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Abstract algebra, mathematical 
structuralism and semiotics

Thomas Hausberger

University of Montpellier, Montpellier, France, thomas.hausberger@univ-montp2.fr

I report in this paper on my attempt to help students 
reflect on the axiomatic method and structuralist think-
ing in mathematics through a didactically-engineered 
activity (the theory of banquets, an invented structure 
simpler than group theory, but still quite rich seman-
tically), as a lever to tackle the issue of the learning of 
abstract algebra. It sheds light into the cognitive pro-
cesses involved in the conceptualization of an abstract 
algebraic structure, which are discussed within a semi-
otics framework.  Empirical data show an insufficient 
syntax-semantic dialectic and mental processes based 
on the recognition of (visual) patterns.

Keywords: Abstract algebra, mathematical structuralism, 

didactics and epistemology of mathematics, semiotics, 

syntax and semantics.

INTRODUCTION

This article focuses on the teaching and learning of ab-
stract algebra (the discipline dedicated to the study of 
algebraic structures, that is, the investigation of logi-
cal consequences of specific systems of axioms involv-
ing composition laws, and the relationships among 
them) which is taught at Montpellier University at 
the third-year university level. The difficulties are 
acknowledged by several authors (Leron & Dubinsky, 
1995; Nardi, 2000; Hausberger, 2013) and reflect a 

“transition problem” (Gueudet, 2008) which, in the 
present case, occurs inside the university curriculum.

The epistemological analysis presented in Hausberger 
(2013) allowed a connection with the following episte-
mological transitions: “the systematization of the axi-
omatic method, after Hilbert, and the transition, after 
Noether, from thinking about operations on elements 
to thinking in terms of selected subsets and homo-
morphisms”. Indeed, as emphasized by Cory (2007):

This image of the discipline turned the concep-
tual hierarchy of classical algebra upside-down. 
Groups, fields, rings and other related concepts, 
appeared now at the main focus of interest, based 
on the implicit realization that all these concepts 
are, in fact, instances of a more general, underly-
ing idea: the idea of an algebraic structure.

In other words, this epistemological gap leads to the 
vanishing of concrete mathematical objects in favor of 
abstract structures. This induces the following didacti-
cal problems: the teaching of abstract algebra tends to 
present a semantic deficiency regarding mathematical 
structures, which are defined by abstract axiomatic 
systems and whose syntactic aspects prevail. How 
does the learner build an “abstract group concept”? 
Indeed, what kind of representations can he rely on 
to do so when the purpose is to discard the particular 
nature of elements, in other words the mathematical 
context? Moreover, the investigation of the didactic 
transposition of the notion of structure shows that it 
is a meta-concept that is never mathematically defined 
in any course or textbook (and cannot be so):

As a consequence, students are supposed to learn 
by themselves and by the examples what is meant 
by a structure whereas sentences like “a homo-
morphism is a structure-preserving function” is 
supposed to help them make sense of a homomor-
phism (Hausberger, 2013).

As announced in loc. cit., I have engineered an activity 
for students to reflect on the axiomatic method and 
structuralist thinking in a simple context (simpler 
than group theory): the theory of banquets, an invent-
ed structure. It aims at operating the fundamental 
concrete-abstract and syntax-semantic dialectics (see 
below) and at clarifying the concept of mathematical 
structure using the meta lever (Dorier et al., 2000), 
that is “the use, in teaching, of information or knowl-
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edge about mathematics. […]. This information can 
lead students to reflect, consciously or otherwise, 
both on their own learning activity in mathematics 
and the very nature of mathematics”.

The purpose of this article is to present a few results 
that were obtained as I experimented with this activity. 
It tackles the following questions: what kind of cogni-
tive processes and reasoning do students use to make 
sense of an axiomatically-presented structure such 
as the banquet structure? How do they engage in the 
task of classifying models of the axiomatic system (and 
interpret the task: for instance, what kind of represen-
tations do they use, and do they formalize a concept 
of isomorphism of banquets)? What kind of abstract 
banquet structure concept do they build through the 
completion of such a task? Similarly as in the context 
of classical algebra in secondary education, semiotics 
will give interesting tools to answer these questions. 
Still, some adaptation needs to be made to reflect the 
context of abstract algebra, since structures repre-
sent a higher level of organization compared to the 
classical mathematical objects that they formalize, 
generalize and unify.

