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On advanced mathematical methods and 
more elementary ideas met (or not) before

Margo Kondratieva

Memorial University, Faculty of Education and Department of Mathematics and Statistics, St. John's, Canada, mkondra@mun.ca

Some mathematical problems, which could be solved by 
a general approach, also have different and often origi-
nal solutions that appeal to less advanced mathematics. 
For example, drawing a tangent line to a parabola can 
be done by methods of differential calculus, and by ex-
clusively using methods of Euclidean geometry. A project 
that I conducted with students who recently completed a 
Bachelor degree focusing in mathematics revealed that 
they were familiar with advanced methods but lacked 
more elementary views. I argue that unfamiliarity with 
alternative elementary solutions hinders for students 
the opportunities both to build mathematical connec-
tions and to appreciate the groundwork of related ad-
vanced methods. 

Keywords: Problems with multiple solutions, connectivity 

of mathematics, parabola, Euclidean geometry, calculus. 

INTRODUCTION

Some problems employed in teaching to illuminate 
the essence of a mathematical method appear to be 
universally useful in a variety of courses. In these cas-
es students can compare how different ideas and tech-
niques are applied to address the same mathematical 
question. The practice of identification of problems 
useful for systematic use in various university level 
courses is discussed in the literature. For example, 
Mingus (2002) referred to “calculation of nth roots of 
unity” as a problem that “encourages students to see 
connections between geometry, vectors, group theory, 
algebra and long division” (p. 32). Further discussion 
revealed, “proving identities involving the Fibonacci 
numbers provide a solid connection between linear 
algebra, discrete mathematics, number theory and 
abstract algebra” (ibid, p. 32). Winsløw (2013) referred 
to several ways to approach constructions of ax for a 
> 0 and x real, which are based on either “direct” ex-
tension of the domain from natural to real numbers, 

or the inverse function to loge (x) = ∫z1 dt/t, or the ini-
tial value problem dy/dx = y, y(0) = 1, or the functional 
equation f(x + y) = f(x)⋅f(y), or the Maclaurin power 
series (p. 2481). Sun and Chan (2009) discussed nine 
proofs of the “Mid-Point theorem of triangles”. The 
fact that “the sum of the interior angles in a plane tri-
angle is 180º” can be shown in eight different ways 
(Tall et al., 2012, p. 35). In my view, these are examples 
of interconnecting problems, which have the follow-
ing characteristics:  they allow various solutions at 
more elementary and more advanced levels; they can 
be solved by various mathematical tools from differ-
ent mathematical branches, which leads to finding 
multiple solutions; and they are used in different 
courses and can be understood in various contexts 
(Kondratieva, 2011a, 2011b).

When students familiar with a problem from their 
prior experiences use their intuition to support 
more elaborate techniques applicable to a problem, 
they also have a chance to perceive mathematics as 
a consistent subject (Kondratieva, 2011a). By means 
of investigation of such problems in different cours-
es “students were able to review concepts from pre-
vious courses and improve their understanding 
of the old and new concepts” (Mingus, 2002, p. 32). 
Knowledge of multiple ways to treat a mathematical 
object can strengthen the relation of a learner to the 
object “in the sense of providing extensions or alter-
natives to standard presentations” (Winsløw, 2013, 
p. 2483). Leikin and her collaborators extensively 
studied “tasks that contain an explicit requirement 
for solving the problem in multiple ways” (Leikin & 
Levav-Waynberg, 2008, p. 234), particularly in the 
context of the development of mathematics teachers’ 
knowledge, and for an examination of mathematical 
creativity (Leikin & Lev, 2007). When used in math-
ematics teachers’ education, interconnecting prob-
lems foster teachers’ ability to link elementary ideas 
with advanced techniques (Kondratieva, 2013), which 
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might contribute to the construction of their horizon 
content knowledge (Ball, Thames, & Phelps, 2008), that 
is, an awareness of how mathematical topics are relat-
ed in the span of the entire curriculum. While being 
familiar with some individual examples of the use of 
interconnecting problems in teaching mathematics, 
I do not know to what extent students in general are 
exposed to teaching practices that encourage them 
explicitly to make connections between advanced and 
more elementary mathematics. According to Winsløw 
(2013), “there remains a practical need for systematic 
didactical research on how standard undergraduate 
mathematics is, or could be, developed in view of facil-
itating its use by students in inquiries related directly 
to high school mathematics.” (p. 2477)

