, and Γ± := T

2 × {x3 = ±1}. (1.4)

System (1.3) is also supplemented with initial data (u±0 , H
±
0 , f0) satisfying the constraints ∇ · u±0 = ∇ ·H±

0 = 0
in Ω±(0).
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Figure 1. The time-dependent
domains Ω+(t) and Ω−(t), and the
sheet Γ(t).
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Figure 2. The fixed domains Ω+

and Ω−, and the fixed interface Γ.

1.2. Background. Current-vortex sheet in ideal incompressible MHD has been a well-known free boundary prob-
lem since the 1950’s. It has been addressed for instance by Syrovatskĭı [Syr54], Axford [Axf60] or Chandrasekhar
[Cha61]. These references in particular deal with the (linear) stability of planar current-vortex sheets using the
so-called normal modes analysis. The linear stability criterion derived in these references reads as follows:

|[u]|2 ≤ 2
(
|H+|2 + |H−|2

)
, (1.5a)

∣∣[u]×H−
∣∣2 +

∣∣[u]×H+
∣∣2 ≤ 2

∣∣H+ ×H−
∣∣2 . (1.5b)

In (1.5), [·] denotes the jump across the planar sheet {x3 = 0}. Besides, if we assume that H+ ×H− 6= 0 and
∣∣[u]×H−

∣∣2 +
∣∣[u]×H+

∣∣2 < 2
∣∣H+ ×H−

∣∣2 , (1.6)

then (1.5a) follows from (1.5b) with a strict inequality. However, if (1.5) is not satisfied, then it leads to the so-
called Kelvin-Helmholtz instabilites. For instance, we refer to [Cha61], [Tra05], [CMST12, p.251-252] and references
therein for a more detailed discussion about this stability condition. The latter turns out to be a weak linear
stability condition, i.e. the uniform Kreiss-Lopatinskĭı condition is not satisfied, leading to weakly nonlinear
surface waves [AH03]. Without the magnetic field, system (1.3) is reduced to the vortex sheet problem for the
Euler equations. The tangential discontinuity given by (1.2) in this case gives rise to the well-known Kelvin-
Helmholtz instabilities in hydrodynamics. This problem is well-posed only in the analytic scale. We refer for
example to [Cha61], [SSBF81], [Del91] and [Leb02] for more details. Nevertheless, when surface tension is involved,
the vortex-sheet problem is well-posed in the Sobolev scale (see e.g. [AM07]).

Under a more restrictive stability condition, namely

max
(∣∣[u]×H+

∣∣ ,
∣∣[u]×H−

∣∣) <
∣∣H+ ×H−

∣∣ , (1.7)

Coulombel, Morando, Secchi and Trebeschi proved in [CMST12] an a priori estimate without loss of derivatives for
the nonlinear problem (1.3), based on a symmetry argument introduced by Trakhinin [Tra05]. Their approach thus
gives some hope to state an existence and uniqueness result for system (1.3), without using a Nash-Moser iteration.

In that spirit, the aim of this article it to construct analytic solutions to (1.3) using a Cauchy-Kowalevskaya
theorem. In other words, we shall use a fixed point argument in an appropriate scale of Banach spaces. In a future
work, we plan to use the main result of [CMST12] to exhibit solutions of fixed Sobolev regularity to (1.3) via a
compactness argument, by approximating Sobolev data by analytic data.
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On the other hand, very recently Sun, Wang and Zhang [SWZ15] have used a completely different approach to
solve the incompressible current-vortex sheet problem. The main idea of their proof is to reduce the whole problem
on the free surface Γ(t) only, as is common in water waves theory for instance [Lan13]. Then, using some elliptic
arguments, they can reconstruct the complete solution inside both domains Ω±(t). The advantage of their method
is that they can prove a local-in-time existence and uniqueness theorem in the whole domain of stability given by
(1.6), using an elliptic problem satisfied by the total pressure q± in (1.3). Therefore the arguments in [SWZ15]
require the velocity to be divergence-free. On the opposite, the method we advocate in this paper is based on a
priori estimates only and could therefore apply to other hyperbolic systems. For instance, as a future work, we
might avoid using the Nash-Moser theorem used by Trakhinin [Tra09] and by Chen and Wang [CW08] to prove
local-in-time existence and uniqueness of compressible current-vortex sheets.

1.3. Reformulation on a fixed domain, lifting of the front f . We begin by recalling Lemma 1 of [CMST12],
which shows how to lift the front f defined on (0, T )× Γ into a function ψ defined on (0, T )× Ω, in order to gain
half a derivative in the Sobolev regularity scale. The strategy is inspired from Lannes [Lan05].

Lemma 1.1. Let r ∈ N such that r ≥ 2. Then there exists a continuous linear map

f ∈ Hr− 1
2 (T2) 7→ ψ ∈ Hr(Ω)

such that, for all x′ ∈ T2, we have:

ψ(x′, 0) = f(x′), ψ(x′,±1) = 0, ∂3ψ(x
′, 0) = 0.

Lemma 1.1 allows to define the map Ψ : (t, x) 7→ (x′, x3 + ψ(t, x)), where ψ(t, ·) is given by the previous lemma
applied to the function f(t, ·). According to [CMST12], if we impose a smallness condition to the front f(t, ·) in the
space H2.5(T2), then Ψ(t, ·) is an Hr-diffeomorphism of Ω. Indeed, the jacobian 1 + ∂3ψ of the change of variables
satisfies for example 1+ ∂3ψ ≥ 1

2 . We will let A denote the inverse of the jacobian matrix of Ψ, and J the jacobian
of DΨ:

A :=




1 0 0
0 1 0

−
∂1ψ

J
−
∂2ψ

J

1

J


 and J := 1 + ∂3ψ. (1.8)

We also define, for x in the fixed domains Ω±, the new following unknowns:

v±(t, x) := u±(t,Ψ(t, x)), B±(t, x) := H±(t,Ψ(t, x)), Q±(t, x) := q±(t,Ψ(t, x)).

With these new unknowns, system (1.3) can be rewritten as follows:





∂tv
± + (ṽ± · ∇)v± − (B̃± · ∇)B± +AT∇Q± = 0 in (0, T )× Ω±,

∂tB
± + (ṽ± · ∇)B± − (B̃± · ∇)v± = 0 in (0, T )× Ω±,

(AT∇) · v± = (AT∇) ·B± = 0 in (0, T )× Ω±,

∂tf = v± ·N, B± ·N = 0, [Q] = 0 on (0, T )× Γ,
v±3 = B±

3 = 0 on Γ±,

(1.9)

where we have set:

N := (−∂1ψ,−∂2ψ, 1), ṽ± :=

(
v±1 , v

±
2 ,
v± ·N − ∂tψ

J

)
, B̃± :=

(
B±

1 , B
±
2 ,
B± ·N

J

)
. (1.10)

Here, the vector N is defined on the whole domain Ω, and not only on the interface Γ. From now on, the notation
[·] stands for the jump across the fixed interface Γ:

[Q] := Q+
∣∣
Γ
− Q−

∣∣
Γ
.

The aim of this paper is to solve system (1.9) for analytic initial data (v±0 , B
±
0 , f0), using a Cauchy-Kowalevskaya

theorem. Therefore, in the next paragraph we define spaces of analytic functions, whose definition relies on the
usual Sobolev spaces Hr.

1.4. Scales of analytic Banach spaces. First of all, let us recall the basic properties of Sobolev spaces that we
shall use later on in order to define some analytic spaces. We refer for instance to [BGS07], [Bre83], [Eva98], [Tri10]
or [Zui02].
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Periodic Sobolev spaces. Let us denote the 1-periodic torus by T := R
/
Z. For s ∈ R+, we define the d-dimensional

periodic Sobolev space by (see e.g. [Tri10]):

Hs(Td) :=
{
u ∈ L2(Td)

∣∣∣
∑

n∈Zd

(1 + |n|2)s |cn(u)|
2 < +∞

}
, (1.11)

equipped with the norm ‖ · ‖Hs(Td) defined by

‖u‖2Hs(Td) :=
∑

n∈Zd

(1 + |n|2)s |cn(u)|
2. (1.12)

For n ∈ Zd, the quantity cn(u) corresponds to the nth Fourier coefficient of u. Therefore, we have a convenient
characterization of the spaces Hs(Td) by means of the (discrete) Fourier transform. The Sobolev space Hs(Td) is
a Hilbert space.

Sobolev spaces on a bounded domain of R3. Let us now consider Ω, a bounded and smooth domain of R3. For all
r ∈ N, the Sobolev space Hr(Ω) we shall use in this article is defined by:

Hr(Ω) :=
{
u ∈ L2(Ω) | ∀α ∈ N

3, |α| ≤ r, ∂αu ∈ L2(Ω)
}
, (1.13)

equipped with the norm ‖ · ‖Hr(Ω) defined by

‖u‖2Hr(Ω) :=
∑

|α|≤r

‖∂αu‖2L2(Ω). (1.14)

The space Hr(Ω) is a Hilbert space.

A particular case: the Sobolev space Hr(T2 × (0, 1)). The equations of magnetohydrodynamics we study are set
on a domain of the form T

2 × (0, 1), i.e. a horizontal strip {0 ≤ x3 ≤ 1}, with periodic boundary conditions with
respect to the tangential variable x′ := (x1, x2) ∈ T2. Consequently, the functional framework used to establish a

x2

x3

x1

T
2

0

1

Figure 3. Periodic strip T2 × (0, 1).

priori estimates in [CMST12] is the Sobolev space Hr(T2 × (0, 1)), with r ∈ N.
Using Fubini’s theorem, we can write, for u ∈ Hr(T2 × (0, 1)),

‖u‖2Hr(T2×(0,1)) :=
∑

|α|≤r

‖∂αu‖
2
L2(T2×(0,1)) =

r∑

k=0

∥∥∂k3u
∥∥2
L2

x3
(Hr−k(T2))

. (1.15)

As a consequence, the space Hr(T2 × (0, 1)) also takes the form

Hr(T2 × (0, 1)) =

r⋂

k=0

Hk
x3

(
Hr−k(T2)

)
.

From a computational point a view, the norm given by (1.15) turns out to be useful. Indeed, for k ∈ {0, . . . , r}, we
shall compute the quantities

∥∥∂k3u
∥∥
L2

x3
(Hr−k(T2))

thanks to Fourier series.

We eventually give a useful tame estimate for composite functions, in a very particular case (see e.g. [Lan13,
p.283]).
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Proposition 1.2. Let r ∈ N and Ω be a smooth bounded domain of Rd. We consider u ∈ Hr(Ω) such that:

∃ c0 > 0, ∀x ∈ Ω, c−1
0 ≤ 1 + u(x) ≤ c0.

Then the function 1
1+u belongs to Hr(Ω) and satisfies the estimate:

∥∥∥∥
1

1 + u

∥∥∥∥
Hr(Ω)

≤ Cr,c0
(
1 + ‖u‖Hr(Ω)

)
, (1.16)

where Cr,c0 > 0 depends only on r, c0 and Ω.

The fact we can estimate the inverse of a given function turns out the be useful when, for instance, we perform
a change of variables. More precisely, some computations of derivatives can make the jacobian of this change of
variables appear, as well as its inverse.

Now that we have recalled the main properties of Sobolev spaces, we are able to construct some spaces of analytic
functions. Their definition relies on the spaces Hr(Ω).

Analytic spaces on T2 × (−1, 1). From now on, Ω denotes the reference domain T2 × (−1, 1). The norm of the
Sobolev space Hr(Ω), for r ∈ N, is simply noted as ‖ · ‖Hr . We also consider a parameter ρ0 > 0, fixed once for all.
The following definitions and properties of the functional spaces below are inspired from [Sed94].

Definition 1.3. Let (r, k) ∈ N2 and ρ ∈ (0, ρ0]. We define the space Bkρ,r by

Bkρ,r :=
{
u ∈ Hk+r

x3
(H+∞(T2))

∣∣∣
∑

n≥0

ρn

n!
max
|α|=n
α3≤k

‖∂αu‖Hr < +∞
}
,

where α will always denote a multi-index of N3 and |α| its length. We equip this space with the norm ‖ · ‖kρ,r given
by

‖u‖kρ,r :=
∑

n≥0

ρn

n!
max
|α|=n
α3≤k

‖∂αu‖Hr .

Proposition 1.4. For (r, k) fixed, the sequence (Bkρ,r)0<ρ≤ρ0 is a scale of Banach spaces, in other words:

∀ 0 < ρ′ ≤ ρ ≤ ρ0, Bkρ′,r ⊃ Bkρ,r, with ‖ · ‖kρ′,r ≤ ‖ · ‖kρ,r.

We refer to [Sed94] for the proof. In order to apply a Cauchy-Kowalevskaya theorem, we will need algebra and
differentiation properties in the spaces Bkρ,r. Both following propositions give such properties.

Proposition 1.5. Let r ∈ N such that r ≥ 2, u, v ∈ Bkρ,r and N ∈ N. Then uv ∈ Bkρ,r and we have the estimates

‖uv‖k,Nρ,r ≤ C‖u‖k,Nρ,r ‖v‖k,Nρ,r , (1.17)

‖uv‖k,Nρ,r ≤ C

k∑

j=0

‖u‖j,Nρ,r ‖v‖
k−j,N
ρ,r , (1.18)

where C > 0 depends only on r, and ‖ · ‖k,Nρ,r denotes the partial sum of order N of ‖ · ‖kρ,r. Furthermore, taking the
supremum over N , we get the following algebra properties:

‖uv‖kρ,r ≤ C‖u‖kρ,r‖v‖
k
ρ,r, (1.19)

‖uv‖kρ,r ≤ C

k∑

j=0

‖u‖jρ,r‖v‖
k−j
ρ,r , (1.20)

where C > 0 depends only on r.

Estimate (1.19) gives the algebra property of the spaces Bkρ,r, whereas inequality (1.20) will turn out to be more
convenient in what follows, because of the appearing Cauchy product. Once again, we refer to [Sed94] for the details.
The next proposition, also adapted from [Sed94], shows how the differentiation behaves in the scale (Bkρ,r)ρ≤ρ0 .
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Proposition 1.6. Let u ∈ Bkρ,r. Then for all ρ′ < ρ, u satisfies ∂1u, ∂2u ∈ Bkρ′,r with

‖∂ju‖
k
ρ′,r ≤

1

ρ− ρ′
‖u‖kρ,r, j = 1, 2. (1.21)

Besides, if k ≥ 1, then ∂3u ∈ Bk−1
ρ′,r with

‖∂3u‖
k−1
ρ′,r ≤

1

ρ− ρ′
‖u‖kρ,r. (1.22)

We can also express the loss of derivative thanks to the index r. If r ≥ 1, then for j = 1, 2, 3, we have ∂ju ∈ Bkρ,r−1

and the estimate
‖∂ju‖

k
ρ,r−1 ≤ ‖u‖kρ,r. (1.23)

To take all the normal derivatives ∂α3

3 (with α3 ∈ N) into account, we now introduce a new scale of Banach
spaces. Their construction is based on the previous Banach spaces Bkρ,r.

Definition 1.7. Let r ∈ N, σ > 0 (small parameter to fix later on) and ρ ∈ (0, ρ0]. We define the space Bρ,r,σ by

Bρ,r,σ :=
{
u ∈ H+∞(Ω)

∣∣∣
∑

k≥0

σk‖u‖kρ,r < +∞
}
.

We equip Bρ,r,σ with the norm ‖ · ‖ρ,r,σ given by

‖u‖ρ,r,σ :=
∑

k≥0

σk‖u‖kρ,r.

We shall see that if σ > 0 is small enough (the choice will depend only on the parameters r and ρ0), then we will
be able to apply a Cauchy-Kowalevskaya theorem in the scale of Banach spaces (Bρ,r,σ)ρ≤ρ0 for solving the equations
of ideal inviscid incompressible MHD (1.9) in the fixed domain Ω. Sedenko [Sed94] applies a Cauchy-Kowalevskaya
theorem in a similar scale of Banach spaces, for solving Euler equations for ideal incompressible nonhomogeneous
and barotropic fluids, bounded by free surfaces. The required properties of the scale (Bρ,r,σ)ρ≤ρ0 are given by the
following theorem.

Theorem 1.8. Let r ∈ N such that r ≥ 2 and σ ∈ (0, 1]. Then the sequence (Bρ,r,σ)0<ρ≤ρ0 is a scale of Banach
spaces:

∀ 0 < ρ′ ≤ ρ ≤ ρ0, Bρ′,r,σ ⊃ Bρ,r,σ, with ‖ · ‖ρ′,r,σ ≤ ‖ · ‖ρ,r,σ.

Moreover, if u ∈ Bρ,r,σ then for all ρ′ < ρ, ∂iu ∈ Bρ′,r,σ (1 ≤ i ≤ 3) with

‖∂iu‖ρ′,r,σ ≤
Cσ

ρ− ρ′
‖u‖ρ,r,σ, (1.24)

where Cσ := σ−1 > 0. To finish with, the spaces Bρ,r,σ are algebras, more precisely:

∀u, v ∈ Bρ,r,σ, uv ∈ Bρ,r,σ and ‖uv‖ρ,r,σ ≤ Cr‖u‖ρ,r,σ‖v‖ρ,r,σ, (1.25)

where Cr > 0 does not depend on ρ and σ.

Remarks:

− As a matter of fact, we can check that the spaces Bρ,r,σ consist in analytic functions on Ω.
− The spaces Bρ,r,σ turn out to be dense in Hr(Ω), which could be useful to handle initial data of Sobolev regularity.