EPISTEMOLOGICAL AND 
DIDACTICAL FRAMEWORKS

Abstraction
The French verb abstraire has three different mean-
ings: 1. to discard (“faire abstraction de”) 2. to isolate 
(from a context) 3. to construct (a concept). Although 
these are three different actions, they may take place 
in order to reach a common goal as is the case in ab-
stract algebra: mathematicians disregard the partic-
ular nature of elements and isolate relations to build 
the structure as an abstract concept.

The “principle of abstraction” as a process to create 
concepts has been used by Frege (1884) to define car-
dinal numbers. To introduce the reader to this revolu-
tionary idea, Frege gives the enlightening example of 
the direction of a line which is defined as the class of all 
lines that are parallel to the given line. The principle 
was formalized later on by Russell (1903): to say that 

“things are equal because they have some property in 
common” and reduce a class to a single element, the 
relation that traduces this property should be sym-
metric and transitive (an equivalence relation).

Semiotics
Just as language is compulsory to express any idea, 
mathematical objects are accessed through mathe-
matical signs.  Frege’s semiotics will be used in this 
paper, thus making the distinction between the sense 
and the denotation of a sign (Frege, 1892). The deno-
tation of the sign is the object it refers to whereas the 
sense is related to the “mode of presentation” of the 
object. Mathematical signs are often polysemic but the 
context is meant to determine the reference uniquely. 
Conversely, different signs may represent the same 
object, thus having a different sense but a common 
denotation. In this way, different representations may 
bring to light different aspects of an object; they are 
acknowledged as denoting one and the same object 
through the realization that a particular processing 
or conversion of semiotic register of representation 
(Duval, 1995) allows to transform one representation 
into the other, and reciprocally. In other words, as 
stated and illustrated by Winsløw (2004, p. 4), one 
may “think of objects as signs modulo object preserving 
transformations (OPT)”: 

Syntax and semantic
Mathematical signs are organized within sentences 
and formulae that are built according to strict syntac-
tic rules. From a logical point of view, a definition is 
an “open sentence” that may be satisfied or not when 
the variables of the sentence are assigned in a suitable 
universe of discourse: this is the semantic conception 
of truth introduced by Tarski (1944); see also Durand-
Guerrier (2003) for a more detailed account and didac-
tical applications. In this respect, a piece of data that 
satisfies the definition of a mathematical structure 
(which involves a set of axioms that forms its syntactic 
content) may be called a model of the structure (in the 
given universe of discourse or hosting theory). The 

Rep. 2...

Axiomatic structure

...

Figure 1

Figure 2
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models will be regarded as the semantic content of 
the axiomatically-defined mathematical structure, its 
extension as a concept. 

Tarski also defined the notion of logical consequence 
from a semantic point of view. It will be used below 
in order to show that a given axiom A1 cannot be de-
duced from other axioms Ai: it amounts to showing 
the existence of a model satisfying the Ai’s but not A1. 
This contrasts with syntactic methods which consist 
of deduction by application of valid rules of inference.

Structural objects
In a famous dispute with Hilbert, Frege argues against 
the legitimacy of abstract definitions by systems of ax-
ioms. One argument concerns the intrinsic polysemy 
of such definitions: in semiotic terms, an axiomatic 
definition as a sign has multiple references, the mod-
els of the axiomatic system. In abstract definitions, 
the context doesn’t inform on the denotation simply 
because it is abstracted (in meaning 1 of the verb).

In order to build an abstract structure (group, ring, 
banquet, etc.) concept, and therefore give a more ad-
equate (still polysemic) semantic meaning to the set of 
axioms as a sign, one needs to use structure preserv-
ing applications (SPT), the so-called isomorphisms, 
which are defined as relation-preserving bijections 
(all models may be viewed as sets endowed with ad-
ditional data which define relations and satisfy the 
axioms). This allows us to associate to an axiomatic 
structure its “structural objects” (our terminology), 
the isomorphism classes of models or models modulo 
SPT, in the same manner as mathematical objects were 
built from representations modulo OPT, by means of 
the principle of abstraction.