My research question is to what extent students who 
have completed a Bachelor degree with a focus in 
mathematics are familiar with both advanced math-
ematical methods and more elementary ideas related 
to them. In order to address this question I developed 
a research instrument in the form of a handout and 
questionnaire, which is described in this paper. The 
handout includes an interconnecting problem, which 
is typical and familiar for students studying under-
graduate mathematics. This problem can be solved 
by a standard method taught at the university level 
and also has a more elementary treatment, which re-
veals some insightful ideas. This research instrument, 
along with the theoretical framework and results of 
testing in a small group of students, are discussed in 
the following sections.

THEORETICAL CONSIDERATIONS

Modern curriculum at all levels is moving from a 
formal approach to a more inquiry-based study of 
mathematics, focusing on genuine understanding and 
connecting various concepts and methods. House and 
Coxford (1995) argued that presenting mathematics 
as a “woven fabric rather than a patchwork of dis-
crete topics” is one of the most important outcomes 
of mathematics education. The goal of mathematical 
instruction consists of helping a dedicated learner 
go beyond instrumental understanding secured 
by knowing mathematical procedures, and achieve 
relational understanding between different mathe-
matical topics (Skemp, 1987), which assumes connec-
tions of various mathematical ideas. “An ability to 
establish and use a wide range of connections offers 
students alternative paths to the solution” (Hodgson, 

1995, p. 19). While making connections and multiple 
representations of ideas are recognized among the 
primary processes in learning mathematics (NCTM, 
2000), there is also a need for teaching strategies “for 
engaging students in exploring the connectedness of 
mathematics” (House & Coxford, 1995, p. vii).

One possible way to address this need is to use prob-
lems which allow multiple solutions, or specifically, 
interconnecting problems. In the latter approach 
(Kondratieva, 2011a), students encounter an inter-
connecting problem several times as they progress 
throughout their education, each time learning a new 
aspect of the same problem and building their under-
standing on “supportive met-befores” (Tall, 2013, p.15). 
Rephrasing Watson and Mason’s (2005) description 
of reference examples, an interconnecting problem 
is “the one that becomes extremely familiar and is 
used to test out conjectures, to illustrate the mean-
ing of theorems” (p. 7). Indeed, problems that have a 
range of solutions not only can help learners to move 
from elementary to advanced understanding, but they 
also may be used to exemplify advanced methods in 
elementary terms or to come up with an alternative 
and more elementary explanation of results found in 
a different way (Kondratieva, 2013). 

In order to collect and analyze results presented in 
this paper, I employ Tall’s notion of crystalline con-
cept. Formation of a crystalline concept in a learner’s 
mind refers to a phenomenon where an object of math-
ematical study “which originally was a single gestalt 
with many simultaneous properties, and was then de-
fined using a single specific definition – now matures 
into a fully unified concept, with many properties 
linked together by a network of relationships based 
on deductions” (Tall et al., 2012, p. 20). The crystalline 
concept of an object combines all prior experiences of 
a learner in relation to this object, which include per-
ceiving, acting upon, describing in natural or symbol-
ic language, further formalizing, theorizing, and or-
ganizing knowledge about the object in a compressed 
way. Perceiving the object in various contexts, recog-
nizing its multiple representations, and establishing 
equivalence relations between its various properties 
are important steps in the cognitive development of 
a learner towards building a corresponding crystal-
line concept. Eventually, “equivalent concepts may be 
grasped as a single crystalline concept that has all the 
requisite properties blended together within a single 
entity. Powerful mathematical thinking at the highest 
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level involves the external relationship between, and 
the internal relationship within, crystalline concepts” 
(Tall, 2013, p. 403).