The introduction of the analytic spaces Bρ,r,σ will allow us to construct analytic solutions to the equations of the
current-vortex sheet problem in ideal incompressible MHD, using a Cauchy-Kowalevskaya theorem. Such a problem
is represented by the coupled system of equations (1.9). Consequently, we similarly define analytic spaces on the
sub-domains Ω+ = T

2 × (0, 1) and Ω− = T
2 × (−1, 0), respectively denoted as Bρ,r,σ(Ω

+) and Bρ,r,σ(Ω
−). The

norm on Bρ,r,σ(Ω
+) is noted ‖ · ‖+ρ,r,σ and so on.

For (u+, u−) ∈ Hr(Ω+)×Hr(Ω−), we will note the norms as follows:

‖u+‖r,+ := ‖u+‖Hr(Ω+), ‖u−‖r,− := ‖u−‖Hr(Ω−),

‖u±‖r,± := ‖u+‖r,+ + ‖u−‖r,−. (1.26)

Furthermore, if (u+, u−) ∈ Bρ,r,σ(Ω
+)×Bρ,r,σ(Ω

−), we will write:

‖u±‖±ρ,r,σ := ‖u+‖+ρ,r,σ + ‖u−‖−ρ,r,σ. (1.27)

The algebra and differentiation properties previously established still hold in the Banach spaces Bkρ,r(U) and

Bρ,r,σ(U) introduced above, where U stands for the domains Ω, Ω+ or Ω−.
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Analytic spaces on Γ ≃ T2.

Definition 1.9. Let s ∈ R+ and ρ ∈ (0, ρ0]. We define

Bρ,s(T
2) :=

{
u ∈ H+∞(T2)

∣∣∣ ‖u‖ρ,s :=
∑

n≥0

ρn

n!
max
|α′|=n

‖∂α
′

u‖Hs(T2) < +∞
}
,

where α′ is here a multi-index of N2. We recall that the norm on Hs(T2) is defined by (1.12).

With such scales of Banach spaces, we shall be able in Section 5 to construct analytic solutions to (1.9).

1.5. Main theorem. The main theorem of this paper reads:

Theorem 1.10. Let R > 0 and let U0 := (v±0 , B
±
0 , f0) be some initial data belonging to the space Bρ0 (defined by

(5.5)), where ρ0 > 0 is a small parameter given by Theorem 4.2. We assume that U0 satisfies

9v±0 , B
±
0 9ρ0 < R, and 9 f0 9ρ0 < η0,

where η0 > 0 is a small parameter given by Corollary 2.3, and the initial constraints




AT∇ · v±0 = AT∇ ·B±
0 = 0 in Ω±,

(B± ·N)|t=0 = 0 on Γ,
[v ·N ]|t=0 = 0 on Γ.

Then there exist a > 0, depending only on ρ0 and R, and a unique solution (v±, B±, Q±, f) to the system (1.9),
such that for all ρ ∈ (0, ρ0), we have:

v±, B±, Q± ∈ C1
t

(
[0, a(ρ0 − ρ)) ; Bρ,3,σ(Ω

±)
)
,

f ∈ C1
t

(
[0, a(ρ0 − ρ)) ; Bρ, 7

2
(T2)

)
,

‖v±(t, ·), B±(t, ·), Q±(t, ·)‖±ρ,3,σ < R and ‖f(t, ·)‖ρ, 7
2
< η0, ∀ t ∈ [0, a(ρ0 − ρ)),

∑

±

∫

Ω±

Q±(t, x)dx = 0, ∀ t ∈ [0, a(ρ0 − ρ)).

Strategy of the proof. We have reduced the current-vortex sheet problem into the fixed domains Ω+ and Ω− using
the lifting ψ of the front f . Consequently, in Section 2 we give analytic estimates of the new unknown ψ with
respect to the front f . In Section 3, we simplify the problem (1.9) to fit with the version of Cauchy-Kowalevskaya
theorem [Nis77] we will apply. To do so, we show that some equations in (1.9) are restrictions on the initial data
only. Afterwards, we deal with the total pressure Q± in Section 4, which is the tricky part of this article. Using an
appropriate elliptic problem satisfied by the pressure, we give analytic estimates on Q± depending on the unknowns
v± and B±. Finally, we apply in Section 5 Cauchy-Kowalevskaya theorem [Nis77] to construct analytic solutions
to (1.9).

2. Lifting of the front and analytic estimates

2.1. Analytic estimate of the lifting ψ. We wish to prove local existence of analytic solutions to the system
(1.9). To do so, we will use the spaces introduced in Paragraph 1.4, namely Bρ,r,σ(Ω), Bρ,r,σ(Ω

±) and Bρ,s(T
2).

For the time being, ρ0 stands for any real number of the interval (0, 1], but it will be required to be small enough
later on.

First, using such analytic spaces, we show that the gain of half a derivative for ψ with respect to f (see Lemma
1.1) persists within the analytic norms ‖ · ‖ρ,r,σ.

Proposition 2.1. Let ρ ∈ (0, ρ0], r ≥ 2 be an integer and σ ∈ (0, 1). Then we can choose the linear map of Lemma
1.1 such that if it is restricted to the space Bρ,r− 1

2
(T2), then it maps continuously Bρ,r− 1

2
(T2) into Bρ,r,σ(Ω). In

other terms, for all f ∈ Bρ,r− 1
2
(T2), we have ψ ∈ Bρ,r,σ(Ω) with the following estimate:

‖ψ‖ρ,r,σ ≤
Cr

(1 − σ)3
‖f‖ρ,r− 1

2
, (2.1)

where Cr > 0 depends only on r. The choice of this linear map is independent of the parameters ρ, r and σ.
We recall that the lifting ψ satisfies, for all x′ ∈ T

2,

ψ(x′, 0) = f(x′), ψ(x′,±1) = 0, and ∂3ψ(x
′, 0) = 0. (2.2)

Proof. We adapt the proof of Lemma 1 in [CMST12]. We begin by recalling the construction of ψ from f .
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Step 1: For g ∈ Bρ,r− 1
2
(T2), we define the function Φg by

Φg(x
′, x3) := ϕ(x3|D|)g(x′), ∀ (x′, x3) ∈ Ω, (2.3)

where the operator |D| corresponds to the Fourier multiplier in the tangential variable x′ ∈ T2. For the time being,
we want the function ϕ to satisfy two conditions:

ϕ(0) = 1 and ϕ ∈ H+∞(R).

The aim of this step is to bound from above ‖Φg‖ρ,r,σ by ‖g‖ρ,r−1
2
. First of all, we are going to estimate the norms

‖Φg‖
k
ρ,r, for all k ∈ N. In the following computations, C0 > 0 will denote any numerical constant, and Cr > 0 any

constant that depends only on r. Let us start by estimating ‖Φg‖Hr(Ω). To do so, we use Fubini’s theorem:

‖Φg‖
2
Hr(Ω) =

r∑

j=0

‖∂j3Φg‖
2
L2

x3
((−1,1);Hr−j(T2)),

and we handle each term ‖∂j3Φg‖
2
L2

x3
(Hr−j(T2)) separately.

◮ For j = 0: by definition of the operator |D|, we can write:

‖Φg(·, x3)‖
2
Hr(T2) =

∑

k∈Z2

(1 + |k|2)r |ϕ(x3|k|)|
2 |ck(g)|

2

= |c0(g)|
2 +

∑

k 6=0

(1 + |k|2)r |ϕ(x3|k|)|
2 |ck(g)|

2.

Integrating over x3 ∈ (−1, 1), we get:

‖Φg‖
2
L2

x3
(Hr(T2)) = 2|c0(g)|

2 +
∑

k 6=0

(1 + |k|2)r |ck(g)|
2

∫ 1

−1

|ϕ(x3|k|)|
2dx3

= 2|c0(g)|
2 +

∑

k 6=0

(1 + |k|2)r |ck(g)|
2

∫ |k|

−|k|

|ϕ(s)|2
ds

|k|

≤ C0


|c0(g)|

2 + ‖ϕ‖2L2(R)

∑

k 6=0

(1 + |k|2)r−
1
2 |ck(g)|

2




≤ C0

(
1 + ‖ϕ‖2L2(R)

)
‖g‖2

H
r− 1

2 (T2)
.

◮ For j ∈ {1, . . . , r}, differentiating the function Φg, we have:

∂
j
3Φg(x) = ϕ(j)(x3|D|) (|D|jg)(x′).

Thus,

‖∂j3Φg(·, x3)‖
2
Hr−j(T2)) =

∑

k∈Z2

(1 + |k|2)r−j |ϕ(j)(x3|k|)|
2 |k|2j |ck(g)|

2

=
∑

k 6=0

(1 + |k|2)r−j |ϕ(j)(x3|k|)|
2 |k|2j |ck(g)|

2

≤
∑

k 6=0

(1 + |k|2)r |ϕ(j)(x3|k|)|
2 |ck(g)|

2.

Integrating over x3, we obtain:

‖∂j3Φg‖
2
L2

x3
(Hr−j(T2)) ≤

∑

k 6=0

(1 + |k|2)r |ck(g)|
2

∫ |k|

−|k|

|ϕ(j)(s)|2
ds

|k|

≤ C0‖ϕ
(j)‖2L2(R)

∑

k 6=0

(1 + |k|2)r−
1
2 |ck(g)|

2

≤ C0‖ϕ
(j)‖2L2(R)‖g‖

2

H
r− 1

2 (T2)
.

Summing over j, we finally have:

‖Φg‖
2
Hr(Ω) ≤ C0

(
1 + ‖ϕ‖2Hr(R)

)
‖g‖2

H
r− 1

2 (T2)
,



ANALYTIC CURRENT-VORTEX SHEETS INCOMPRESSIBLE MHD 9

hence

‖Φg‖Hr(Ω) ≤ C0

(
1 + ‖ϕ‖Hr(R)

)
‖g‖

H
r− 1

2 (T2)
. (2.4)

Step 2: Now, let us focus on the norms ‖Φg‖
k
ρ,r, for all k ∈ N. We begin with the case k = 0, for which the

tangential derivatives ∂α, with α = (α1, α2, 0) = (α′, 0), commute with the operator ϕ(x3|D|). We easily have:

‖Φg‖
0
ρ,r =

∑

n≥0

ρn

n!
max
|α|=n
α3=0

‖∂αΦg‖Hr(Ω) =
∑

n≥0

ρn

n!
max
|α|=n
α3=0

‖Φ∂α′
g‖Hr(Ω).

Therefore, we can apply estimate (2.4) to the function ∂α
′

g (instead of g), and we get:

‖Φg‖
0
ρ,r ≤ C0

(
1 + ‖ϕ‖Hr(R)

)∑

n≥0

ρn

n!
max
|α′|=n

‖∂α
′

g‖
H

r− 1
2 (T2)

≤ C0

(
1 + ‖ϕ‖Hr(R)

)
‖g‖ρ,r− 1

2
. (2.5)

In order to estimate the norms ‖Φg‖
k+1
ρ,r , with k ≥ 0, we proceed by induction:

‖Φg‖
k+1
ρ,r =

∑

n≥0

ρn

n!
max
|α|=n
α3≤k+1

‖∂αΦg‖Hr(Ω)

≤ ‖Φg‖
k
ρ,r +

∑

n≥k+1

ρn

n!
max
|α|=n
α3=k+1

‖∂αΦg‖Hr(Ω)

= ‖Φg‖
k
ρ,r +

∑

n≥k+1

ρn

n!
max

|α′|=n−k−1
‖∂k+1

3 Φ∂α′
g‖Hr(Ω). (2.6)

As previously, we estimate the norms ‖∂j3∂
k+1
3 Φ∂α′

g‖L2
x3

(Hr−j(T2)), for all j ∈ {0, . . . , r}:

‖∂j+k+1
3 Φ∂α′

g(·, x3)‖
2
Hr−j(T2) =

∑

ℓ 6=0

(1 + |ℓ|2)r−j |ϕ(j+k+1)(x3|ℓ|)|
2 |ℓ|2(j+k+1) |cℓ(∂

α′

g)|2

≤
∑

ℓ 6=0

(1 + |ℓ|2)r |ℓ|2(k+1) (2π|ℓ1|)
2α1 (2π|ℓ2|)

2α2 |cℓ(g)|
2 |ϕ(j+k+1)(x3|ℓ|)|

2.

Integrating over x3, we have:

‖∂j+k+1
3 Φ∂α′

g‖
2
L2

x3
(Hr−j(T2)) ≤ C0 ‖ϕ

(j+k+1)‖2L2(R)

∑

ℓ 6=0

(1 + |ℓ|2)r−
1
2 |ℓ|2(k+1)(2π|ℓ1|)

2α1(2π|ℓ2|)
2α2 |cℓ(g)|

2. (2.7)

Then, we rewrite the sum in (2.7) as
∑

|ℓ1|≤|ℓ2|
+
∑

|ℓ2|<|ℓ1|
(if ℓ = 0, the general term of the series vanishes). Thus,

∑

|ℓ1|≤|ℓ2|

(1 + |ℓ|2)r−
1
2 |ℓ|2(k+1)(2π|ℓ1|)

2α1 (2π|ℓ2|)
2α2 |cℓ(g)|

2

≤
∑

|ℓ1|≤|ℓ2|

(1 + |ℓ|2)r−
1
2 (2ℓ22)

k+1 (2π|ℓ1|)
2α1(2π|ℓ2|)

2α2 |cℓ(g)|
2

≤
∑

|ℓ1|≤|ℓ2|

(1 + |ℓ|2)r−
1
2 (2π|ℓ1|)

2α1 (2π|ℓ2|)
2(α2+k+1) |cℓ(g)|

2. (2.8)

Let us set γ′ := (α1, α2 + k + 1). Then we have |γ′| = n, and inequality (2.8) gives:
∑

|ℓ1|≤|ℓ2|

(1 + |ℓ|2)r−
1
2 |ℓ|2(k+1) (2π|ℓ1|)

2α1(2π|ℓ2|)
2α2 |cℓ(g)|

2

≤
∑

|ℓ1|≤|ℓ2|

(1 + |ℓ|2)r−
1
2

∣∣cℓ(∂γ
′

g)
∣∣2

≤ ‖∂γ
′

g‖2
H

r− 1
2 (T2)

≤ max
|β′|=n

‖∂β
′

g‖2
H

r− 1
2 (T2)

. (2.9)

The case of the second sum
∑

|ℓ2|<|ℓ1|
is symmetric, and gives the same upper bound as (2.9). Back to (2.7), we

obtain:

‖∂j+k+1
3 Φ∂α′

g‖
2
L2

x3
(Hr−j(T2)) ≤ C0 ‖ϕ

(j+k+1)‖2L2(R) max
|β′|=n

‖∂β
′

g‖2
H

r− 1
2 (T2)

.
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Summing over j, it follows that

‖∂k+1
3 Φ∂α′

g‖Hr(Ω) ≤ C0 ‖ϕ
(k+1)‖Hr(R) max

|β′|=n
‖∂β

′

g‖
H

r− 1
2 (T2)

. (2.10)

Using (2.10) in the estimate (2.6), we have:

‖Φg‖
k+1
ρ,r ≤ ‖Φg‖

k
ρ,r + C0 ‖ϕ

(k+1)‖Hr(R) ‖g‖ρ,r−1
2
.

By induction, and using (2.5), we end up with the following estimate, holding for all k ≥ 0:

‖Φg‖
k
ρ,r ≤ C0


1 +

k∑

j=0

‖ϕ(j)‖Hr(R)


 ‖g‖ρ,r−1

2
. (2.11)

Step 3: To conclude about the estimate of the norm ‖Φg‖ρ,r,σ, it remains to multiply (2.11) by σk, and to sum

over k. To do so, the Sobolev norms of the functions ϕ(j) must not increase “more” than geometrically. Thus, we
choose ϕ ∈ H+∞(R) such that:

ϕ̂(ξ) := π 1[−1,1](ξ), ∀ ξ ∈ R.

The function ϕ is given by the following formula:

ϕ(x) =
1

2π

∫

R

eixξ ϕ̂(ξ) dξ =
sin(x)

x
.

In particular, we have ϕ(0) = 1 and ϕ ∈ H+∞(R). Besides, we easily estimate the norms ‖ϕ(j)‖Hr(R) using the
Fourier transform and the parity of ϕ̂:

‖ϕ(j)‖2Hr(R) ≤ Cr

∫

R

(1 + ξ2)r ξ2j ϕ̂(ξ)2 dξ ≤ Cr

∫ 1

0

(1 + ξ2)r ξ2j dξ ≤ Cr. (2.12)

Estimate (2.11) finally reads:

‖Φg‖
k
ρ,r ≤ Cr (k + 1) ‖g‖ρ,r−1

2
.

Now, let K ∈ N, and write ‖Φg‖
K
ρ,r,σ the partial sum of order K of ‖Φg‖ρ,r,σ. Then, for σ ∈ (0, 1),

‖Φg‖
K
ρ,r,σ =

K∑

k=0

σk ‖Φg‖
k
ρ,r ≤ Cr

K∑

k=0

(k + 1)σk ‖g‖ρ,r−1
2
≤

Cr

(1 − σ)2
‖g‖ρ,r−1

2
.

Taking the supremum over K, we conclude that Φg ∈ Bρ,r,σ and

‖Φg‖ρ,r,σ ≤
Cr

(1− σ)2
‖g‖ρ,r−1

2
. (2.13)

Conclusion: Given f ∈ Bρ,r− 1
2
(T2), we define the function Ψf = ψ by:

Ψf(x
′, x3) := (1− x23)Φf (x) = (1− x23)ϕ(x3|D|) f(x′), ∀ (x′, x3) ∈ Ω. (2.14)

The definition of ψ above can also be considered in the proof done by [CMST12], and does not change any result
about the lifting of the front f recalled by Lemma 1.1.