It should be pointed out that, compared to Winsløw’s 
diagram, dotted arrows do not represent the denota-
tion of a sign but only “quotient maps”. Since models 
are accessed through signs, the preceding diagram 
should in fact be reprinted, to reflect semiotic views, 
replacing each model by one of its representation and 
SPT by its semiotic version SOPT (structural object 

preserving transformations). Dotted arrows may then 
represent denotation when the context indicates a 
structural perspective: for instance, Z/2Zx Z/2Z and 

“the symmetry group of a rectangle” may both refer 
to the Klein 4-group V4, as an abstract group concept. 
One may also write V4= <a,b;a2=b2=(ab)2=1> for a more 
syntactical description. Nevertheless, since mathe-
maticians take care in emphasizing the difference be-
tween a class and one representative, many authors 
would prefer to use the sign V4 to denote the group 
Z/2Zx Z/2Z and say that it is isomorphic to the symme-
try group of a rectangle or to the quotient of the free 
group on two generators by the relations a2=b2=(ab)2=1. 
The idea behind structural objects is, following Sfard, 
that some kind of reification must occur for concept 
building: “Reification is defined as an ontological 
shift – a sudden ability to see something familiar in 
a totally new light” (Sfard, 1991). For this to happen, a 
plurality of models should be needed, borrowed from 
different mathematical domains and represented in 
different semiotic registers. Similarly as in Winslow’s 
context, the coordination of these representations 
(through SOPT) should be crucial to obtain a concep-
tual schema of the structural object. It should open 
the possibility to abstract from “templates” a “pattern” 
(Resnik, 1997). Nevertheless, unlike in Winsløw’s con-
text, a representation of a model as a sign may now 
refer to both the model and the structural object (in a 
context where both appear), whereas a mathematical 
distinction must be kept. Solving this issue would re-
quire a more direct mediation of the structural object 
by a new adequate (to be specified) sign.

THE THEORY OF BANQUETS

As a piece of didactical engineering, the theory of ban-
quets was built on the basis of an epistemological anal-
ysis previously presented (Hausberger, 2013) in order 
to cover the three usage contexts of the meta-concept 

“structure”: 1. the structure as defined by a system of 
axioms 2. the abstract structure (of a given group or 
banquet) 3. a ‘structure-theorem’ (which describes the 
way an object can be reconstructed from simpler ob-
jects of the same type). It is filled with meta-discourse, 
as is already visible in the worksheet title: “The theory 
of banquets: a mini-theory to reflect on structuralist 
thinking”. The interested reader is requested to email 
the author for a copy of the complete worksheet.

The activity is divided into three parts: 1. logical inves-
tigation of the axiomatic system and classification of 

Figure 3
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models 2. elaboration of an abstract theory of tables 
(this is the other way round: students are asked to for-
malize the disposition of guests around a round table) 
and structure-theorem for banquets (a banquet is the 
disjoint union of tables) 3. connection with the theory 
of permutations (a reinterpretation of the banquet 
theory that permits you to see the structure-theorem 
as a direct consequence of the well-known theorem 
of canonical cycle-decomposition of a permutation).

Part 1 and 2 clearly bring-in a concrete-abstract dia-
lectic. A top-bottom approach has been chosen in part 
1 for two reasons: as this is the standard strategy in 
textbooks, it is interesting to inquire how students 
will make sense of such a definition; moreover, part 
1 will suitably enrich the didactical milieu for stu-
dents to be able to model the situation given in part 
2. Nevertheless, part 1 is already dialectical in itself: 
it amounts to making learners move on from the still 
abstract and syntactical conception of a structure ex-
emplified by Figure 2 to the more concrete and se-
mantic conception of Figure 3 (with several structural 
objects). The expected result of the abstract-concrete 
and syntax-semantic dialectics is a formulation of an 
abstract and syntactic characterization of structural 
objects (question 2 d of the worksheet, see below).

The definition of a banquet is as follows: it is a set E 
(the objects) endowed with a binary relation R (encod-
ing the relations between objects) which satisfies the 
following axioms: A1. No object fulfills xRx A2. If xRy 
and xRz then y=z A3. If yRx and zRx then y=z. A4. For 
all x, there exists at least one y such that xRy.

In part 1, students were asked the following questions:

1 a. Coherence: is it a valid mathematical theory, 
that is, are the axioms non-contradictory? In oth-
er words, does there exist a model?

1 b. Independence: is one of the axioms a logical 
consequence of others or are all axioms mutually 
independent?

2 a. Classify all banquets of order n≤3

2 b. Classify banquets of order 4

2 c. What can you say about Z/4Z endowed with?

2 d. How to characterize abstractly the preceding 
banquet (meaning its abstract structure of ban-
quet among all the different classes of banquet, 
in fact how to characterize its class)?