The notion of crystallization comprises various 
frameworks and theories of knowledge compres-
sion including the Structure of Observed Learning 
Outcomes (SOLO) Taxonomy (Biggs & Collis, 1982). 
The SOLO Taxonomy describes the progression of a 
learner’s development using the following stages: (0) 
pre-structural, when the learner demonstrates a very 
limited understanding of a problem; (1) uni-structural, 
when the learner uses only one aspect of a concept 
and follows a single procedure to solve a problem; (2) 
multi-structural, when the learner refers to several 
aspects and is able to carry out several procedures to 
solve a problem; (3) relational, when the learner re-
lates several aspects together or sees the equivalence 
of different procedures; (4) extended abstract, when 
the learner grasps the concept so well that they can 
apply it outside of the problem’s domain. Thus, crys-
tallization requires both the familiarity with multiple 
aspects of a concept and relational unification of them. 

Further analysis of the development of mathematical 
thoughts at both the historical and individual level 
suggests that while mathematical arguments become 
more sophisticated and formal, “true mathematical 
thinking should become not only more powerful but 
more simple” (Tall, 2013, p. 19). According to Atiyah, 

“not only mathematics but science as a whole, only 
progresses if you can understand things... Its aim is 
to produce ideas and explain things in simple terms” 
(see Tall, 2013, p. 400). Similarly, Polya (1945/2004) 
suggested to always look back at your solution and 
ask yourself “Can you derive your result differently? 
Can you see it at a glance?” However, the simplicity 
and transparency of mathematical arguments pro-
duced by students often depends upon their prior 
exposure to basic but enlightening ideas related to 
more advanced methods (Kondratieva, 2014), as well 
as on whether they possess proper crystalline con-
cepts. The aim of this paper is to delve on this issue 
using an example from undergraduate mathematics.

RESEARCH INSTRUMENT AND 
ITS PRELIMINARY TESTING

A group of 16 students who had completed their un-
dergraduate degree participated in the project. These 
students were enrolled in my methods course for 

pre-service teachers whose teachable areas included 
mathematics and another subject (most commonly 
science). Each of these students had taken at least eight 
mathematical courses including at least three courses 
at the 3rd or 4th undergraduate level (with average mark 
above 70%). While the project was conducted during 
a regular class time, the participation was optional 
and no mark was assigned to this work. The students 
could have chosen to perform an alternative practice 
assignment; however, everyone in class agreed to par-
ticipate in the project. The students worked in pairs. 
They were asked to develop a theoretical solution and 
implement it using technology. They were presented 
with the problem and questionnaire.

Problem: Use dynamic geometry software to draw a 
parabola and its tangent line at a point using tools of 
your preference.

Through other assignments in my course the students 
were familiar with dynamic geometry software such 
as GeoGebra capable of drawing points, segments, par-
allel and perpendicular lines, circles etc., as well as 
graphs of functions given by their equations in the 
form y = f(x), and manipulating these objects. The tool 
of drawing a tangent line to a given curve was not 
amongst the available options. 

Questionnaire:

(1) Have you seen this or similar problems before? 

(2) If yes, identify the course title or corresponding 
mathematical context appropriate to treat this prob-
lem (e.g. linear algebra, geometry, combinatorics, 
pre-calculus, differential or integral calculus). 

(3) List all methods you know to approach the problem. 
Do you see any connections between them?

(4) If you have never seen this problem before, state 
another problem of which this problem reminds you, 
and which you can solve.

When students had completed the first four questions 
(normally within 20 minutes or less) the last question 
was given to them. 

(5) Read the following sample solutions and choose 
the most appropriate description: (a) I have found 
the same solution; (b) This approach is familiar but I 
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forgot the details; (c) I have never seen this method be-
fore but I can understand and explain the ideas used 
in this approach; (d) I have never seen anything like 
that and I do not understand it.

The students who chose answer (b) or (c) were asked to 
explain the corresponding solution in writing. Then, 
we had a whole class discussion where students could 
reflect on the solutions and connections between them.

Sample solution 1: Use the standard equation of the 
parabola in the Cartesian coordinates and Differential 
Calculus.