We remind that we wish to estimate ‖Ψf‖ρ,r,σ by ‖f‖ρ,r−1
2
. To do so, it suffices to use the algebra property of

the spaces Bρ,r,σ(Ω) given by Theorem 1.8, and estimate (2.13) obtained in step 3. Setting ω(x3) := 1 − x23, we
have:

‖Ψf‖ρ,r,σ ≤ Cr ‖ω‖ρ,r,σ ‖Φf‖ρ,r,σ ≤
Cr

(1 − σ)2
‖ω‖ρ,r,σ ‖f‖ρ,r−1

2
.

To finish with, we can explicitly estimate ‖ω‖ρ,r,σ, since all the tangential derivatives of ω vanish. For all k ≥ 0,
we get:

‖ω‖kρ,r =

k∑

n=0

ρn

n!
‖∂n3 ω‖Hr(Ω) ≤

2∑

n=0

ρn

n!
‖∂n3 ω‖Hr(Ω) ≤ C0,

because all the derivatives of ω of order larger than 3 vanish, and ρ can be directly bounded above by 1. As a
consequence, we have the estimate

‖ω‖ρ,r,σ ≤
C0

1− σ
.

Thus, we can conclude that there exists a constant Cr > 0, depending only on r, such that:

‖Ψf‖ρ,r,σ ≤
Cr

(1− σ)3
‖f‖ρ,r−1

2
. (2.15)
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�

2.2. Analytic estimate of the inverse of the jacobian J . The change of unknown f 7→ ψ required the
continuous estimate (2.1) in order to finally apply a Cauchy-Kowalevskaya theorem to solve (1.9). With the new
unknowns (v±, B±, ψ), the equations of (1.9) make the inverse of the jacobian J appear. To construct analytic
solutions to this problem, we will have to be able to properly estimate the analytic norm ‖ · ‖ρ,r,σ of 1

J
(recall that

J = 1 + ∂3ψ). To do so, we will use the algebra property of the Banach spaces Bρ,r,σ(Ω).

Proposition 2.2. Let ρ ∈ (0, ρ0], r ≥ 2 be an integer and σ ∈ (0, 1). There exists ε1 = ε1(r) > 0 depending only
on r, such that for all g ∈ Bρ,r,σ(Ω) satisfying ‖g‖ρ,r,σ ≤ ε1, we have:

1

1 + g
∈ Bρ,r,σ(Ω) and

∥∥∥∥
1

1 + g

∥∥∥∥
ρ,r,σ

≤
Cr

1− σ
, (2.16)

where Cr > 0 depends only on r.

Proof. We start by recalling the algebra property of the spaces Bρ,r,σ(Ω). There exists a constant Cr > 0 depending
only on r, such that for all u, v ∈ Bρ,r,σ(Ω), we have:

uv ∈ Bρ,r,σ(Ω) and ‖uv‖ρ,r,σ ≤ Cr‖u‖ρ,r,σ‖v‖ρ,r,σ.

We define ε1 :=
1

2Cr
, and consider g ∈ Bρ,r,σ(Ω) such that ‖g‖ρ,r,σ ≤ ε1. Then the series

∑
m≥0(−1)mgm is

absolutely convergent in the Banach space Bρ,r,σ(Ω). Indeed,
∑

m≥0

‖(−1)mgm‖ρ,r,σ ≤ ‖1‖ρ,r,σ +
∑

m≥1

Cm−1
r ‖g‖mρ,r,σ ≤ ‖1‖ρ,r,σ + C−1

r .

Then, we estimate the constant function 1 in Bρ,r,σ(Ω) by a straightforward computation:

‖1‖ρ,r,σ =
C0

1− σ
,

where C0 > 0 is a numerical constant. Eventually, we deduce that

∑

m≥0

‖(−1)mgm‖ρ,r,σ ≤
C0

1− σ
+ C−1

r ≤
C′
r

1− σ
< +∞,

where C′
r := C0+C

−1
r > 0 depends only on r. The completeness of the spaces Bρ,r,σ(Ω) allows to write the identity

1

1 + g
=
∑

m≥0

(−1)mgm.

Consequently,
1

1 + g
belongs to the space Bρ,r,σ(Ω), and satisfies the estimate

∥∥∥∥
1

1 + g

∥∥∥∥
ρ,r,σ

≤
C′
r

1− σ
.

�

Using Proposition 2.1, we deduce a straightforward corollary about the analytic estimate of the inverse of the
jacobian J . For the sake of clarity, we will assume from now on that σ ∈ (0, σ0], where σ0 is a numerical constant
fixed once for all in the interval (0, 1), for instance σ0 := 1

2 . It will allow us to bound from above the quantity 1
1−σ

uniformly with respect to σ, which will simplify the future estimates. This restriction will be harmless for our work,
since σ will have to be chosen small enough in the end.

Corollary 2.3. Let ρ ∈ (0, ρ0], r ≥ 2 be an integer and σ ∈ (0, σ0]. Let also f ∈ Bρ,r+ 1
2
(T2). There exists a

constant η0 = η0(r) > 0 such that:

‖f‖ρ,r+ 1
2
≤ η0 =⇒

1

J
∈ Bρ,r,σ(Ω) and

∥∥∥∥
1

J

∥∥∥∥
ρ,r,σ

≤Mr, (2.17)

where Mr > 0 depends only on r.
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Proof. To begin with, let us rewrite the results (2.15) and (2.16) taking the inequality σ ≤ σ0 into account. There

exists a constant C̃r > 0, depending only on r, such that:

‖ψ‖ρ,r+1,σ ≤ C̃r‖f‖ρ,r+ 1
2
. (2.18)

Consequently,

‖∂3ψ‖ρ,r,σ ≤ C̃r‖f‖ρ,r+1
2
. (2.19)

Likewise, there exists a constant Mr > 0, depending only on r, such that:

‖g‖ρ,r,σ ≤ ε1 =⇒
1

1 + g
∈ Bρ,r,σ(Ω) and

∥∥∥∥
1

1 + g

∥∥∥∥
ρ,r,σ

≤Mr. (2.20)

We define η0 :=
ε1

C̃r
, and assume that ‖f‖ρ,r+1

2
≤ η0. Using (2.19), we have ‖∂3ψ‖ρ,r,σ ≤ ε1. So, applying (2.20) to

the function g := ∂3ψ, we get:
∥∥∥∥

1

1 + ∂3ψ

∥∥∥∥
ρ,r,σ

≤Mr.

�

In order to apply a Cauchy-Kowalevskaya theorem, we wish to rewrite the problem (1.9) under the form of a
“differential equation” in time. That is why the next section is devoted to simplify the equations in (1.9). As a
matter of fact, some equations in (1.9) turn out to be restrictions on the initial data only, and will be propagated
in time.

3. Simplification of the problem

3.1. Elliptic problem satisfied by the total pressure. The total pressure Q± appearing in problem (1.9) can
be implicitly expressed in terms of the unknowns (v±, B±, f), using the “divergence”-free constraint fulfilled by
the velocity. With the same computations as in [CMST12, p.266], we show that the couple (Q+, Q−) satisfies the
following elliptic problem: 




−AT∇ · (AT∇Q±) = F± in (0, T )× Ω±,

[Q] = 0 on (0, T )× Γ,
[AT∇Q ·N ] = G on (0, T )× Γ,

∂3Q
± = 0 on (0, T )× Γ±.

(3.1)

The source terms F± are defined by:

F± := −∂tAki ∂kv
±
i +Aki ∂kṽ

± · ∇v±i − ṽ± · ∇Aki ∂kv
±
i −Aki ∂kB̃

± · ∇B±
i + B̃± · ∇Aki ∂kB

±
i , (3.2)

where we have used Einstein’s summation convention for repeated indices. The boundary source term G in (3.1) is
defined as follows:

G := − [ 2v′ · ∇′∂tf + (v′ · ∇′)∇′f · v′ − (B′ · ∇′)∇′f ·B′ ] , (3.3)

where the notation “ ′ ” stands for the tangential coordinates:

∇′ := (∂1, ∂2), v′ := (v1, v2), B′ := (B1, B2).

We want to solve the problem (1.9),(3.1),(3.2),(3.3). In order to use Cauchy-Kowalevskaya theorem, we wish to
have exactly five evolution equations, corresponding to the five unknowns (v±, B±, f), with prescribed initial data.
The latter must contain enough information to keep the equivalence with the original problem (1.9). We therefore
focus on the resolution of the problem thereafter (3.4),(3.1),(3.2),(3.3) together with the constraints (3.5) on the
initial data. Adapting the analysis of Trakhinin [Tra05], we are going to check that the “reduced” problem (3.4)
below is equivalent to the first one given by (1.9),(3.1),(3.2),(3.3). The “reduced” problem reads as follows:





∂tv
± + (ṽ± · ∇)v± − (B̃± · ∇)B± +AT∇Q± = 0 in (0, T )× Ω±,

∂tB
± + (ṽ± · ∇)B± − (B̃± · ∇)v± = 0 in (0, T )× Ω±,

∂tf = v+ ·N on (0, T )× Γ,
v±3 = B±

3 = 0 on Γ±,

(3.4)

where Q± satisfies the elliptic problem (3.1) with the source termes F± and G given by (3.2),(3.3). We recall that

the quantities A, N , ṽ± and B̃± are defined by (1.8) and (1.10). We prescribe initial data (v±0 , B
±
0 , f0) satisfying
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the constraints: 



AT∇ · v±0 = AT∇ · B±
0 = 0 in Ω±,

(B± ·N)|t=0 = 0 on Γ,
[v ·N ]|t=0 = 0 on Γ.

(3.5)

Let us observe that the matrix A|t=0 and the vector N |t=0 are computed after lifting the initial front f0. The last
condition in (3.5) will allow to get the second evolution equation on f , namely ∂tf = v− · N on (0, T )× Γ, as we
shall see later on. Taking the definition of N given by (1.10) into account, we have in particular

N |t=0 = (−∂1f0,−∂2f0, 1) on Γ.

3.2. Propagation of the condition related to the normal component of the upper magnetic field B+.

Within this paragraph, we show that the initial constraint B+ ·N |t=0 = 0 on Γ is propagated in time by the
solutions of (3.4). The method is inspired from [Tra05].

Proposition 3.1. Let (v±, B±, f) be a smooth solution of (3.4),(3.1),(3.2),(3.3), that is:

(v±, B±, f) ∈ C([0, T ];H3(Ω±))2 × C([0, T ];H3,5(T2)).

If the initial data (v±0 , B
±
0 , f0) satisfy B+

0 ·N0 = 0 on Γ, then for all t ∈ [0, T ], we have:

B+ ·N(t, ·) = 0 on Γ.

Proof. We set, for (t, x) ∈ [0, T ]× Ω+,

B+
N (t, x) := (B+ ·N)(t, x) and v+N (t, x) := (v+ ·N)(t, x).

We are looking for an evolution equation satisfied by B+
N . So, we compute:

∂tB
+
N = ∂tB

+ ·N +B+ · ∂tN

=
(
−(ṽ+ · ∇)B+ + (B̃+ · ∇)v+

)
·N +B+ · (−∂1∂tψ,−∂2∂tψ, 0)

= −v+j ∂jB
+ ·N −

(
v+N − ∂tψ

J

)
∂3B

+ ·N +B+
j ∂jv

+ ·N +

(
B+
N

J

)
∂3v

+ ·N −B+
j ∂j∂tψ,

where we have used Einstein’s summation convention for the indices between 1 and 2 only. Now, we commute the
derivatives ∂j (for j = 1, 2) in order to make the desired quantities ∂jB

+
N appear:

∂tB
+
N = −v+j

(
∂jB

+
N −B+ · ∂jN

)
−

(
v+N − ∂tψ

J

)
∂3B

+ ·N

+B+
j

(
∂jv

+
N − v+ · ∂jN

)
+

(
B+
N

J

)
∂3v

+ ·N −B+
j ∂j∂tψ.

We pass to the limit x3 → 0+. Then, because ψ = f , ∂tf = v+ ·N and J = 1 on Γ (see (3.4) and (2.2)), we get the
following transport equation in (0, T )× Γ:

∂tB
+
N = −v+j ∂jB

+
N + v+j B

+ · ∂jN +B+
j ∂jv

+
N −B+

j v
+ · ∂jN +

(
∂3v

+ ·N
)
B+
N −B+

j ∂jv
+
N .

We simplify, and finally obtain:
{
∂tB

+
N + v+1 ∂1B

+
N + v+2 ∂2B

+
N = (∂3v

+ ·N)B+
N in (0, T )× Γ,

B+
N (0, ·) = 0 in Γ.

(3.6)

The method of characteristics concludes the proof.

�

3.3. Propagation of the conditions related to the jump of the normal velocity, and the normal mag-

netic field B−
N .

Proposition 3.2. Let (v±, B±, f) be a smooth solution of (3.4),(3.1),(3.2),(3.3), that is:

(v±, B±, f) ∈ C([0, T ];H3(Ω±))2 × C([0, T ];H3,5(T2)).

If the initial data (v±0 , B
±
0 , f0) satisfy B+

0 ·N0 = 0 and B−
0 ·N0 = [v0 ·N0] = 0 on Γ, then for all t ∈ [0, T ] we have:

B− ·N(t, ·) = [v ·N ](t, ·) = 0 on Γ.
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Proof. As previously, we define for all (t, x) ∈ [0, T ]× Ω±,

B±
N (t, x) := (B± ·N)(t, x) and v±N (t, x) := (v± ·N)(t, x).

We are looking for two evolution equations for B−
N

∣∣
Γ

and [vN ]. With the same computations as B+
N , we can write:

∂tB
−
N = −v−j

(
∂jB

−
N −B− · ∂jN

)
−

(
v−N − ∂tψ

J

)
∂3B

− ·N

+B−
j

(
∂jv

−
N − v− · ∂jN

)
+

(
B−
N

J

)
∂3v

− ·N −B−
j ∂j∂tψ.

Passing to the limit x3 → 0−, we get this time (recall that we did not include the equation ∂tf = v− ·N in (3.4)):

∂tB
−
N + v−j ∂jB

−
N +B−

j ∂j [vN ] =
(
∂3v

− ·N
)
B−
N +

(
∂3B

− ·N
)
[vN ] in (0, T )× Γ, (3.7)

where we have omitted the sum over j = 1, 2. Next, we compute an evolution equation for the jump of the normal
velocity [vN ]. To do so, we write in Ω±:

∂tv
±
N = ∂tv

± ·N + v± · ∂tN

=
(
−(ṽ± · ∇)v± + (B̃± · ∇)B± −AT∇Q±

)
·N + v± · ∂tN

= −v±j ∂jv
± ·N −

(
v±N − ∂tψ

J

)
∂3v

± ·N

+B±
j ∂jB

± ·N +

(
B±
N

J

)
∂3B

± ·N

+ v± · (−∂1∂tψ,−∂2∂tψ, 0)−AT∇Q± ·N.

We commute the derivatives ∂j (j = 1, 2) to make the quantities ∂jB
±
N and ∂jv

±
N appear:

∂tv
±
N = −v±j

(
∂jv

±
N − v± · ∂jN

)
−

(
v±N − ∂tψ

J

)
∂3v

± ·N

+B±
j

(
∂jB

±
N −B± · ∂jN

)
+

(
B±
N

J

)
∂3B

± ·N

+ v± · (−∂1∂tψ,−∂2∂tψ, 0)−AT∇Q± ·N.

Now, we pass to the limit x3 → 0±. On the one hand, using Proposition 3.1, we get:

∂tv
+
N = −2v+j ∂jv

+
N + v+j v

+ · ∂jN −B+
j B

+ · ∂jN −AT∇Q+ ·N. (3.8)

On the other hand, we have:

∂tv
−
N = −v−j ∂jv

−
N + v−j v

− · ∂jN + [vN ]
(
∂3v

− ·N
)

+B−
j ∂jB

−
N −B−

j B
− · ∂jN +B−

N

(
∂3B

− ·N
)

(3.9)

− v−j ∂jv
+
N −AT∇Q− ·N.

We subtract (3.9) to (3.8), and use the definition of G = [AT∇Q ·N ] given by (3.3) to finally deduce that

∂t[vN ] + v−j ∂j [vN ] +B−
j ∂jB

−
N = −

(
∂3v

− ·N
)
[vN ]−

(
∂3B

− ·N
)
B−
N in (0, T )× Γ. (3.10)

Let us define in [0, T ]× T2:

V :=

(
B−
N

[vN ]

)
, Bj :=

(
v−j B−

j

B−
j v−j

)
, and C :=

(
∂3v

− ·N ∂3B
− ·N

−∂3B
− ·N −∂3v

− ·N

)
.

Then V is solution to the following symmetric hyperbolic system:




∂tV +
2∑

j=1

Bj(t, x
′)∂jV = C(t, x′)V in (0, T )× T2,

V (0, ·) = 0 in T
2.

(3.11)

The solutions (v±, B±, f) being smooth enough, the matrix C belongs to the space L∞([0, T ]×T2) and the matrices
Bj to the space L∞(0, T ;W 1,∞(T2)). Using standard energy arguments (see e.g. [BGS07]), we thus deduce that
V ≡ 0.

�
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3.4. The divergence-free constraints. The divergence-free constraints in the new coordinates, namely (AT∇) ·
v± = 0 and (AT∇) · B± = 0, also turn out to be only restrictions on the initial data. Indeed, if all the constraints
(3.5) hold at t = 0, then they will be propagated by the solutions of (3.4).

Proposition 3.3. Let (v±, B±, f) be a smooth solution of (3.4),(3.1),(3.2),(3.3), in other words such that:

(v±, B±, f) ∈ C([0, T ];H3(Ω±))2 × C([0, T ];H3,5(T2)).