Solving these questions amount to solving the follow-
ing tasks and sub-tasks:

T1. Construct a model by suitable assignment of 
variables

T2. Classify banquets of a given order:

ST2a. Define a notion of isomorphism

ST2b. Give a list that covers representatives 
of all possible classes

ST2c. Show that two elements of the list are 
non-isomorphic

T3. Show that 2 models are isomorphic by explicit 
construction of an isomorphism

T4. Characterize abstractly an isomorphism class

Note that answering question 1 b amounts to solving 
T1 from the semantic point of view of logical conse-
quence (see above) and negation of an axiom. In do-
ing so, the boundaries of the banquet concept will be 
marked out. In the sequel, it will be necessary to focus 
first on T1 and give a list of available domains of inter-
pretation for the axiomatic system and corresponding 
semiotic registers, since available representations 
greatly impact the other tasks.

Empirical interpretation: the name banquet may sug-
gest by itself (or by reading the entire worksheet) 
guests around tables, so one defines xRy if and only 
if x sits on the right of y. Note that proving that this 
universe of discourse can serve to interpret the whole 
banquet theory reduces to proving the structure-the-
orem. One could also imagine a rectangle table and 
pick up guest sitting face to face, as a particular model.

Set theory: the set E is described by naming its ele-
ments and the binary relation is represented by its 
graph inside E2. This straightforward representation 
is not very interesting since it doesn’t “encode” much 
structure.
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Matrix theory: a binary relation may be seen as a 
function from E2 to {0,1} (true/false), and therefore 
be represented by a double-entry table, in other words 
a matrix. In this interpretation, the axioms say that 
the diagonal contains only zeros, that there is exactly 
one ‘1’ in each row and at least one in each column. In 
finite dimension, one can easily prove that there is 
exactly one ‘1’ per row and column, hence it is a per-
mutation matrix.

Graph theory: xRy if and only if vertices x and y are 
connected by an edge directed from x to y. The axioms 
say that from a vertex there originates exactly one 
edge and terminates at most one; therefore, unlike 
in general graph theory, is it easy to see when two 
drawings define the same graph.

Function theory: According to axioms A2 and A4, de-
fines a function f and the other axioms say that it is 
injective and has no fixed point. When the set E is fi-
nite, then f is a permutation without fixed points and 
one may use the standard semiotic representations 
for these (including cycle-decomposition).

It is in fact quite amazing to see the diversity of inter-
pretations and models, which certainly reflects the 
unity and creativity of mathematics. Models may be 
represented in a mixed or purely symbolic register. 
When the graphical register is used, it may be a per-
sonal idealization of people around tables or an insti-
tutional representation borrowed from graph theory. 
Of course, one cannot expect students to connect to 
all these theories: for, instance, we bet that students 
won’t translate the problem fully in the function set-
ting and identify the connection with permutation 
theory (which would ruin part 3 of the activity). But 
one can wonder about the importance they may give 
to representations connected to everyday life (empir-
ical setting). Moreover, models may be more or less 

“generic”: compare (E,f), E=N and f(x)=x+1, with a ma-
trix that may serve to represent any binary operation. 
Students may also think that a model should be given 
by a mathematical formula (like the example given 
in question 2 c), and restrict themselves to concrete 
examples in function theory, whereas a generic repre-
sentation of R is necessary to complete the other tasks.

To give an idea about processes and conversions from 
one setting to the other, one should notice that a repre-
sentation such as points marked on circles (empirical) 
is easily transformed into a graph by adding arrows 

clockwise between points; one may then associate to 
the graph its adjacency matrix, from which the func-
tion is soon reconstructed by reading the positions of 
the ones. When E is finite, the algorithm of cycle-de-
composition of the permutation gives the tables (one 
per cycle) and the length of the cycle gives the number 
of people around each table, thus coming back to the 
empirical setting.

The pertinence of the setting (choice of a domain of 
interpretation) depends on the task: graph theory may 
easily suggests a model that verifies all the axioms 
except A2; matrix theory is quite pertinent for ST2b 
(a complete list of all possible relations), still, graph 
theory again (or even better, a cyclic representation 
as obtained in the empirical setting) is best to decide 
if two banquets are isomorphic, as it gives a visual 
representation that makes common pattern visible 
and illustrates the etymology of isomorphism as a 
form-preserving mapping.

I will now present some students’ productions. Tasks 
2 to 4 will be discussed in greater detail while analyz-
ing these.  