Let the parabola be given by the equation y = ax2. 
The derivative of the function   f(x) = ax2 is f’(x) = 2ax. 
The tangent line at a point (x0, ax0

2) has the form 
(y  –  ax0

2)  =  2ax0(x  – x0) or after a simplification 
y = (2ax0)x – ax0

2. Now we can draw the parabola and the 
line in the coordinate plane using the tool “graphing 
functions given by their equations y = f(x)” for some 
values of a ≠ 0 and x0.

Sample solution 2: Produce this construction by means 
of Euclidean geometry given the focus F and directrix 
l of the parabola.

Geometrically, a parabola is the locus of points equi-
distant from the given point F and the given line l not 
passing through F. This definition enables the follow-
ing construction (see Figure 1, left):  (1) Drop the per-
pendicular from F onto l with foot at A; the midpoint 
V of the segment FA is the vertex of the parabola; (2) 
Pick any point B on l; join F and B and draw the per-
pendicular bisector l’ to FB; draw l’’ perpendicular 
to l at B; let l’ and l’’ meet at C. As point B moves along 
line l, point C traces a parabola (Figure 1, right). Then 
the line l’ is tangent to the parabola with C being the 
point of tangency.

RESULTS AND DISCUSSION

The problem that was given to the students is a typical 
problem studied in Calculus courses, where students 
are taught that the derivative f’(x0) represents the slope 
of the line tangent to the curve y = f(x) at a given point 
x = x0. They are also supposed to know that the equa-
tion of a straight line passing through a given point 
(a, b) with a given slope k is given by (y – b) = k(x – a). 
Therefore, Sample solution 1 is a universal approach 
to this type of problem and all of the 16 participants 
recognized it as a familiar method to apply. However, 
none of them mentioned the second method as a pos-
sibility to solve this problem and only one participant 
recognized familiar ideas in the method. The majority 
of participants (15) answered “I have never seen this 
method before but I can understand and explain the 
ideas used in this approach”. The problem was that the 
majority of students did not know the definition of a 
parabola in terms of its directrix and focus.

Nevertheless, once students read the geometric defi-
nition of the parabola all of them were able to un-
derstand and explain the construction presented in 
Figure 1: since C lies on the perpendicular bisector l’ 
of FB, the triangle FCB is isosceles and hence C is equi-
distant from F and l. In terms of the SOLO Taxonomy 
described above this signifies passage to the second 
stage, namely to the multi-structural understanding 
of the problem by the students.

I refer to the second solution as being more elementary 
because it uses mathematical ideas less advanced com-
pared to those needed to develop calculus. However, 
students may have a different point of view. They may 
perceive the algorithmic approach studied in Calculus 
as being easier than using Euclidean geometry, which 
they experienced to a lesser degree.

Knowing two approaches to solve the problem is ob-
viously progress. However, in order to develop the 
crystalline concept it is also necessary for students 
to see a relation between the two approaches. Indeed, 
the students were able to establish a connection to 
the formulas given in the Sample solution 1 by intro-
ducing Cartesian coordinates so that l has equation 
y = -p, and the coordinates of points are F(0, p), V(0, 
0) and C(x, y). Without loss of generality we assume 
that p > 0. Then, by the Pythagorean theorem, FC2 = x2 
+ (y – p)2. But, FC = CB = y + p, and after simplifications 
one gets the equation y =  x

2

4p. At the same time the slope Figure 1:  Construction of a parabola given its focus F and directrix l
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of FB is  −px , so the slope of l’ is  x2p . This result agrees 
with the Calculus approach, by which the derivative 
is ddx ( x

2

4p) =  x2p . Finally, the equation of the tangent line 
at point (x0,  x204p) is y = f(x) =  x02px −  x204p. One can also see that 
f(x0) =   x204p  and for any x1 ≠ x0 we have f(x1) =  2x0x1 − x204p   <  x214p  
since x0

2 – 2x0x1 + x1
2 = (x0 – x1)

2 > 0 and p > 0. The ine-
quality demonstrates that the points of the parabola 
y =  x

2

4p, p > 0, lie above any tangent line so that the fam-
ily of tangent lines form the envelope of the curve 
(Figure 2, left).