If the initial data (v±0 , B
±
0 , f0) satisfy the constraints (3.5), then for all t ∈ [0, T ] we have:

(AT∇) · v±(t, ·) = (AT∇) · B±(t, ·) = 0 in Ω±.

Proof. We apply the operator (AT∇)· to the first equation of (3.4):

∂t(A
T∇ · v±) + ṽ± · ∇(AT∇ · v±)− B̃± · ∇(AT∇ · B±)

+ [AT∇· , ∂t]v
± + [AT∇· , ṽ± · ∇]v± − [AT∇· , B̃± · ∇]B± −F± = 0, (3.12)

where F± is given by (3.2). Let us check that

F± = [AT∇· , ∂t]v
± + [AT∇· , ṽ± · ∇]v± − [AT∇· , B̃± · ∇]B±, (3.13)

which will simplify (3.12). The computation of the first commutator gives:

[AT∇· , ∂t]v
± = AT∇ · (∂tv

±)− ∂t(A
T∇ · v±)

= Aki ∂k∂tv
±
i − ∂t(Aki ∂kv

±
i ) = −∂tAki ∂kv

±
i .

Then, we have:

[AT∇· , ṽ± · ∇]v± = AT∇ · ((ṽ± · ∇)v±)− ṽ± · ∇(AT∇ · v±)

= Aki ∂k(ṽj ∂jv
±
i )− ṽ±j ∂j(Aki ∂kv

±
i )

= Aki ∂kṽ
±
j ∂jv

±
i +Aki ṽ

±
j ∂jkv

±
i − ṽ±j Aki ∂jkv

±
i − ṽ±j ∂jAki ∂kv

±
i

= Aki ∂kṽ
±
j ∂jv

±
i − ṽ±j ∂jAki ∂kv

±
i .

Likewise, we obtain:

[AT∇· , B̃± · ∇]B± = Aki ∂kB̃
±
j ∂jB

±
i − B̃±

j ∂jAki ∂kB
±
i .

Taking the definition (3.2) of F± into account, the equality (3.13) is satisfied. We deduce a first evolution equation:

∂t(A
T∇ · v±) + ṽ± · ∇(AT∇ · v±)− B̃± · ∇(AT∇ · B±) = 0. (3.14)

Now, we apply the operator (AT∇)· to the second equation of (3.4):

∂t(A
T∇ · B±) + ṽ± · ∇(AT∇ ·B±)− B̃± · ∇(AT∇ · v±)

+ [AT∇· , ∂t]B
± + [AT∇· , ṽ± · ∇]B± − [AT∇· , B̃± · ∇]v± = 0. (3.15)

First, we have:
[AT∇· , ∂t]B

± = −∂tAki ∂kB
±
i .

Then, the computation of the second commutator appearing in the second line of (3.15) gives:

[AT∇· , ṽ± · ∇]B± = Aki ∂k(ṽ
±
j ∂jB

±
i )− ṽ±j ∂j(Aki ∂kB

±
i )

= Aki ∂kṽ
±
j ∂jB

±
i +Aki ṽ

±
j ∂jkB

±
i − ṽ±j ∂jAki ∂kB

±
i − ṽ±j Aki ∂jkB

±
i .

Likewise, using the symmetry of the roles played by v± and B±, we obtain:

[AT∇· , B̃± · ∇]v± = Aki ∂kB̃
±
j ∂jv

±
i +Aki B̃

±
j ∂jkv

±
i − B̃±

j ∂jAki ∂kv
±
i − B̃±

j Aki ∂jkv
±
i .

Finally, using the definitions of ṽ± and B̃± given by (1.10), we check that the sum of the commutators in the second
line of (3.15) vanishes:

[AT∇· , ∂t]B
± + [AT∇· , ṽ± · ∇]B± − [AT∇· , B̃± · ∇]v± = 0.

Therefore we deduce a second evolution equation:

∂t(A
T∇ · B±) + ṽ± · ∇(AT∇ ·B±)− B̃± · ∇(AT∇ · v±) = 0. (3.16)

For all (t, x) ∈ (0, T )× Ω±, let us define

U±(t, x) :=

(
AT∇ · v±(t, x)
AT∇ · B±(t, x)

)
and A±

j (t, x) :=

(
ṽ±j (t, x) −B̃±

j (t, x)

−B̃±
j (t, x) ṽ±j (t, x)

)
.
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Then (3.14),(3.16) can be rewritten as a hyperbolic symmetric system with variable coefficients:





∂tU
± +

3∑

j=1

A±
j (t, x)∂jU

± = 0 in (0, T )× Ω±,

U±(0, ·) = 0 in Ω±.

(3.17)

We now proceed using the energy method. First, we begin with the case of U+. Taking the dot product (in L2(Ω+))
of the first equation of (3.17) with U+, and integrating by parts, we get the following energy estimate (where we
have used the symmetry of the matrices A+

j ):

d

dt

∫

Ω+

|U+(t, x)|2 dx =

3∑

j=1

∫

Ω+

U+ · ∂jA
+
j U

+ dx−

∫

Γ+

(
U+ · A+

3 U
+
)∣∣

Γ+
dx′ +

∫

Γ

(
U+ · A+

3 U
+
)∣∣

Γ
dx′. (3.18)

On Γ+, we know that ψ = 0 (see Proposition 2.1) and v+3 = B+
3 = 0. As a consequence, the matrix A+

3

∣∣
Γ+

is

identically zero. Next, the boundary conditions of the system (3.4) allow to write:

ṽ+3
∣∣
Γ
=
v+ ·N − ∂tf

J
= 0.

Besides, using Proposition 3.1, we have:

B̃+
3

∣∣∣
Γ
=
B+ ·N

J
= 0.

Thus, the matrix A+
3

∣∣
Γ

is also identically zero. The equality (3.18) readily gives:

d

dt

∫

Ω+

|U+(t, x)|2 dx =

3∑

j=1

∫

Ω+

U+ · ∂jA
+
j U

+ dx ≤ C

∫

Ω+

|U+(t, x)|2 dx, (3.19)

so U+ ≡ 0. Now, let us deal with the case of U−. The method is similar, and we obtain first:

d

dt

∫

Ω−

|U−(t, x)|2 dx =

3∑

j=1

∫

Ω−

U− · ∂jA
−
j U

− dx+

∫

Γ−

(
U− · A−

3 U
−
)∣∣

Γ−
dx′ −

∫

Γ

(
U− · A−

3 U
−
)∣∣

Γ
dx′. (3.20)

On Γ−, we can use the same arguments as previously, because of the two identities v−3 = B−
3 = 0 and ψ = 0. Thus,

the matrix A−
3

∣∣
Γ−

vanishes. On Γ, we have to proceed more carefully: using Proposition 3.2, from now on we can

use the equation ∂tf = v− ·N (because v− ·N = v+ ·N = ∂tf), to get:

ṽ−3
∣∣
Γ
=
v− ·N − ∂tf

J
= 0.

Likewise, also using Proposition 3.2, we have

B̃−
3

∣∣∣
Γ
=
B−
N

J
= 0.

The identity (3.20) can be simplified like U+:

d

dt

∫

Ω−

|U−(t, x)|2 dx =
3∑

j=1

∫

Ω−

U− · ∂jA
−
j U

− dx. (3.21)

Therefore U− ≡ 0, and the proposition is proved.

�

We have thus derived an easier problem to study, namely (3.4),(3.1),(3.2),(3.3), with the constraints (3.5) on
the initial data. In the next section we will be interested in the particular case of the pressure, which satisfies the
coupled elliptic problem (3.1).
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4. Analytic estimate of the total pressure

Within Section 3, we have shown that the total pressure Q± can be implicitly expressed as a function of (v±, B±)
by solving an elliptic problem. Consequently, we will need to get analytic estimates for Q± depending on the analytic
norms of v± and B±.

Let us recall the elliptic problem (3.1) satisfied by the total pressure Q±, rewritten as follows:




−Aji∂j(Aki∂kQ
±) = F± in (0, T )× Ω±,

[Q] = 0 on (0, T )× Γ,
(1 + |∇′f |2)[∂3Q] = G on (0, T )× Γ,

∂3Q
± = 0 on (0, T )× Γ±.

(4.1)

We have used Einstein’s summation convention over the indices i, j and k belonging to the set {1, 2, 3}. We recall
the expression of the matrix A given by (1.8):

A =




1 0 0
0 1 0

−
∂1ψ

J
−
∂2ψ

J

1

J


 , with J = 1 + ∂3ψ.

For the time being, the source terms F± and G in (4.1) are any analytic functions belonging to one of the spaces
Bρ,r,σ introduced earlier. In the end, we will come back to the particular case where F± and G depend on (v±, B±)
and are defined by (3.2) and (3.3).

To begin with, we admit that1:

− if the coefficients Aji given by (1.8) belong to H3(Ω),
− if ‖ψ‖H3 ≤ ε0, for some numerical constant ε0 ∈ (0, 1),
− if the source terms F± and G respectively belong to H1(Ω±) and H1.5(Γ),

then the problem (4.1) is well-posed in H3(Ω+)×H3(Ω−). In other terms, there exists a unique solution (Q+, Q−) ∈

H3(Ω+)×H3(Ω−) to the problem (4.1) such that
∑

±

∫

Ω±

Q± = 0. Moreover, the solution satisfies a classical interior

regularity property, namely:

‖Q±‖3,± ≤ C0

(
‖F±‖1,± + ‖G‖H1,5(Γ)

)
, (4.2)

where C0 > 0 is a constant depending only on the norm ‖ψ‖H3 .
Furthermore, we will admit that the problem (4.1) is still well-posed in H∞(Ω+)×H∞(Ω−). In other words, if

the coefficients Aji and the source terms F± and G are from now on in H∞, then there exists a unique zero mean
solution (Q+, Q−) to the problem (4.1) that belongs to H∞ (see [Eva98] for the general method). In the following,
we shall require more than the H∞ regularity. Indeed, we will take an analytic front f in the space Bρ, 7

2
(T2).

Therefore the lifting ψ will be in Bρ,4,σ(Ω) according to Proposition 2.1. Thus, the coefficients Aji will belong to
Bρ,3,σ(Ω). The source terms F± and G will be taken respectively in the analytic spaces Bρ,1,σ(Ω

±) and Bρ, 3
2
(Γ).

Working in such spaces remains consistent with estimate (4.2). Intuitively, if the radius of analyticity ρ and the
parameter σ go to zero, these spaces “degenerate” into the Sobolev spaces H3(Ω) (for the coefficients Aji), H

1(Ω±)
and H1,5(Γ) (for the source terms F± and G).

The purpose of this section is to extend estimate (4.2) to the analytic spaces mentioned above. In particular, we
shall see that if we take both analytic coefficients and source terms, then the solution (Q+, Q−) to (4.1) will also
be analytic.

4.1. Estimate of the tangential derivatives.

Remark: in the following, the notation f . g means that there exists a numerical constant C0 > 0 (that does not
depend on the functions f and g, neither on other parameters like ρ or σ), such that f ≤ C0g.

Within this paragraph, we focus on estimating Q± in the space B0
ρ,3(Ω

±). Thus, we wish to estimate the following
quantity:

‖Q±‖0,±ρ,3 =
∑

n≥0

ρn

n!
max
|α′|=n

‖∂α
′

Q±‖3,±.

1The existence and uniqueness result for the solution (Q+, Q−) together with the estimate (4.2) can be obtained in a classical way,
applying Lax-Milgram theorem in the space H1(Ω) (with a zero mean condition). Next, to get an estimate in H2(Ω±), we estimate the
difference quotients of order 2 (see [Eva98]). To gain one more derivative, we proceed by induction, and estimate in a suitable way all
the appearing commutators (see [CMST12, p.268]). Let us notice that thanks to the flatness of the front f in H2.5(T2) (leading to a

flatness of the norm ‖ψ‖
H3(Ω) using Proposition 2.1), the jacobian J = 1 + ∂3ψ will satisfy J ∈ [ 1

2
, 3
2
].
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Using (4.2), we shall be able to estimate the tangential derivatives ∂α
′

Q± in H3(Ω±). Multi-indices α in N3 will
be noted α := (α′, α3), where α′ ∈ N2. In the following, the notation α′ will always stand for a multi-index of N2,

to refer to the tangential derivatives ∂1 and ∂2. For all N ∈ N, we will note ‖Q‖0,±,Nρ,3 the partial sum of order N of

the norm ‖Q±‖0,±ρ,3 . To estimate ∂α
′

Q± in H3(Ω±), we shall commute the problem (4.1) with ∂α
′

. Thus, estimate

(4.2) will hold for ∂α
′

Q±, with new source terms F ′± and G′. These latter contain commutators, composed of
derivatives of Q± and coefficients of the matrix A. To estimate these commutators in a suitable way, we will have
to take the flatness condition required on the front f in the space H2.5(T2) into account. So, the norm ‖ψ‖H3(Ω)

will also be small according to Lemma 1.1. Consequently, if we write A = I3 − Ã, with

Ã :=




0 0 0
0 0 0
∂1ψ

J

∂2ψ

J

∂3ψ

J


 , (4.3)

then ‖Ã‖H2(Ω) will also be a small quantity. It explains why during the commutators estimates thereafter, we will
have to distinguish the cases where low derivatives of A appear, to take advantage of the flatness of the front f .

Now, let α′ ∈ N2 such that |α′| = n ≥ 1. The case n = 0 is a straightforward application of estimate (4.2), that
gives:

‖Q±‖3,± . ‖F±‖1,± + ‖G‖H1,5(Γ) . ‖F±‖0,±ρ,1 + ‖G‖ρ, 3
2
. (4.4)

From now on, we shall note Q′± := ∂α
′

Q±. Let us commute problem (4.1) with ∂α
′

:




−Aji∂j(Aki∂kQ
′±) = F ′± in (0, T )× Ω±,

[Q′±] = 0 on (0, T )× Γ,
(1 + |∇′f |2)[∂3Q

′] = G′ on (0, T )× Γ,
∂3Q

′ = 0 on (0, T )× Γ±.

(4.5)

The source term F ′± is defined by

F ′± := ∂α
′

F± +
[
∂α

′

; Aji∂j(Aki∂k·)
]
Q±.

Writing A = I3 − Ã, we can split F ′± into four quantities as follows:

F ′± = ∂α
′

F± +
[
∂α

′

; Ãji∂j(Ãki∂k·)
]
Q± −

[
∂α

′

; ∂iÃki∂k ·
]
Q± − 2

[
∂α

′

; Ãji∂ji ·
]
Q±.

=: F1 + F2 − F3 + 2F4. (4.6)

The boundary source term G′ is given by

G′ := ∂α
′

G −
[
[∂α

′

; (1 + |∇′f |2)∂3]Q
]

=: G1 −G2. (4.7)

Let us be careful: the exterior bracket in (4.7) stands for the jump across Γ, whereas the interior bracket corresponds
to a commutator. Applying estimate (4.2) to the problem (4.5), we have:

‖Q′±‖3,± . ‖F ′‖1,± + ‖G′‖H1,5(Γ). (4.8)

Thus, the partial sum of order N of ‖Q±‖0,±ρ,3 satisfies:

‖Q±‖0,±,Nρ,3 .

N∑

n=0

ρn

n!
max
|α′|=n

‖F ′±‖1,± +
N∑

n=0

ρn

n!
max
|α′|=n

‖G′‖H1,5(Γ). (4.9)

Estimate of F ′±:

The case of F1 is easy. Indeed, we have assumed that F± is an analytic function belonging to the spaceBρ,1,σ(Ω
±).

In particular, the quantity ‖F±‖0,±ρ,1 is finite, and we can write:

N∑

n=0

ρn

n!
max
|α′|=n

‖F1‖1,± =

N∑

n=0

ρn

n!
max
|α′|=n

‖∂α
′

F±‖1,± ≤ ‖F±‖0,±ρ,1 . (4.10)

Let us deal with the first commutator given by F2 :=
[
∂α

′

; Ãji∂j(Ãki∂k·)
]
Q±. Expanding the latter expression,

we have:

F2 =
∑

β′+γ′+δ′=α′

|β′+γ′|≥1

α′!

β′! γ′! δ′!

(
∂β

′

Ãji ∂
γ′

∂jÃki ∂
δ′∂kQ

± + ∂β
′

Ãji ∂
γ′

Ãki ∂
δ′∂jkQ

±
)
. (4.11)
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Let us set T01 := ∂β
′

Ãji ∂
γ′

∂jÃki ∂
δ′∂kQ

± and T02 := ∂β
′

Ãji ∂
γ′

Ãki ∂
δ′∂jkQ

±. In order to estimate the terms T01
and T02 in H1(Ω±), we first estimate the 0th-order derivative, and then the 1st-order derivatives in L2(Ω±). In
the following, ∂m denotes any mth-order derivative, for all m ≥ 1. All the following estimates are computed using
Hölder’s inequality and Sobolev embeddings recalled below (U stands for any domain among Ω, Ω+ or Ω−):

H1(U) →֒ Lp(U), ∀ 1 ≤ p ≤ 6,

H2(U) →֒ L∞(U).

We start with the 0th-order derivative:

‖T01‖0,± = ‖∂β
′

Ãji ∂
γ′

∂jÃki ∂
δ′∂kQ

±‖0,±

. ‖∂β
′

Ã‖H2 ‖∂γ
′

Ã‖H1 ‖∂δ
′

Q±‖3,±, (Hölder’s inequality in L∞ × L2 × L∞).