EMPIRICAL DATA

The full banquet activity has been tried out during 
the academic year 2013–14 with third year univer-
sity students with a background in group theory 
before teaching ring and field theory. They worked 
in small groups of 4–5 students and were asked to 
keep a research notebook that was collected before 
each phase of institutionalization (Brousseau, 1997). 
In parallel, in laboratory sessions, I videotaped two 
pairs of more advanced students (having a master’s 
degree). The interviewer (myself ) intervened only at 
the end of part 1 in order to discuss with the students 
their answers and their conceptions regarding the 
classification task. Due to lack of space, I will only 
give an account of the laboratory session with one of 
the pairs. Nevertheless, this will already be enough to 
give an idea of some interesting phenomena that could 
be observed by using our theoretical framework and 
in particular Duval’s semiosis, the apprehension or 
production of semiotic representations (Duval, 1995).

The pair of students tried to recognize the banquet 
structure as a pattern in known mathematical ob-
jects and theories (“what is it, what’s this structure?”). 
Unlike in the classroom experiment, they didn’t bring 
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in wedding banquets; they first thought about the or-
der relation, then analyzed the example B4=(Z/4Z,R) 
of question 2c as a “kind of a shift” and generalized it 
(E=Z, f(x)=x+1 or x-1). Semiotic representations of the 
semantic meaning of axioms A2 and A3 in the graph-
ical register (Figure 4a) led them to build models in 
graph theory which they used for tasks T1b and T2. 
Recognition of cyclic patterns suggested permutations, 
as a common representation: they performed conver-
sions of registers (but didn’t connect to the function 
setting), producing the following classification which 
comprises 9 banquets of order 4 (Figure 4b).  

Student A:  Here, we are doing with what we 
know, but we speak about a structure

Student B: Wait, we can always number the el-
ements […]

Interviewer: For you, this is an abstract classi-
fication because you didn’t consider 
particular relations and you can always 
rename elements x,y,z,t

A: So there would be 2 classes up to isomor-
phism?

B: Here Z/4Z and there Z/2Z x Z/2Z
I: You are thinking about the classification 

of groups […] So there are 2 types of ob-
jects and (x y z t) and (x z y t) would be 
the same?

B:  Not the same, of the same type

The student B couldn’t define what he meant by a type, 
he just made a connection between the word used by 
the interviewer and the notion of type of a permuta-
tion. The word bijection finally appeared but students 
found it difficult to define what “structure-preserv-
ing” meant. They drew the graph for (x z y t) but ob-
tained crossing edges which confused them even more 

(both are identical as graphs but not as drawings). On 
the contrary, converting to a graph the example B4 
allowed connection to (x y z t) (obvious congruence 
of drawings). They didn’t realize that abstracting the 
nature of elements simply meant forgetting letters, a 
mental process that makes the recognition of isomor-
phism classes in the representation as cycle products 
automatic.

CONCLUSIONS AND PERSPECTIVES

This study, through its theoretical framework and the 
analysis of the presented data, contributes to the rec-
ognition of the influence of semiotic representations 
in cognitive activities dedicated to the learning of ab-
stract algebra. I have discussed the hypothesis that a 
logical investigation of an axiomatic system and the 
classification of its models up to isomorphism, in the 
paradigm of the “theory of banquets” which connects 
to group-theory, is a cognitive activity that could bring 
good conditions for learners to develop an appropri-
ate conceptualization of an abstract structure, and in 
particular access what I called “structural objects”. 
Empirical data show mental processes based on the 
recognition of (visual) patterns. Conversions of reg-
isters were operated on by the two students in order 
to realize that two objects are isomorphic, a strate-
gy which is successful when the congruence of rep-
resentations is obvious, but the students couldn’t han-
dle the treatments inside a register since they couldn’t 
rely on a formal definition of an isomorphism or make 
this definition functional, which is evidence of insuf-
ficient syntax-semantic dialectic. This also suggests 
an incomplete understanding of abstraction as a pro-
cess that leads to structural objects. Finally, the two 
students tried to work out the analogy with group 
theory from which they borrowed directly or tried 

Figure 4a Figure 4b
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to adapt representations and concepts (see transcript 
above). As stated by Winsløw (2004), “mathematical 
concepts are not learned one by one but as coherent 
patterns or structures”, and this also happens at the 
level of structures themselves, thus gaining access to 
what I called level-2 unification (Hausberger, 2012).

The analysis of empirical data will be pursued in great-
er details in an expanded version of this article. It is 
expected that these investigations and refinements of 
the semiotic tools will lead to a better understanding 
of students’ difficulties in abstract algebra which are 
inherent in structuralist thinking, from a cognitive 
point of view.
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