The above derivation, along with reflection upon its 
results, is an example of constructing the crystalline 
concept of the parabola. In this project, I was able to 
observe that my students had adequate knowledge in 
order to move from the first to the third stage of SOLO 
Taxonomy in understanding and conceptualization of 
the parabola within only one lesson period. I did not 
conduct any activities aiming at identification of the 
fourth, extended abstract, stage. Nevertheless, I will 
comment on some opportunities emerging from this 
lesson. Clearly, a learner familiar with the geometric 
definition of parabola may find it satisfactory to ob-
tain the same result by the more universal method 
learned in Calculus. By using  dynamic geometry soft-
ware and moving the point B along the line l, one can 
see that the point C traces a curve to which the line l’ 
is tangent (Figure 1, right). A learner equipped with 
such experiences will develop a more comprehensive 
understanding of the object called parabola and might 
be able to use alternative representations and prop-
erties of a parabola and its tangent line depending 
on the problems they need to solve. By developing 
representational flexibility of an object (e.g., the pa-
rabola) students become better prepared for solving 
non-routine problems (see also Bergsten, 2015). 

The geometrical view allows students to make closer 
connections of mathematics with physical phenome-

na, such as reflection of light from a parabolic mirror. 
Indeed, since ∠FCB and ∠FCD are supplementary an-
gles, their angular bisectors l’ and l’’’ are orthogonal to 
each other (Figure 2, right). The parabolic mirror near 
point C can be ‘replaced’ by the tangent line l’. This 
implies that the ray DC parallel to the axis FA of the 
parabola will be reflected at the point C towards the 
focus F. Such observations and insights are especially 
important for future teachers of mathematics and sci-
ence because it will allow them to enrich discussions 
in their classrooms.

Students’ unfamiliarity with the geometric definition 
of the parabola prior to my lesson can be explained 
by recent changes in the mathematical curriculum. 
Bergsten (2015) observed that in Sweden, while in 
the 1960s the study of the parabola was embedded 
in a local mathematical organization of analytic and 
Euclidean geometry, since the 1980s it became em-
bedded in a local mathematical organization of func-
tions. Similarly, in Canada the geometrical definition 
of conics no longer has a place in the secondary school 
mathematics. At the university level, this definition is 
supposed to appear in the Calculus stream, for exam-
ple, when equations of conics in polar coordinates are 
introduced. But at that point there is no time to study 
the geometry of the parabola in any detail because 
the focus of the course is on different methods. Thus, 
university graduates with a mathematical degree may 
actually never have seen a discussion of a parabola 
as a geometrical object even though they may know 
properties of geometrical objects (isosceles triangle, 
perpendicular bisector, etc.) necessary for under-
standing how and why the Sample solution 2 works, 
as was the case in my project.

Figure 2: A family of tangent lines to the parabola (left) and reflection property (right)
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CONCLUSION

The fact that completion of a bachelor degree in 
Mathematics does not automatically ensure deep 
knowledge of elementary mathematics is not new (see 
discussion in Winsløw & Grønbæk, 2014) and refer-
ences there). Indeed, even if students can apply an 
advanced approach or formula familiar to them, they 
are not always able to elaborate or explain why that 
formula works through connecting more advanced 
ideas with elementary facts. I conjecture that in some 
cases the students are simply not aware of relevant 
elementary ideas, definitions, and interpretations.

To verify my conjecture I developed an instrument 
that can identify the degree to which students are fa-
miliar with various solutions of a standard problem 
in Calculus. A preliminary study revealed that while 
the students felt comfortable applying the standard 
method, most of them were not familiar with the ideas 
which are more elementary compared to the consid-
ered standard method. I am planning to conduct a 
larger study in order to validate these findings.

Meantime, I suggest that while it is important for 
students to be exposed to standard and advanced 
approaches through university courses, their edu-
cation should also include experiences highlighting 
other approaches and more elementary mathematical 
ideas related to these advanced methods (especially if 
the students already have necessary background to 
understand and elaborate on these ideas). Otherwise, 
they will tend to stick to procedural and formal meth-
ods and will not be able to fully appreciate the results 
of advanced approaches because the connection to 
more basic but enlightening mathematics will be lost.
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