In the norms, we will write Hr to denote the space Hr(Ω) (and only for the domain Ω). Likewise, we get:

‖T02‖0,± . ‖∂β
′

Ã‖H2 ‖∂γ
′

Ã‖H2 ‖∂δ
′

Q±‖2,±, (Hölder’s inequality in L∞ × L∞ × L2).

Then, we compute the 1st-order derivatives. We write ∂1T01 = T11 + T12 + T13, with:

T11 = ∂β
′

∂1Ãji ∂
γ′

∂1Ãki ∂
δ′∂1Q±, T12 = ∂β

′

Ãji ∂
γ′

∂2Ãki ∂
δ′∂1Q±, T13 = ∂β

′

Ãji ∂
γ′

∂1Ãki ∂
δ′∂2Q±.

As done before, applying Hölder’s inequality in L4×L4×L∞ for T11, in L∞×L2×L∞ for T12 and in L∞×L4×L4

for T13, we get:

‖T11‖0,±, ‖T12‖0,±, ‖T13‖0,± . ‖∂β
′

Ã‖H2 ‖∂γ
′

Ã‖H2 ‖∂δ
′

Q±‖3,±. (4.12)

The case of T02 is analogous. We write ∂1T02 = T14 + T15 + T16, with:

T14 = ∂β
′

∂1Ãji ∂
γ′

Ãki ∂
δ′∂2Q±, T15 = ∂β

′

Ãji ∂
γ′

∂1Ãki ∂
δ′∂2Q±, T16 = ∂β

′

Ãji ∂
γ′

Ãki ∂
δ′∂3Q±.

Using Hölder’s inequality in L4 ×L∞ ×L4 for T14, in L∞ ×L4 ×L4 for T15 and in L∞ ×L∞ ×L2 for T16, we also
show that the terms T14, T15 and T16 satisfy the estimate (4.12). To sum up, we can write:

‖T01 + T02‖1,± . ‖∂β
′

Ã‖H2 ‖∂γ
′

Ã‖H2 ‖∂δ
′

Q±‖3,±. (4.13)

From now on, we can estimate the commutator F2 given by (4.11). Applying (4.13), we have:

‖F2‖1,± .
∑

β′+γ′+δ′=α′

|β′+γ′|≥1

α′!

β′! γ′! δ′!
‖∂β

′

Ã‖H2 ‖∂γ
′

Ã‖H2 ‖∂δ
′

Q±‖3,±.

Summing over the length of multi-indices (recall that |α′| = n), we obtain:

‖F2‖1,± .
∑

i1+i2+i3=n
i1+i2≥1

(
∑

β′+γ′+δ′=α′

|β′|=i1
|γ′|=i2
|δ′|=i3

α′!

β′! γ′! δ′!

)
max

β′+γ′+δ′=α′

|β′|=i1
|γ′|=i2
|δ′|=i3

(
‖∂β

′

Ã‖H2 ‖∂γ
′

Ã‖H2 ‖∂δ
′

Q±‖3,±

)
. (4.14)

Next, we use the following identity to simplify the second sum in (4.14):

∑

β′+γ′+δ′=α′

|β′|=i1, |γ
′|=i2, |δ

′|=i3

α′!

β′! γ′! δ′!
=

n!

i1! i2 i3!
.

Then, bounding from above the maximum of the products by the product of the maximums, we get:

‖F2‖1,± .
∑

i1+i2+i3=n
i1+i2≥1

n!

i1! i2! i3!
max
|β′|=i1

‖∂β
′

Ã‖H2 max
|γ′|=i2

‖∂γ
′

Ã‖H2 max
|δ′|=i3

‖∂δ
′

Q±‖3,±.

Now we have to use that i3 can not be larger than n− 1. So, we rewrite the previous sum using a summation over
the values of i1 + i2:

1

n!
‖F2‖1,± .

n∑

i=1

∑

i1+i2=i

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H2

1

i2!
max
|γ′|=i2

‖∂γ
′

Ã‖H2

1

(n− i)!
max

|δ′|=n−i
‖∂δ

′

Q±‖3,±

.

n−1∑

i=0

∑

i1+i2=i+1

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H2

1

i2!
max
|γ′|=i2

‖∂γ
′

Ã‖H2

1

(n− 1− i)!
max

|δ′|=n−1−i
‖∂δ

′

Q±‖3,±, (4.15)
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where the sum in (4.15) has been re-indexed over i. For the sake of clarity, we rewrite the sum
∑

i1+i2=i+1 using

only one index i1 ∈ {0, . . . , i+ 1}:

1

n!
‖F2‖1,± .

n−1∑

i=0

i+1∑

i1=0

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H2

1

(i+ 1− i1)!
max

|γ′|=i+1−i1
‖∂γ

′

Ã‖H2 (4.16)

×
1

(n− 1− i)!
max

|δ′|=n−1−i
‖∂δ

′

Q±‖3,±.

We recall that we have to distinguish the cases where we can exhibit the norms ‖Ã‖H2 because of their smallness.

So, in the estimate (4.16), we deal with the case i = 0 for which we have the norm ‖Ã‖H2 , and the case i ≥ 1 which
will give some analytic norms. The latter will be handled thereafter using the radius of analyticity ρ > 0 as a small
parameter. We rewrite the double sum in (4.16) as Si=0 + Si≥1. The term Si=0 corresponds to the case i = 0, and
the term Si≥1 to the case where we sum over i ≥ 1.
◮ Treatment of Si=0:

We directly have the following estimate

Si=0 = 2‖Ã‖H2 max
|γ′|=1

‖∂γ
′

Ã‖H2

1

(n− 1)!
max

|δ′|=n−1
‖∂δ

′

Q±‖3,±

. ‖Ã‖H2 ‖Ã‖H3

1

(n− 1)!
max

|δ′|=n−1
‖∂δ

′

Q±‖3,±. (4.17)

◮ Treatment of Si≥1:

Remark: if n = 1, the term Si≥1 does not appear in the right side of (4.16). Consequently, the case n = 1 is
completely treated using the estimate (4.17). So, we can assume in the following that n ≥ 2.
Re-indexing over i, we can write:

Si≥1 =
n−2∑

i=0

i+2∑

i1=0

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H2

1

(i + 2− i1)!
max

|γ′|=i+2−i1
‖∂γ

′

Ã‖H2

1

(n− 2− i)!
max

|δ′|=n−2−i
‖∂δ

′

Q±‖3,±.

Once more, we isolate the case i1 ∈ {0, i+ 2}, which gives the norm ‖Ã‖H2 . Thus we get:

Si≥1 = 2‖Ã‖H2

n−2∑

i=0

1

(i + 2)!
max

|γ′|=i+2
‖∂γ

′

Ã‖H2

1

(n− 2− i)!
max

|δ′|=n−2−i
‖∂δ

′

Q±‖3,± (4.18)

+

n−2∑

i=0

i+1∑

i1=1

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H2

1

(i+ 2− i1)!
max

|γ′|=i+2−i1
‖∂γ

′

Ã‖H2

1

(n− 2− i)!
max

|δ′|=n−2−i
‖∂δ

′

Q±‖3,±. (4.19)

We shall note Si1=0,i+2 (resp. S1≤i1≤i+1) the right term of (4.18) (resp. (4.19)).

� Treatment of Si1=0,i+2:

Using both following trivial estimates

max
|γ′|=i+2

‖∂γ
′

Ã‖H2 ≤ max
|γ′|=i+1

‖∂γ
′

Ã‖H3 and (i+ 2)! ≥ (i+ 1)!, (4.20)

and re-indexing over i, we obtain:

Si1=0,i+2 . ‖Ã‖H2

n−1∑

i=1

1

i!
max
|γ′|=i

‖∂γ
′

Ã‖H3

1

(n− 1− i)!
max

|δ′|=n−1−i
‖∂δ

′

Q±‖3,±. (4.21)

Eventually, the estimate (4.21) is rewritten as follows:

Si1=0,i+2 . ‖Ã‖H2

∑

i1+i2=n−1

1

i1!
max
|γ′|=i1

‖∂γ
′

Ã‖H3

1

i2!
max
|δ′|=i2

‖∂δ
′

Q±‖3,±. (4.22)

This concludes the case of Si1=0,i+2.
� Treatment of S1≤i1≤i+1:
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Re-indexing over i1, we have:

S1≤i1≤i+1 =

n−2∑

i=0

i∑

i1=0

1

(i1 + 1)!
max

|β′|=i1+1
‖∂β

′

Ã‖H2

1

(i + 1− i1)!
max

|γ′|=i+1−i1
‖∂γ

′

Ã‖H2

×
1

(n− 2− i)!
max

|δ′|=n−2−i
‖∂δ

′

Q±‖3,±.

Using the same kind of inequalities given by (4.20), we deduce that

S1≤i1≤i+1 .

n−2∑

i=0

i∑

i1=0

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H3

1

(i− i1)!
max

|γ′|=i−i1
‖∂γ

′

Ã‖H3

1

(n− 2− i)!
max

|δ′|=n−2−i
‖∂δ

′

Q±‖3,±.

Finally, rewriting the sum over i1 with two indices i1 and i2 such that i1 + i2 = i, we end up with:

S1≤i1≤i+1 .

n−2∑

i=0

∑

i1+i2=i

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H3

1

i2!
max
|γ′|=i2

‖∂γ
′

Ã‖H3

1

(n− 2− i)!
max

|δ′|=n−2−i
‖∂δ

′

Q±‖3,±

.
∑

i1+i2+i3=n−2

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H3

1

i2!
max
|γ′|=i2

‖∂γ
′

Ã‖H3

1

i3!
max
|δ′|=i3

‖∂δ
′

Q±‖3,±, (4.23)

which concludes the estimate of S1≤i1≤i+1.

Let us come back to the estimate (4.16) of the commutator F2. We use (4.17) together with (4.22) and (4.23) to
get, for |α′| = n ≥ 2:

ρn

n!
max
|α′|=n

‖F2‖1,± . ρ ‖Ã‖H2 ‖Ã‖H3

ρn−1

(n− 1)!
max

|δ′|=n−1
‖∂δ

′

Q±‖3,± (4.24)

+ ρ ‖Ã‖H2

∑

i1+i2=n−1

ρi1

i1!
max
|γ′|=i1

‖∂γ
′

Ã‖H3

ρi2

i2!
max
|δ′|=i2

‖∂δ
′

Q±‖3,± (4.25)

+ ρ2
∑

i1+i2+i3=n−2

ρi1

i1!
max
|β′|=i1

‖∂γ
′

Ã‖H3

ρi2

i2!
max
|γ′|=i2

‖∂γ
′

Ã‖H3

ρi3

i3!
max
|δ′|=i3

‖∂δ
′

Q±‖3,±. (4.26)

If n = 1, we recall that we have the simpler estimate:

ρn

n!
max
|α′|=n

‖F2‖1,± . ρ ‖Ã‖H2 ‖Ã‖H3

ρn−1

(n− 1)!
max

|δ′|=n−1
‖∂δ

′

Q±‖3,±,

which turns out to be the same as (4.24). In the sums appearing in (4.25) and (4.26), we recognize “partial” Cauchy

products. Thus, summing over n ∈ {1, . . . , N} and using the straightforward inequality ‖Ã‖H3 ≤ ‖Ã‖0ρ,3, we obtain:

N∑

n=1

ρn

n!
max
|α′|=n

‖F2‖1,± . ρ ‖Ã‖H2 ‖Ã‖0ρ,3‖Q
±‖0,±,N−1

ρ,3 + ρ ‖Ã‖H2 ‖Ã‖0,N−1
ρ,3 ‖Q±‖0,±,N−1

ρ,3

+ ρ2 ‖Ã‖0,N−2
ρ,3 ‖Ã‖0,N−2

ρ,3 ‖Q±‖0,±,N−2
ρ,3 .

Since the coefficients of Ã belong to the space Bρ,3,σ(Ω) (see page 17), we can bound from above the partial sums

‖Ã‖0,Mρ,3 by the finite quantity ‖Ã‖0ρ,3. Eventually, the commutator F2 satisfies the estimate:

N∑

n=1

ρn

n!
max
|α′|=n

‖F2‖1,± . ρ ‖Ã‖H2 ‖Ã‖0ρ,3 ‖Q
±‖0,±,Nρ,3 +

(
ρ ‖Ã‖0ρ,3

)2
‖Q±‖0,±,Nρ,3 . (4.27)

This concludes the case of the first commutator F2.
Let us move on to the second commutator F3 given by (see (4.6)):

F3 :=
[
∂α

′

; ∂iÃki∂k ·
]
Q± =

∑

β′+γ′=α′

|β′|≥1

α′!

β′! γ′!
∂β

′

∂iÃki ∂
γ′

∂kQ
±. (4.28)

We estimate F3 with the same tools used for F2. First of all, considering the derivatives of order 0 and 1, we show
that

‖∂β
′

∂iÃki ∂
γ′

∂kQ
±‖1,± . ‖∂β

′

Ã‖H2 ‖∂γ
′

Q±‖3,±. (4.29)



22 OLIVIER PIERRE

It leads to the following estimate (n ≥ 1):

1

n!
max
|α′|=n

‖F3‖1,± .

n∑

i1=1

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H2

1

(n− i1)!
max

|γ′|=n−i1
‖∂γ

′

Q±‖3,±.

Using similar inequalities as in (4.20), we can write

1

n!
max
|α′|=n

‖F3‖1,± .
∑

i1+i2=n−1

1

i1!
max
|β′|=i1

‖∂β
′

Ã‖H3

1

i2!
max
|γ′|=i2

‖∂γ
′

Q±‖3,±.

Summing over n ∈ {1, . . . , N}, we end up with:

N∑

n=1

ρn

n!
max
|α′|=n

‖F3‖1,± . ρ ‖Ã‖0ρ,3 ‖Q
±‖0,±,Nρ,3 . (4.30)

Let us finish with the last commutator F4 of F ′:

F4 :=
[
∂α

′

; Ãji∂ji ·
]
Q± =

∑

β′+γ′=α′

|β′|≥1

α!

β′! γ′!
∂β

′

Ãki ∂
γ′

∂kiQ
±. (4.31)

In the same spirit as (4.29), we show that

‖∂β
′

Ãki ∂
γ′

∂kiQ
±‖1,± . ‖∂β

′

Ã‖H2 ‖∂γ
′

Q±‖3,±.

This estimate is the same as (4.29). Consequently, we also conclude that

N∑

n=1

ρn

n!
max
|α′|=n

‖F4‖1,± . ρ ‖Ã‖0ρ,3 ‖Q
±‖0,±,Nρ,3 . (4.32)

This achieves the estimate of the source term F ′±. Let us sum up below the final estimate satisfied by F ′±,
combining (4.10), (4.27), (4.30) and (4.32):

N∑

n=1

ρn

n!
max
|α′|=n

‖F ′±‖1,± . ‖F±‖0ρ,1 + ρ ‖Ã‖0ρ,3

(
1 + ‖Ã‖H2

)
‖Q±‖0,±,Nρ,3

+
(
ρ ‖Ã‖0ρ,3

)2
‖Q±‖0,±,Nρ,3 . (4.33)

Now, we shall proceed in the same way to estimate the boundary source term G′.
Estimate of G′:

We recall that G′ is defined by (4.7). The case of G1 is identical to the interior source term F1. We obtain the
same type of estimate as (4.10), namely:

N∑

n=0

ρn

n!
max
|α′|=n

‖G1‖H1,5(Γ) =

N∑

n=0

ρn

n!
max
|α′|=n

‖∂α
′

G‖H1,5(Γ) ≤ ‖G‖ρ, 3
2
. (4.34)

Now, we treat the commutator G2. To do so, we use the continuity of the trace map from H2(Ω±) to H1.5(Γ),
in order to eliminate the jump across Γ. Then, we also use Proposition 2.1 to make ψ appear in the estimates:

‖G2‖H1,5(Γ) =
∥∥∥
[[
∂α

′

; (1 + |∇′f |2)∂3
]
Q
]∥∥∥
H1,5(Γ)

.
∥∥∥
[
∂α

′

; (1 + ∂hψ∂hψ)∂3
]
Q±
∥∥∥
2,±

,

where we have adopted Einstein’s summation convention over the index h ∈ {1, 2}. Thus we set

G±
2 :=

[
∂α

′

; (1 + ∂hψ∂hψ)∂3
]
Q±.

We expand to obtain:

G±
2 =

∑

β′+γ′+δ′=α′

|β′+γ′|≥1

α′!

β′! γ′! δ′!
∂β

′

∂hψ ∂
γ′

∂hψ ∂
δ′∂3Q

±.

Using the algebra property of the space H2(Ω±), we have

‖G2‖H1,5(Γ) .
∑

β′+γ′+δ′=α′

|β′+γ′|≥1

α′!

β′! γ′! δ′!
‖∂β

′

ψ‖H3 ‖∂γ
′

ψ‖H3 ‖∂δ
′

Q±‖3,±.
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The computations are exactly the same as the commutator F2 defined by (4.11). Here, ψ plays the role of Ã, whose

tangential derivatives are estimated in H3 instead of H2 for Ã. It remains consistent, because the definition of Ã

only gives 1st-order derivatives of ψ. Thus the functions Ã and ψ are estimated in the same Sobolev scale. We get
the following estimate for G2 (analogous to (4.27)):

N∑

n=2

ρn

n!
max
|α′|=n

‖G2‖H1,5(Γ) . ρ‖ψ‖H3 ‖ψ‖0ρ,4 ‖Q
±‖0,±,Nρ,3 +

(
ρ ‖ψ‖0ρ,4

)2
‖Q±‖0,±,Nρ,3 . (4.35)

We notice that the norm ‖ψ‖H3 as well as ‖Ã‖H2 will be small quantities, because of the flatness of the front f in
H2.5(T2). Below, we sum up the final estimate of G′, combining (4.34) together with (4.35):

N∑

n=1

ρn

n!
max
|α′|=n

‖G′‖H1,5(Γ) . ‖G‖ρ, 3
2
+ ρ ‖ψ‖H3 ‖ψ‖0ρ,4 ‖Q

±‖0,±,Nρ,3 +
(
ρ ‖ψ‖0ρ,4

)2
‖Q±‖0,±,Nρ,3 . (4.36)

Estimate of Q′±:

Let us come back to the estimate (4.9). Using the inequalities (4.33) and (4.36) holding for n ≥ 1, and (4.4)
holding for n = 0, we deduce that:

‖Q±‖0,±,Nρ,3 . ‖F±‖0,±ρ,1 + ‖G‖ρ, 3
2

+ ρ
((

1 + ‖Ã‖H2

)
‖Ã‖0ρ,3 + ‖ψ‖H3 ‖ψ‖0ρ,4

)
‖Q±‖0,±,Nρ,3 (4.37)

+ ρ2
(
‖Ã‖0ρ,3 ‖Ã‖

0
ρ,3 + ‖ψ‖0ρ,4 ‖ψ‖

0
ρ,4

)
‖Q±‖0,±,Nρ,3 .

Conclusion:

Now we complete the estimate (4.37), absorbing the analytic terms on the right hand side. We consider f ∈
Bρ, 7

2
(T2) satisfying both following conditions:

‖f‖H2,5(T2) < ε0, (4.38a)

‖f‖ρ, 7
2
< η0, (4.38b)

where the numerical constant η0 > 0 is given by Corollary 2.3. The parameter ε0 > 0 (a numerical constant) is
chosen small enough in order to have 1

2 ≤ J ≤ 3
2 and the interior regularity estimate (4.2) (see [CMST12, p.250,

271]). From now on, C0 > 0 will denote any numerical constant that may depend on ε0, but not on the parameters
ρ and σ. Using the assumption (4.38a), we have the inequality ‖J−1‖H2 ≤ C0. Therefore the algebra property of
H2(Ω) together with Lemma 1.1 give:

‖Ã‖H2 ≤ C0.

Next, we estimate the analytic norms in the following way:

‖Ã‖0ρ,3 = ‖J−1∇ψ‖0ρ,3 ≤ ‖J−1∇ψ‖ρ,3,σ

≤ C0 ‖J
−1‖ρ,3,σ ‖ψ‖ρ,4,σ (algebra property of Bρ,3,σ(Ω))

≤ C0 ‖J
−1‖ρ,3,σ ‖f‖ρ, 7

2
(Proposition 2.1)

≤ C0 η0. (Corollary 2.3 and assumption (4.38b))

So, we have first:

ρ
((

1 + ‖Ã‖H2

)
‖Ã‖0ρ,3 + ‖ψ‖H3 ‖ψ‖0ρ,4

)
≤ C0 η0 ρ.

Then, we also get:

ρ2
(
‖Ã‖0ρ,3 ‖Ã‖

0
ρ,3 + ‖ψ‖0ρ,4 ‖ψ‖

0
ρ,4

)
≤ C0 η

2
0 ρ

2.

For instance, let us define

ρ0 := min

{
1,

1

2C0η0

}
∈ (0, 1], (4.39)

so that for all ρ ∈ (0, ρ0], we eventually get:

‖Q±‖0,±,Nρ,3 . ‖F±‖0,±ρ,1 + ‖G‖ρ, 3
2
. (4.40)

Taking the supremum over N , we obtain Q± ∈ B0
ρ,3(Ω

±) and the same estimate as above for the norm ‖Q±‖0,±ρ,3 .
We summarise the main result of this paragraph in the following theorem.
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Theorem 4.1. There exist ε0 ∈ (0, 1], η0 > 0 and ρ0 ∈ (0, 1] such that, for all ρ ∈ (0, ρ0] and σ ∈ (0, σ0], if we
consider a front f ∈ Bρ, 7

2
(T2) satisfying

‖f‖H2,5(T2) < ε0 and ‖f‖ρ, 7
2
< η0, (4.41)

and analytic source terms F± ∈ Bρ,1,σ(Ω
±) and G ∈ Bρ, 3

2
(Γ), then the unique solution (Q+, Q−) to the elliptic

problem (4.1) (with zero mean on Ω) belongs to the space B0
ρ,3(Ω

±); furthermore, it satisfies the following estimate:

‖Q±‖0,±ρ,3 ≤ C
(
‖F±‖0,±ρ,1 + ‖G‖ρ, 3

2

)
, (4.42)

where C > 0 is a constant depending only on ε0 and η0.

Let us observe that we have already admitted that the elliptic problem (4.1) has a solution Q± in H∞(Ω±) (see
page 17). Theorem 4.1 gives an additional information about the tangential derivatives of Q± when the source terms
and the coefficients of the elliptic operator are in appropriate analytic spaces. The purpose of the next paragraph
is to handle all the remaining normal derivatives. We shall see that if the source terms F± and G together with
the coefficients Aji of problem (4.1) are in analytic spaces, then the solution (Q+, Q−) will also be analytic, and
satisfies a similar estimate as (4.42).

4.2. Estimate of the normal derivatives. Within this paragraph, we still consider analytic source terms F± ∈
Bρ,1,σ(Ω

±) and G ∈ Bρ, 3
2
(Γ), together with a front f ∈ Bρ, 7

2
(T2) satisfying (4.41). From now on, the purpose

is to show that the (zero mean) solution Q± of problem (4.1) belongs to the space Bρ,3,σ(Ω
±), for σ > 0 small

enough. To do so, we first have to handle all the normal derivatives, in order to show that for all k ≥ 1, we have

Q± ∈ Bkρ,3(Ω
±). Eventually, to prove that Q± ∈ Bρ,3,σ(Ω

±), it will remain to estimate the partial sums ‖Q±‖±,Nρ,3,σ.

We proceed by induction over k ≥ 0. Let us assume that for all j ∈ {0, . . . , k}, we have Q± ∈ B
j
ρ,3(Ω

±). First,

we know that Q± ∈ H∞(Ω±). Therefore, in particular, Q± ∈ Hk+4
x3

(H∞(T2)). It remains to prove that the norm

‖Q±‖k+1,±
ρ,3 is a finite quantity. For all N ≥ 0, we shall write ‖Q±‖k+1,±,N

ρ,3 its partial sum of order N . Using the

induction assumption, we split the partial sum as follows (we assume that N ≥ k + 1):

‖Q±‖k+1,±,N
ρ,3 :=

N∑

k=0

ρn

n!
max
|α|=n
α3≤k+1

‖∂αQ±‖3,±

≤ ‖Q±‖k,±ρ,3 +

N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖∂α

′

∂k+1
3 Q±‖3,±. (4.43)

In order to estimate the right sum in (4.43), we rewrite the norm ‖∂α
′

∂k+1
3 Q±‖3,± as follows:

‖∂α
′

∂k+1
3 Q±‖23,± = ‖∂α

′

∂k+1
3 Q±‖22,± +

∑

|β|=3
|β′|≥1

‖∂β∂α
′

∂k+1
3 Q±‖20,± + ‖∂α

′

∂k+4
3 Q±‖20,±. (4.44)

Both first right terms of (4.44) will allow to get the quantity ‖Q±‖k,±ρ,3 . Indeed, we begin by writing the estimate

‖∂α
′

∂k+1
3 Q±‖2,± ≤ ‖∂α

′

∂k3Q
±‖3,± ≤ max

|α′|=n−k−1
‖∂α

′

∂k3Q
±‖3,±.

Thus summing over n we have

N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖∂α

′

∂k+1
3 Q±‖2,± ≤

N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖∂α

′

∂k3Q
±‖3,± ≤ ρ ‖Q±‖k,±ρ,3 .

On the other hand, for |β| = 3 and |β′| ≥ 1, the terms ‖∂β∂α
′

∂k+1
3 Q±‖0,± of (4.44) give the same kind of estimate.

Indeed, since β is a multi-index of length 3, with at least one tangential derivative ∂̄, we can write ∂β = ∂̄∂2.
Therefore we get:

‖∂β∂α
′

∂k+1
3 Q±‖0,± = ‖∂̄∂2 (∂α

′

∂k+1
3 Q±)‖0,± ≤ ‖∂̄∂α

′

∂k3Q
±‖3,± ≤ max

|α′|=n−k
‖∂α

′

∂k3Q
±‖3,±.

After summing over n, we obtain:

∑

|β|=3
|β′|≥1

N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖∂β∂α

′

∂k+1
3 Q±‖0,± .

N∑

n=k+1

ρn

n!
max

|α′|=n−k
‖∂α

′

∂k3Q
±‖3,± . ‖Q±‖k,±ρ,3 .
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Back to (4.43), we deduce that

‖Q±‖k+1,±,N
ρ,3 . (1 + ρ) ‖Q±‖k,±ρ,3 +

N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖∂α

′

∂k+4
3 Q±‖0,±. (4.45)

The only tricky term to estimate is the one containing the most normal derivatives, namely ∂α
′

∂k+4
3 Q±. We have

to estimate the latter in L2(Ω±). So, we begin by using the following bound:

‖∂α
′

∂k+4
3 Q±‖0,± ≤ ‖∂α

′

∂k3 (∂
2
3Q

±)‖2,±.

This highlights exactly 2 normal derivatives of Q±, that we will be able to eliminate using the equation satisfied
by Q± in problem (4.1). Then, it will suffice to apply the operator ∂α

′

∂k3 to this equation: it will exhibit at most
k normal derivatives. Consequently, using the induction assumption, we shall be able to use all the quantities
‖Q±‖j,±ρ,3 , for j ≤ k. The difference of exactly one normal derivative between the steps k and k + 1 will allow to
gain one power of σ later on, after summing over k. Eventually, this gain will turn out to be crucial to absorb
some analytic norms, in order to complete the estimate of the pressure. This method is similar as the previous
paragraph, when the computations of ‖Q±‖0,±ρ,3 gave us some powers of ρ.

Expanding the first equation of (4.1), we get:

1 + |∇′ψ|2

J2
∂23Q

± = −∆′Q± + 2
∂hψ

J
∂h∂3Q

± − F± − Aji ∂jÃki ∂kQ
±. (4.46)

Let us define

ζ :=
J2

1 + |∇′ψ|2
, (4.47)

so that we can rewrite (4.46) as follows:

∂23Q
± = −ζ∆′Q± + 2

ζ

J
∂hψ ∂h∂3Q

± − ζ F± − ζ A∂1Ã ∂1Q±. (4.48)

Let us set α := (α′, k) (remark that |α| = n− 1), and apply ∂α to equation (4.48):

∂α∂23Q
± = −∂α(ζ∆′Q±) + 2∂α

(
ζ

J
∂hψ ∂h∂3Q

±

)
− ∂α(ζ F±) − ∂α

(
ζ A∂1Ã ∂1Q±

)

=: −T1 + 2T2 − T3 − T4. (4.49)

To finish with, it remains to estimate each term Ti in H2(Ω±).
◮ Treatment of T1:

We have:

T1 := ∂α(ζ∆′Q±) =
∑

β+γ=α

α!

β! γ!
∂βζ ∂γ∆′Q±.

As for the case of ‖Q±‖0,±ρ,3 , we get:

‖T1‖2,± .
∑

i1+i2=n−1

(n− 1)!

i1! i2!
max
β+γ=α
|β|=i1
|γ|=i2

(
‖∂βζ‖H2 ‖∂γ∆′Q±‖2,±

)
. (4.50)

Now, we have to use the fact that β3 + γ3 = k. Consequently, we can bound from above the right term of (4.50) as
follows:

‖T1‖2,± .
∑

j1+j2=k

∑

i1+i2=n−1

(n− 1)!

i1! i2!
max
|β|=i1
β3≤j1

‖∂βζ‖H2 max
|γ|=i2
γ3≤j2

‖∂γ∆′Q±‖2,±. (4.51)

The estimate of Q± is reduced to H3(Ω±) using the following inequality:

max
|γ|=i2
γ3≤j2

‖∂γ∆′Q±‖2,± . max
|γ|=i2+1
γ3≤j2

‖∂γQ±‖3,±.

Then, re-indexing over i2, we obtain:

‖T1‖2,± .
∑

j1+j2=k

∑

i1+i2=n
i2≥1

(n− 1)!

i1! (i2 − 1)!
max
|β|=i1
β3≤j1

‖∂βζ‖H2 max
|γ|=i2
γ3≤j2

‖∂γQ±‖3,±.
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Finally, multiplying by ρn

n! and summing over n ∈ {k + 1, . . . , N}, we have:

N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖T1‖2,± .

∑

j1+j2=k

N∑

n=k+1

∑

i1+i2=n
i2≥1

(n− 1)! i2
n!

ρi1

i1!
max
|β|=i1
β3≤j1

‖∂βζ‖H2

ρi2

i2!
max
|γ|=i2
γ3≤j2

‖∂γQ±‖3,±

.
∑

j1+j2=k

N∑

n=k+1

∑

i1+i2=n

ρi1

i1!
max
|β|=i1
β3≤j1

‖∂βζ‖H2

ρi2

i2!
max
|γ|=i2
γ3≤j2

‖∂γQ±‖3,±,

where we have used the inequality (n−1)! i2
n! ≤ 1. To conlude, we recognize a “partial” Cauchy product with respect

to n, and write:

N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖T1‖2,± .

∑

j1+j2=k

‖ζ‖j1,Nρ,2 ‖Q±‖j2,±,Nρ,3 .
∑

j1+j2=k

‖ζ‖j1ρ,2 ‖Q
±‖j2,±ρ,3 , (4.52)

which ends the case of T1.
◮ Treatment of T2:

In the same way as T2, we get:

T2 := ∂α
(
ζ

J
∂hψ ∂h∂3Q

±

)
=

∑

β+γ=α

α!

β! γ!
∂β
(
ζ

J
∂hψ

)
∂γ∂h∂3Q

±.

Then, the estimate of ‖T2‖2,± is identical to T1, estimating Q± in H3(Ω±) via the inequality

max
|γ|=i2
γ3≤j2

‖∂γ∂h∂3Q
±‖2,± ≤ max

|γ|=i2+1
γ3≤j2

‖∂γQ±‖3,±.

We conclude that
N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖T2‖2,± .

∑

j1+j2=k

∥∥∥∥
ζ

J
∂hψ

∥∥∥∥
j1

ρ,2

‖Q±‖j2,±ρ,3 . (4.53)

◮ Treatment of T3:

By definition, we have

T3 := ∂α
(
ζ F±

)
=

∑

β+γ=α

α!

β! γ!
∂βζ ∂γF±.

As previously, we get:

‖T3‖2,± .
∑

j1+j2=k

∑

i1+i2=n−1

(n− 1)!

i1! i2!
max
|β|=i1
β3≤j1

‖∂βζ‖H2 max
|γ|=i2
γ3≤j2

‖∂γF±‖2,±.

By assumption, we have F± ∈ Bρ,1,σ(Ω
±). As a consequence, we are reduced to the norm ‖·‖1,± using the following

inequality:

max
|γ|=i2
γ3≤j2

‖∂γF±‖2,± . max
|γ|=i2
γ3≤j2+1

‖∂γF±‖1,± + max
|γ|=i2+1
γ3≤j2+1

‖∂γF±‖1,±.

Next, the arguments are completely analogous to the cases of T1 and T2, and we end up with:

N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖T3‖2,± . (1 + ρ)

∑

j1+j2=k

‖ζ‖j1ρ,2 ‖F
±‖j2+1,±

ρ,1 . (4.54)

◮ Treatment of T4:

The case of T4 is the same as T1, but with an additional term to differentiate:

T4 := ∂α
(
ζ A∂1Ã ∂1Q±

)
=

∑

β+γ+δ=α

α!

β! γ! δ!
∂β(ζ A) ∂γ∂1Ã ∂δ∂1Q±.

We generalize estimate (4.51) with three indices i1, i2 and i3:

‖T4‖2,± .
∑

j1+j2+j3=k

∑

i1+i2+i3=n−1

(n− 1)!

i1! i2! i3!
max
|β|=i1
β3≤j1

‖∂β(ζ A)‖H2 max
|γ|=i2
γ3≤j2

‖∂γ∂1Ã‖H2 max
|δ|=i3
β3≤j3

‖∂δ∂1Q±‖2,±.
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Then, using both estimates

‖∂γ∂1Ã‖H2 ≤ ‖∂γÃ‖H3 and ‖∂δ∂1Q±‖2,± ≤ ‖∂δQ±‖3,±,

we can deduce that

‖T4‖2,± .
∑

j1+j2+j3=k

∑

i1+i2+i3=n−1

(n− 1)!

i1! i2! i3!
max
|β|=i1
β3≤j1

‖∂β(ζ A)‖H2 max
|γ|=i2
γ3≤j2

‖∂γÃ‖H3 max
|δ|=i3
β3≤j3

‖∂δQ±‖3,±.

Eventually, we obtain:

N∑

n=k+1

ρn

n!
max

|α′|=n−k−1
‖T4‖2,± . ρ

∑

j1+j2+j3=k

‖ζ A‖j1ρ,2 ‖Ã‖
j2
ρ,3 ‖Q

±‖j3,±ρ,3 . (4.55)

Back to estimate (4.45), and using (4.52)-(4.55), we have proved that

‖Q±‖k+1,±,N
ρ,3 . (1 + ρ) ‖Q±‖k,±ρ,3 +

∑

j1+j2=k

(
‖ζ‖j1ρ,2 +

∥∥∥∥
ζ

J
∇′ψ

∥∥∥∥
j1

ρ,2

)
‖Q±‖j2,±ρ,3

+ (1 + ρ)
∑

j1+j2=k

‖ζ‖j1ρ,2 ‖F
±‖j2+1,±

ρ,1

+ ρ
∑

j1+j2+j3=k

‖ζ A‖j1ρ,2 ‖Ã‖
j2
ρ,3 ‖Q

±‖j3,±ρ,3 . (4.56)

In particular, we can see that the norm ‖Q±‖k+1,±,N
ρ,3 is uniformly bounded with respect to N . Thus, taking the

supremum over N , we have ‖Q±‖k+1,±
ρ,3 < +∞. By induction, we obtain Q± ∈ ∩k≥0B

k
ρ,3(Ω

±), with estimate (4.56)

which also holds for ‖Q±‖k+1,±
ρ,3 . Multiplying by σk+1 and summing over k ∈ {0, . . . ,K − 1} (where K ≥ 1 is any

integer), we end up with the following estimate for the partial sum ‖Q±‖±,Kρ,3,σ of the norm ‖Q±‖±ρ,3,σ:

‖Q±‖±,Kρ,3,σ . ‖Q±‖0,±ρ,3 + (1 + ρ) ‖ζ‖ρ,2,σ ‖F
±‖±ρ,1,σ (4.57)

+ σ

(
‖ζ‖ρ,2,σ +

∥∥∥∥
ζ

J
∇′ψ

∥∥∥∥
ρ,2,σ

+ ρ ‖ζ‖ρ,2,σ ‖A‖ρ,2,σ ‖Ã‖ρ,3,σ

)
‖Q±‖±,Kρ,3,σ. (4.58)

Using (4.42) satisfied by ‖Q±‖0,±ρ,3 , and bounding from above ρ by ρ0 ≤ 1, we can estimate the right term of (4.57)
by

C0

(
‖Q±‖0,±ρ,3 + ‖ζ‖ρ,2,σ ‖F

±‖±ρ,1,σ

)
,

where C0 > 0 is a numerical constant. Estimate (4.57)-(4.58) is rewritten as follows:

‖Q±‖±,Kρ,3,σ ≤ C1

(
‖Q±‖0,±ρ,3 + ‖ζ‖ρ,2,σ ‖F

±‖±ρ,1,σ
)

(4.59)

+ σ C1

(
‖ζ‖ρ,2,σ +

∥∥∥∥
ζ

J
∇′ψ

∥∥∥∥
ρ,2,σ

+ ρ ‖ζ‖ρ,2,σ ‖A‖ρ,2,σ ‖Ã‖ρ,3,σ

)
‖Q±‖±,Kρ,3,σ, (4.60)

where C1 > 0 is a numerical constant. From now on, it remains to absorb the analytic terms in (4.60), in order to

complete the estimate of ‖Q±‖±,Kρ,3,σ.
Absorption of the analytic terms.

◮ Treatment of ‖ζ‖ρ,2,σ:

We proceed in the same way as ‖Q±‖0,±ρ,3 . We use the gain of one power of σ in order to absorb the analytic terms in

(4.60), choosing σ small enough. Let f ∈ Bρ, 7
2
(T2) still satisfy assumption (4.41) of Theorem 4.1. As a consequence,

we obtain both following estimates (we have just rewritten (2.17) and (2.19)):

‖∇ψ‖ρ,3,σ ≤ ‖ψ‖ρ,4,σ ≤ C0‖f‖ρ,7
2
≤ C0, (4.61)

∥∥∥∥
1

J

∥∥∥∥
ρ,3,σ

≤ C0. (4.62)

Here, and from now on, C0 > 0 will stand for any numerical constant. We notice that both estimates (4.61) and
(4.62) hold for all ρ ∈ (0, ρ0] and σ ∈ (0, σ0] (recall that σ0 has been fixed, equal to 1

2 ). Using the algebra property
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of Bρ,2,σ(Ω), we have:

‖ζ‖ρ,2,σ ≤ C0

∥∥∥∥
1

1 + |∇′ψ|2

∥∥∥∥
ρ,2,σ

‖J‖2ρ,2,σ.

On the one hand, using (4.61), we can write:

‖J‖ρ,2,σ = ‖1 + ∂3ψ‖ρ,2,σ ≤ C0 (1 + ‖ψ‖ρ,3,σ) ≤ C0.

On the other hand, up to reduce a bit more η0 > 0 if necessary (see assumption (4.41)), we get:
∥∥∥∥

1

1 + |∇′ψ|2

∥∥∥∥
ρ,2,σ

≤ C0.

Indeed it suffices to use Proposition 2.2 and to adapt the proof of Corollary 2.3. Eventually, we can state that ζ is
bounded in Bρ,2,σ(Ω):

‖ζ‖ρ,2,σ ≤ C0. (4.63)

◮ Treatment of

∥∥∥∥
ζ

J
∇′ψ

∥∥∥∥
ρ,2,σ

and ρ ‖A‖ρ,2,σ ‖ζ‖ρ,2,σ ‖Ã‖ρ,3,σ:

In the following, we do not detail the computations of these terms, since we use exactly the same method as before.
It gives the same type of estimate as (4.63), namely:

∥∥∥∥
ζ

J
∇′ψ

∥∥∥∥
ρ,2,σ

≤ C0 and ρ ‖ζ‖ρ,2,σ ‖A‖ρ,2,σ ‖Ã‖ρ,3,σ ≤ C0, (4.64)

where we have used ρ ≤ ρ0 ≤ 1.
◮ Limitation of the parameter σ:

From now on, we redefine σ0 as follows:

σ0 :=
1

6C0C1
,

where C0 > 0 is given by (4.63)-(4.64) and C1 by (4.60). Without loss of generality, we can increase C0 to still
have σ0 ≤ 1

2 . Therefore all the previous estimates obtained with σ ∈ (0, 12 ] remain valid. For all ρ ∈ (0, ρ0] and
σ ∈ (0, σ0], the right term of (4.60) is estimated as follows:

σ C1

(
‖ζ‖ρ,2,σ +

∥∥∥∥
ζ

J
∇′ψ

∥∥∥∥
ρ,2,σ

+ ρ ‖ζ‖ρ,2,σ ‖A‖ρ,2,σ ‖Ã‖ρ,3,σ

)
‖Q±‖±,Kρ,3,σ ≤ 3C0 C1 σ ‖Q

±‖±,Kρ,3,σ

≤
1

2
‖Q±‖±,Kρ,3,σ.

Consequently, we get the following estimate for the norm ‖Q±‖±,Kρ,3,σ:

‖Q±‖±,Kρ,3,σ ≤ C1

(
‖Q±‖0,±ρ,3 + ‖ζ‖ρ,2,σ ‖F

±‖±ρ,1,σ
)
. (4.65)

To conclude, we use (4.63) together with (4.42), and simplify (4.65) to end up with

‖Q±‖±,Kρ,3,σ ≤ C2

(
‖F±‖±ρ,1,σ + ‖G‖ρ, 3

2

)
,

where C2 > 0 is a numerical constant. Taking the supremum over K, we deduce the same estimate satisfied by
the norm ‖Q±‖±ρ,3,σ. We sum up in the following theorem the main result of this paragraph about the pressure
estimate.

Theorem 4.2. There exist ε0 ∈ (0, 1], η0 > 0, ρ0 ∈ (0, 1] and σ0 ∈ (0, 12 ] such that, for all ρ ∈ (0, ρ0] and σ ∈ (0, σ0],

if we consider a front f ∈ Bρ, 7
2
(T2) satisfying

‖f‖H2,5(T2) < ε0 and ‖f‖ρ, 7
2
< η0,

and analytic source terms F± ∈ Bρ,1,σ(Ω
±) and G ∈ Bρ, 3

2
(Γ), then the unique solution (Q+, Q−) to the problem

(4.1) with zero mean on Ω belongs to the space Bρ,3,σ(Ω
+)×Bρ,3,σ(Ω

−). Moreover, it satisfies the following estimate:

‖Q±‖±ρ,3,σ ≤ C
(
‖F±‖±ρ,1,σ + ‖G‖ρ, 3

2

)
, (4.66)

where C > 0 is a constant depending only on ε0 and η0.
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5. Existence of analytic solutions to the current-vortex sheet problem

In order to apply Cauchy-Kowalevskaya theorem, we first have to estimate the convective terms appearing in the
equations of problem (3.4). Then, we have to estimate the pressure term, namely AT∇Q±. In view of the estimates
satisfied by the pressure (see Theorem 4.2), we will restrict the analysis in the analytic spaces Bρ,r,σ with r = 3,
and the parameter σ will be fixed in the interval (0, σ0].

5.1. Estimate of the convective terms. To begin with, we rewrite problem (3.4) as a “differential equation” in
time, in order to be consistent with the notations of Cauchy-Kowalevskaya theorem [Nis77]. The equations of (3.4)
read as follows: {

d
dt
U = F (U), t ∈ (0, T ),

U(0) = U0,
(5.1)

where U := (v±, B±, f) and

F (U) :=



−(ṽ± · ∇)v± + (B̃± · ∇)B± −AT∇Q±

−(ṽ± · ∇)B± + (B̃± · ∇)v±

(v+ ·N)|Γ


 . (5.2)

Remark: In the definition of the term ṽ± given by (1.10), the quantity ∂tψ is appearing. This is only a notation
standing for the quantity Ψ (v+·N)|

Γ
, where Ψ is the lifting map defined by Proposition 2.1. Indeed, we have

∂tψ = ∂tΨf = Ψ∂tf = Ψ (v+·N)|
Γ
,

since the front f satisfies the third equation of (3.4). Thus the variable t plays the role of a parameter in the
definition of F (U).

To take the boundary conditions on Γ± in problem (3.4) into account, we include them into the spaces Bρ,3,σ(Ω
±).

Thus we define:

Bρ,3,σ(Ω
±) :=

{
u ∈ (Bρ,3,σ(Ω

±))3
∣∣∣ u3 = 0 on Γ±

}
, (5.3)

whose norm will be noted 9 · 9ρ,3,σ. Clearly, the space Bρ,3,σ(Ω
±) is closed in Bρ,3,σ(Ω

±), because of the continuity

of the trace map from H3(Ω±) to H
5
2 (Γ ∪ Γ±). Therefore Bρ,3,σ(Ω

±) is a Banach space.
To take the flatness of the front f in H2.5(T2) and Bρ, 7

2
(T2) into account, which gives estimate (4.66), we shall

apply in the end Cauchy-Kowalevskaya theorem with a front f in the ball
{
u ∈ Bρ, 7

2
(T2)

∣∣∣ ‖u‖H2,5(T2) < ε0 and ‖u‖ρ,7
2
< η0

}
, (5.4)

with ε0 and η0 given by Theorem 4.2.
Therefore we will apply Cauchy-Kowalevskaya theorem in the following scale:

Bρ := Bρ,3,σ(Ω
±)× Bρ,3,σ(Ω

±)×Bρ, 7
2
(T2), (5.5)

whose norm will be noted 9 · 9ρ (the definition is obvious). In (5.5), Bρ,3,σ(Ω
±) stands for the product space

Bρ,3,σ(Ω
+) × Bρ,3,σ(Ω

−). Within this scale, all the algebra and differentiation properties still hold. However,
although the spaces Bρ,3,σ(Ω

±) are not invariant under the normal derivative ∂3, the following result inspired from
Theorem 1.8 remains valid. If u ∈ Bρ,3,σ(Ω

±), then for all ρ′ < ρ we have ∂3u ∈ (Bρ′,3,σ(Ω
±))3, with the estimate

‖∂3u‖ρ′,3,σ ≤
Cσ

ρ− ρ′
9 u9ρ,3,σ, (5.6)

where Cσ := σ−1 > 0.
Now let ρ ∈ (0, ρ0], and let U := (v±, B±, f) and V := (w±, D±, g) be two vectors taken in a ball of radius R > 0

of Bρ:

9 U 9ρ, 9V 9ρ < R. (5.7)

The main purpose is to obtain an estimate of the form

9F (U)− F (V )9ρ′ ≤
C

ρ− ρ′
9 U − V 9ρ, (5.8)

for all 0 < ρ′ < ρ, with C > 0 independent of ρ and ρ′. From now on, we will always note C such a constant.
To do so, we will need several basic estimates, that we enumerate below. For the sake of clarity, we will denote Ψf

(instead of ψ) the lifting of f (see definition (2.14)), Jf the jacobian 1+∂3Ψf , and Nf the vector (−∂1Ψf ,−∂2Ψf , 1);
we proceed in the same way with g.
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◮ The term J−1
f :

The term J−1
f is estimated using Corollary 2.3. Indeed, the condition ‖f‖ρ,7

2
≤ η0 is directly satisfied because of

(5.4). Thus we have:
∥∥∥∥
1

Jf

∥∥∥∥
ρ,3,σ

≤ C. (5.9)

The same result obviously holds for J−1
g .

◮ The term v± ·Nf :
To estimate ‖v± ·Nf‖

±
ρ,r,σ, it suffices to control the norms ‖v±i ∂iΨf‖

±
ρ,3,σ for i = 1, 2:

‖v±i ∂iΨf‖
±
ρ,3,σ ≤ C ‖v±i ‖

±
ρ,3,σ ‖∂iΨf‖ρ,3,σ (algebra property)

≤ C RC ‖f‖ρ, 7
2

(assumption (5.7) and Proposition 2.1)

≤ C RC η0. (using (5.4))

Finally,

‖v± ·Nf‖
±
ρ,3,σ ≤ C. (5.10)

Using the symmetry of the roles played by U and V , we will have the same estimate for the norm ‖w± ·Ng‖ρ,3,σ.
◮ The terms Nf −Ng and Jf − Jg:

We also estimate ‖Nf −Ng‖ρ,3,σ using, for i = 1, 2:

‖∂i(Ψf −Ψg)‖ρ,3,σ ≤ ‖Ψf −Ψg‖ρ,4,σ ≤ C ‖f − g‖ρ, 7
2
≤ C 9 U − V 9ρ .

Let us notice that we have used the linearity of the map f 7→ Ψf (see Proposition 2.1). We deduce that:

‖Nf −Ng‖ρ,3,σ ≤ C 9 U − V 9ρ . (5.11)

Likewise, we have the following straightforward estimate:

‖Jf − Jg‖ρ,3,σ ≤ C 9 U − V 9ρ . (5.12)

◮ The term ∂tΨf :
Now we detail the treatment of the norm ‖∂tΨf‖ρ,3,σ. Using the construction of the operator f 7→ Ψf given in the
proof of Proposition 2.1, we have in particular ∂tΨf = Ψ∂tf . Consequently, we can write:

‖∂tΨf‖ρ,3,σ = ‖Ψ∂tf‖ρ,3,σ ≤ C ‖∂tf‖ρ, 5
2
≤ C

∥∥ (v+ ·Nf)
∣∣
Γ

∥∥
ρ, 5

2

≤ C
∥∥ (v+1 ∂1f + v+2 ∂2f − v+3 )

∣∣
Γ

∥∥
ρ, 5

2

.

The continuity of the trace map from H3(Ω+) to H
5
2 (Γ) gives

‖v+i (·, 0)‖ρ, 52 ≤ C ‖v+i ‖
0,+
ρ,3 ≤ C ‖v+i ‖

+
ρ,3,σ, i = 1, 2.

Therefore,

‖v+i (·, 0) ∂if‖ρ, 5
2
≤ C ‖v+i (·, 0)‖ρ, 5

2
‖∂if‖ρ, 5

2

≤ C ‖v+i ‖
+
ρ,3,σ ‖f‖ρ, 7

2
≤ C Rη0.

Thus we deduce that

‖∂tΨf‖ρ′,3,σ ≤ C. (5.13)

The same estimate also holds for ∂tΨg.
◮ The term ∂tΨf − ∂tΨg:
In the same way as (5.13), we have:

‖∂tΨf − ∂tΨg‖ρ,3,σ =
∥∥Ψ∂t(f−g)

∥∥
ρ,3,σ

≤ C
∥∥ (v+ ·Nf )

∣∣
Γ
− (w+ ·Ng)

∣∣
Γ

∥∥
ρ, 5

2

.

Then, we write

v+ ·Nf − w+ ·Ng = v+ · (Nf −Ng) +Ng · (v
+ − w+).

The terms v+ and Ng are bounded by a constant C > 0 (independent of ρ and ρ′), and the terms Nf −Ng and
v+ − w+ are bounded from above by 9U − V 9ρ (we use in particular (5.11)). We get:

‖∂tΨf − ∂tΨg‖ρ,r,σ ≤ C 9 U − V 9ρ . (5.14)
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◮ The term ∂3v
± − ∂3w

±:

We finish with a straightforward estimate due to (1.25) (see Theorem 1.8). It will be crucial to apply Cauchy-
Kowalevskaya theorem:

‖∂3(v
± − w±)‖±ρ′,3,σ ≤

C

ρ− ρ′
‖v± − w±‖±ρ,3,σ ≤

C

ρ− ρ′
9 U − V 9ρ . (5.15)

Endowed with the estimates (5.9)-(5.15), we have the main arguments to estimate the convective terms contained
in F .

Proposition 5.1. Let ρ ∈ (0, ρ0] and U, V ∈ Bρ satisfying (5.7) with f and g belonging to the ball given by (5.4).
Then for all ρ′ such that 0 < ρ′ < ρ, the following estimate holds:

9 (ṽ± · ∇)v± − (w̃± · ∇)w± 9ρ′ ≤
C

ρ− ρ′
9 U − V 9ρ, (5.16)

where C > 0 does not depend on ρ and ρ′.

Remark: the estimates of the other convective terms appearing in F are analogous.
Proof. Using the definitions of ṽ± and w̃± given by (1.10), we write:

(ṽ± · ∇)v± − (w̃± · ∇)w± = (v′± · ∇′)v± − (w′± · ∇′)w± (5.17)

+

(
v± ·Nf − ∂tΨf

Jf

)
∂3v

± −

(
w± ·Ng − ∂tΨg

Jg

)
∂3w

±. (5.18)

We recall that the notation “ ′ ” refers to the tangential parts. We note E1 the right term of (5.17) and E2 the term
given by (5.18).

First, we easily estimate E1 as follows. We use properties (1.24) and (1.25) holding in the spaces Bρ,3,σ. The

i-th component of the vector (u · ∇)H − (ũ · ∇)H̃ is given by

uj∂jHi − ũj∂jH̃i,

using Einstein’s summation convention over j. Then, we compute:

‖uj∂jHi − ũj∂jH̃i‖ρ′,r,σ = ‖uj∂j(Hi − H̃i) + (uj − ũj)∂jH̃i‖ρ′,r,σ

≤
CrRσ

−1

ρ− ρ′
‖Hi − H̃i‖ρ,r,σ +

CrRσ
−1

ρ− ρ′
‖uj − ũj‖ρ,r,σ

≤
CrRσ

−1

ρ− ρ′

(
9u− ũ 9ρ,r,σ + 9H − H̃ 9ρ,r,σ

)
.

Therefore we obtain for E1:

‖E1‖ρ′ ≤
C

ρ− ρ′
9 U − V 9ρ,

where C = C(R) > 0 depends on R (recall that 9U 9ρ, 9V 9ρ < R), but not on ρ and ρ′. Now we split E2 as
follows:

E2 =

[(
v± ·Nf
Jf

)
∂3v

± −

(
w± ·Ng
Jg

)
∂3w

±

]
−

[
∂tΨf
Jf

∂3v
± −

∂tΨg
Jg

∂3w
±

]

=: E21 − E22.

We go on with the following equality:

E21 =

(
v± ·Nf
Jf

)
∂3(v

± − w±) +

(
v± ·Nf
Jf

−
w± ·Ng
Jg

)
∂3w

±

=: E211 + E212.

Using (5.9), (5.10) and (5.15), we get the estimate:

9 E211 9ρ′ ≤
C

ρ− ρ′
9 U − V 9ρ . (5.19)

Let us now treat the term E212. We expand it this way:

E212 =

[
1

Jf
(Nf −Ng) · v

±

]
∂3w

± +

[
Jg − Jf

JfJg
v± ·Ng

]
∂3w

± +

[
1

Jg
Ng · (v

± − w±)

]
∂3w

±

=: E2121 + E2122 + E2123.
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To estimate E2121, we use (5.9), (5.11), (5.7) and bound from above ‖∂3w
±‖±ρ′,3,σ by CR

ρ−ρ′ . We end up with the

desired estimate for E2121. We use similar estimates to treat the terms E2122 and E2123. Therefore we can write

9 E212 9ρ′ ≤
C

ρ− ρ′
9 U − V 9ρ, (5.20)

which ends the estimate of E21. We briefly finish with the case of E22. We split it as follows:

E22 =

[
Jg − Jf

JfJg
∂tΨf

]
∂3v

± +

[
1

Jg
(∂tΨf − ∂tΨg)

]
∂3v

± +
1

Jg
∂tΨg ∂3(v

± − w±)

=: E221 + E222 + E223.

In order to estimate E221, we use (5.9), (5.12), (5.13) and we bound from above ‖∂3v
±‖±ρ′,3,σ by CR

ρ−ρ′ . Likewise, we

use the same type of arguments to handle E222 and E223, which gives the desired estimate for E22.

�

Remark: the estimate of the third component of F (U) − F (V ) is analogous. However, we use norms only on Γ
instead of Ω±, together with trace estimates. It suffices to follow the same previous computations leading to (5.13).
To conclude, all the “convective” terms of F (U)−F (V ) provide the desired estimate (5.8). From now on, it remains
to deal with the “pressure part” of F , in order to apply Cauchy-Kowlevskaya theorem.

5.2. Estimate of the pressure. Let us denote Af (resp. Ag) the jacobian matrix associated with f (resp. g),
already defined by (1.8). The total pressure associated to U (resp. V ) will be noted Q± (resp. P±). In order to
complete the estimate of 9F (U)− F (V )9ρ′ , it remains to obtain the following result:

∥∥(Af )T ∇Q± − (Ag)T ∇P±
∥∥±
ρ′,3,σ

≤
C

ρ− ρ′
9 U − V 9ρ, (5.21)

where C > 0 may depend on R, but not on ρ and ρ′. Let us write the i-th component of (Af )T ∇Q± − (Ag)T ∇P±

as follows:

A
f
ji ∂jQ

± − A
g
ji ∂jP

± =
(
A
f
ji − A

g
ji

)
∂jQ

± + A
g
ji ∂j

(
Q± − P±

)

=: E1 + E2.

We write Ah = I3 − Ãh, where h stands for either f or g, and Ãh is defined by

Ãh :=
1

Jh




0 0 0
0 0 0

∂1Ψh ∂2Ψh ∂3Ψh


 . (5.22)

We get E1 =
(
Ã
f
ji − Ã

g
ji

)
∂jQ

±. To estimate this term, we use the algebra property of the space Bρ′,3,σ(Ω
±):

‖E1‖
±
ρ′,3,σ ≤ C ‖Ãfji − Ã

g
ji‖ρ′,3,σ ‖∂jQ

±‖ρ′,3,σ.

On the one hand, we have:

‖Ãfji − Ã
g
ji‖ρ′,3,σ =

∥∥∥∥
∂iΨf
Jf

−
∂iΨg
Jg

∥∥∥∥
ρ′,3,σ

.

Using the same techniques as in Paragraph 5.1, we obtain the following estimate without loss of 1
ρ−ρ′ :

‖Ãfji − Ã
g
ji‖ρ′,3,σ ≤ C 9 U − V 9ρ .

On the other hand, to estimate the term ‖∂jQ
±‖ρ′,3,σ, we write:

‖∂jQ
±‖ρ′,3,σ ≤

C

ρ− ρ′
‖Q±‖ρ,3,σ,

and we use the result (4.66) of Theorem 4.2 to handle the case of ‖Q±‖ρ,3,σ:

‖Q±‖±ρ,3,σ ≤ C
(
‖F±‖±ρ,1,σ + ‖G‖ρ, 3

2

)
,

where from now on F± and G are defined by (3.2) and (3.3).
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In order to estimate F± in Bρ,1,σ(Ω
±), we feel free to directly use the inequality ‖ · ‖±ρ,1,σ ≤ ‖ · ‖±ρ,2,σ, because F±

only contains products of 1st-order derivative terms. Indeed, for instance let us estimate the last term appearing

in F± (see (3.2)), namely B̃± · ∇Aki∂kB
±
i . Using definition (5.22), we first write:

B̃± · ∇Aki ∂kB
±
i = B̃±

j ∂j

(
∂iΨf
Jf

)
∂3B

±
i .

By algebra property of the spaces Bρ,2,σ(Ω
±), we get:

∥∥∥∥B̃
±
j ∂j

(
∂iΨf
Jf

)
∂3B

±
i

∥∥∥∥
±

ρ,1,σ

≤ C ‖B̃±
j ‖

±
ρ,2,σ

∥∥∥∥∂j
(
∂iΨf
Jf

)∥∥∥∥
ρ,2,σ

‖∂3B
±
i ‖

±
ρ,2,σ. (5.23)

If j ∈ {1, 2}, we have B̃±
j = B±

j therefore ‖B̃±
j ‖

±
ρ,2,σ ≤ ‖B±

j ‖
±
ρ,3,σ ≤ R. However, if j = 3, we have B̃±

3 =
B±·Nf

Jf
, so:

‖B̃±
3 ‖±ρ,2,σ ≤ C

∥∥∥∥
1

Jf

∥∥∥∥
ρ,2,σ

‖B± ·Nf‖
±
ρ,2,σ ≤ C.

Then,
∥∥∥∥∂j

(
∂iΨf
Jf

)∥∥∥∥
ρ,2,σ

≤

∥∥∥∥
∂iΨf
Jf

∥∥∥∥
ρ,3,σ

≤ C

∥∥∥∥
1

Jf

∥∥∥∥
ρ,3,σ

‖∂iΨf‖ρ,3,σ ≤ C

∥∥∥∥
1

Jf

∥∥∥∥
ρ,3,σ

‖f‖ρ, 7
2
≤ C.

Finally, the last term of (5.23) is estimated as follows:

‖∂3B
±
i ‖

±
ρ,2,σ ≤ ‖B±

i ‖ρ,3,σ ≤ R.

Consequently, we deduce that

‖B̃± · ∇Aki ∂kB
±
i ‖

±
ρ,1,σ ≤ C,

where C > 0 depends on R, but not on ρ and ρ′. All the other terms appearing in the definition (3.2) of F± are
similarly estimated. Therefore we conclude that ‖F±‖±ρ,1,σ ≤ C.

The case of G is analogous, because using the continuity of the trace from H2(Ω±) to H
3
2 (Γ), all the 1st-order

terms contained in G will be estimated in Bρ,2,σ(Ω
±), exactly as above for F±.

To conclude about the estimate of Q±, we can write that

‖Q±‖ρ,3,σ ≤ C.

Eventually, we end up with the desired estimate for E1, that is:

‖E1‖ρ′,3,σ ≤
C

ρ− ρ′
9 U − V 9ρ . (5.24)

Let us now explain how to handle the case of E2. We begin with the estimate

‖E2‖ρ′,3,σ = ‖Agji ∂j(Q
± − P±)‖±ρ′,3,σ ≤

C

ρ− ρ′
‖Agji‖ρ′,3,σ ‖Q

± − P±‖ρ,3,σ.

Still using the same arguments as in Paragraph 5.1, we can write:

‖Agji‖ρ′,3,σ ≤ C.

Besides, let us denote F±
U (resp. F±

V ) and GU (resp. GV ) the source terms (3.2) and (3.3) respectively related to U

and V , and let us set Π± := Q± −P±. In order to estimate ‖Π±‖±ρ,3,σ, let us write the elliptic problem satisfied by

(Π+,Π−) down, with the coefficients Aji = A
f−g
ji coming from the function f − g (we adapt the definition (5.22)):

Af−g := I3 − Ãf−g with Ãf−g :=
1

Jf−g




0 0 0
0 0 0

∂1Ψf − ∂1Ψg ∂2Ψf − ∂2Ψg ∂3Ψf − ∂3Ψg


 .

Above, we have used the linearity of the map Ψ. However the map f 7→ Jf is not linear: we only have the identity
Jf−g = 1+∂3Ψf−g = Jf −Jg+1. Up to decrease the constant ε0 in the definition (5.4), this “new” jacobian remains
positive. The elliptic problem satisfied by (Π+,Π−) is similar to (4.1), and reads as follows:





−Af−gji ∂j(A
f−g
ki ∂kΠ

±) = F± in (0, T )× Ω±,

[Π] = 0 on (0, T )× Γ,
(1 + |∇′(f − g)|2)[∂3Π] = G on (0, T )× Γ,

∂3Π
± = 0 on (0, T )× Γ±.

(5.25)
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Applying estimate (4.66) to Π±, we thus have

‖Π±‖±ρ,3,σ ≤ C
(
‖F±‖±ρ,1,σ + ‖G‖ρ, 3

2

)
. (5.26)

Now it remains to write both source terms F± and G down. To do so, we will make a link with the previous elliptic

problems satisfied first by (Q+, Q−) (i.e. with the coefficients Afji), then by (P+, P−) (i.e. with the coefficients

A
g
ji). We thus write

Af−g = Af − Ag +R(f, g), (5.27)

where the matrix R(f, g) is a remaining term defined by

R(f, g) := I3 − R̃(f, g) with R̃(f, g) :=
1

Jf−g




0 0 0
0 0 0

R̃31 R̃32 R̃33


 ,

and

R̃3i :=
Jg − 1

Jf (Jf − Jg + 1)
∂iΨf −

2Jg − Jf − 1

Jg(Jf − Jg + 1)
∂iΨg, i = 1, 2, 3.

Using (5.27) into the first equation of (5.25), we get the expression of the source terms F±:

F
± := F±

U −F±
V +A

f
ji ∂j(A

f
ki ∂kP

±)−A
g
ji ∂j(A

g
ki ∂kQ

±)

+A
f
ji ∂j

(
A
g
ki ∂kΠ

±
)
+A

g
ji ∂j

(
A
f
ki ∂kΠ

±
)
−
(
A
f
ji −A

g
ji

)
∂j
(
Rki ∂kΠ

±
)

+Rji ∂j

((
A
f
ki −A

g
ki

)
∂kΠ

±
)
+Rji ∂j

(
Rki ∂kΠ

±
)
.

The boundary source term G can be obtained by expanding |∇′(f − g)|2 in the third equation of (5.25):

G := GU − GV − (1 + |∇′f |2) [∂3P ] + (1 + |∇′g|2) [∂3Q]− (1 + 2∇′f · ∇′g) [∂3Π].

Then, it remains to estimate the appearing source terms in (5.26). For the sake of clarity, we choose not to detail
these computations, since the method is rigorously identical to Paragraph 5.1. We end up with the following
estimate:

‖F±‖±ρ,1,σ + ‖G‖ρ, 3
2
≤ C 9 U − V 9ρ,

where C > 0 depends on R but not on ρ and ρ′. This achieves the case of E2:

‖E2‖ρ′,3,σ ≤
C

ρ− ρ′
9 U − V 9ρ . (5.28)

Combining (5.24) together with (5.28), we eventually get the desired estimate (5.21).

5.3. Application of Cauchy-Kowalevskaya theorem: proof of Theorem 1.10. In the previous paragraph,
we have shown that the “vector field” F (U) satisfies the main assumption of Cauchy-Kowalevskaya theorem, namely
the following “Lipschitz” estimate holding for 9U 9ρ, 9V 9ρ < R:

9F (U)− F (V )9ρ′ ≤
C

ρ− ρ′
9 U − V 9, ∀ 0 < ρ′ < ρ ≤ ρ0.

The map U 7→ F (U) also has to be continuous from the ball Bρ(0, R) ⊂ Bρ to Bρ′ for all ρ′ < ρ. This is obviously
satisfied, using in particular the continuity of the differentiation from Bρ to Bρ′ (see Proposition 1.6 and Theorem
1.8).

Eventually, applying Cauchy-Kowalevskaya theorem [Nis77], we end the proof of Theorem 1.10.

Some remarks about Theorem 1.10:

We observe that the total pressure Q± has the same regularity as v± and B± in a Sobolev scale. Together with
the estimate (4.66), it explains why the gradient of pressure plays the role of a quasilinear term. Unlike the case
of a fixed domain (i.e. without the sheet), Chemin [Che98] proved that for the Euler equations, the gradient of
pressure plays the role of a semilinear term.

In (5.4), the appearing smallness condition for the front f turns out to be sufficient, but it might not be necessary.
We recall that we used this condition in order to estimate the inverse of the jacobian of the change of variables in
the analytic spaces Bρ,r,σ(Ω) (see Corollary 2.3). This condition, which seems to be restrictive, could be neglected
or, at least, improved. To do so, we could estimate ‖J−1‖ρ,r,σ in an other way, e.g. using Faà di Bruno’s identity
to estimate the derivatives ∂α( 1

1+∂3ψ
) in Hr(Ω).
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The proof of Cauchy-Kowalevskaya theorem given by Nishida [Nis77] does not exactly lead to the result stated
in Theorem 1.10. But we can easily adapt the proof of Nishida, in order to use a fixed point argument in a product
of open balls of the form Bρ(0, R)

2 ×Bρ(0, η0), and not in a ball Bρ(0, R) ⊂ Bρ. The first notation Bρ(0, R) stands
for the open ball of radius R centred at 0 in Bρ,3,σ(Ω

±), and concerns the unknowns (v±, B±). The second notation
Bρ(0, η0) stands for the open ball of radius η0 centred at 0 in Bρ, 7

2
(T2), and concerns the unknown f . In particular,

it allows to require a smallness condition only on the front f .

6. Conclusion

The analytic solution we obtain is thus defined at least until the time aρ0 > 0. However, the quantity a > 0
depends on R, namely on the size of the initial data in the analytic scale. Therefore the lifespan can become smaller
as the initial data get bigger in the analytic spaces Bρ0,3,σ.

The a priori estimate established in [CMST12] would be a starting point to prove, by a compactness argument,
the existence and uniqueness of solutions to the current-vortex sheet problem, taking initial data in some Sobolev
space (typically H3 for the velocity v0 and the magnetic field B0, and H3.5 for the front f0).

To do so, we would approximate the Sobolev initial data (v±0 , B
±
0 , f0) by a sequence of analytic initial data(

v
±,n
0 , B

±,n
0 , fn0

)
n≥0

, using the density of the spaces Bρ,r,σ in Hr mentioned in Section 1.4. The unique solution

(v±,n, B±,n, Q±,n, fn) associated with this initial data thus has a radius of analyticity ρn = ρn(t), that possibly
tends to 0 as n goes to +∞. To address such an issue, it would suffice to exhibit a lower bound on ρn(t), that
depends only on a Sobolev norm of the solution. Therefore we could propagate the analyticity of the solutions to a
time interval depending only on the Sobolev norm of the solutions. The latter does not blow up as n goes to +∞,
and would allow to get a positive lower bound on the lifespan of the solutions.

For results about propagation of analyticity of the solutions to the incompressible Euler equations, we can refer
to [BB77], [AM86] and more recently to [LO97], [KV09], [KV11a], [KV11b].
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