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Abstract The objective of the present article is to assess the well-posedness of the stress
gradient linear elastic problems recently introduced by Forest and Sab (2012) and to for-
mulate the corresponding existence and uniqueness theorems. In particular, we show that
such theorems can be established in the case of the boundary value problems formulated
in (Forest and Sab, 2012) with the corresponding boundary conditions.
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1. Introduction

Strain gradient and stress gradient theories are two distinct continuum models for
materials with fundamentally different kinematic, static and constitutive properties.
The strain gradient elasticity initiated by Toupin (1962) and culminating in the works
of Mindlin (1965); Mindlin and Eshel (1968) is based on the introduction of the second
gradient of the displacement field (i.e., the strain gradient) in the free energy density of
the material. The Aifantis gradient elasticity model, which has attracted much attention
in the past twenty years and involves the Laplacian of the stress tensor in the constitutive
equations, has been shown to be a special case of Mindlin’s strain gradient elasticity (Ru
and Aifantis, 1993; Forest and Aifantis, 2010). In contrast, the concept of stress gradi-
ent continuum came out only recently in the works of Forest and Sab (2012); Polizzotto

1Corresponding author. Tel.: +33-1-64-15-37-49; karam.sab@enpc.fr

1



(2014, 2015), even though the notion of stress gradient was invoked in several earlier con-
tributions without consistently building the specific balance and constitutive equations of
that theory. The stress gradient model differs from the strain gradient theory by the fact
that the dual quantity to the stress gradient involves new kinematic degrees of freedom,
called microdisplacements by Forest and Sab (2012). This results in distinct boundary
conditions and constitutive equations. The stress gradient model is hence not a particu-
lar case of strain gradient models, and we refer to (Forest and Sab, 2012, Table 1) for a
comprehensive comparison of the two types of models. In turn, the formulations of the
stress gradient theories presented by Forest and Sab (2012) and Polizzotto (2014) share
several common features but differ in particular in the definition of essential and natural
boundary conditions, i.e., generalized Dirichlet and Neumann boundary conditions. It
can be shown however that both stress gradient theories lead, in a simplified isotropic
case, to the same Eringen constitutive model involving the Laplacian of the stress tensor
components (Eringen, 2002).

What are the proper boundary conditions for strain and stress gradient elasticity en-
suring existence and uniqueness of solutions? This question is settled in the case of strain
gradient elasticity thanks to the pioneering contributions by Mindlin (1965); Bleustein
(1967); Mindlin and Eshel (1968); Germain (1973) and, more recently, Dell’Isola and
Seppecher (1995, 1997); Dell’Isola et al. (2012); Iesan and Quintanilla (2013). Dirichlet
boundary conditions amount to fix the displacement and the normal gradient of the dis-
placement on the boundary of the domain, whereas Neumann boundary conditions involve
a complex form of the first and second order traction vectors. Under appropriate condi-
tions of definite-positiveness of the first and second order elastic moduli, existence and
uniqueness of solutions are ensured.

The corresponding statements for stress gradient elasticity are not yet available in the
literature and boundary conditions remain controversial: Forest and Sab (2012) claimed
that free boundary conditions require that all the stress components be null on the bound-
ary surface, whereas Polizzotto (2015) claimed that this is ”very hard to satisfy” and sug-
gested other conditions. The objective of the present article is to assess the well-posedness
of stress gradient linear elastic problems and to formulate the corresponding existence and
uniqueness theorems. In particular, we show here that such theorems can be established
in the case of the boundary value problems formulated in (Forest and Sab, 2012) and
Polizzotto (2015) with the corresponding boundary conditions. We consider here three
types of boundary conditions: (i) clamping boundary conditions (i.e., Dirichlet condi-
tions, which amount to prescribing the generalized displacement) in Sections 3, 4 and 5,
(ii) free boundary conditions (i.e., Neumann conditions, which amount to prescribing the
generalized stress like in (Forest and Sab, 2012)) in Section 6, and (iii) mixed boundary
conditions ( which amount to prescribing some components of the generalized stress and
some components of the generalized displacement like in Polizzotto (2015)) in Section 7.

Existence and uniqueness theorems for generalized continua remain seldom in the liter-
ature. Some of them have been established for the linear elastic Cosserat continuum (Iesan,
2007; Jeong and Neff, 2010) and for Eringen’s micromorphic continuum (Iesan and Quin-
tanilla, 1994; Neff and Forest, 2007). There is a current debate on the choice of suitable
boundary conditions for stress gradient media, as discussed in Forest and Sab (2012)
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and Polizzotto (2014, 2015). In the original work (Forest and Sab, 2012), the static
boundary conditions amount to fixing all stress tensor components on the boundary of the
domain, whereas only the usual traction vector is prescribed in the theory by Polizzotto
(2014). There is therefore a need for mathematical statements on existence and uniqueness
of solutions in linear elasticity to assess the proposed boundary conditions. In the present
work, we prove such theorems in the case of stress gradient elasticity for the boundary
conditions stated in (Forest and Sab, 2012).

Our article is organized as follows. After setting the notations used throughout this
work in Section 2, the balance and constitutive equations of the stress gradient theory are
recalled in the context of linear anisotropic elasticity in Section 3. We introduce there a
stress formulation based on the complementary energy, and show its well-posedness (see
Theorem 3). In Section 4, we turn to a displacement formulation based on minimizing
the potential energy. We assume there clamping boundary conditions (in the spirit of
Dirichlet boundary conditions on the displacement). The main technical difficulty is to
show the coercivity of the stress gradient elasticity potential, which is the aim of Sec-
tion 4.2. Using this result, the existence and uniqueness of the solution is established
in Section 4.3 (see Theorem 6). We next study (see Section 5) the relation between the
stress formulation introduced in Section 3 and the displacement formulation introduced in
Section 4. In Section 6, we eventually consider free boundary conditions, in the spirit of
Neumann boundary conditions, and establish the well-posedness of the corresponding for-
mulation (see Theorem 10). We point out several possible generalizations of our approach
in Section 7, and collect concluding remarks in Section 8.

2. Notations and preliminaries

We collect here some notations concerning tensorial calculus and functional spaces,
and recall some links between the symmetrized gradient of a displacement field and rigid
body displacements.

2.1. Tensorial calculus

All the vector spaces considered in this article are over R, and the space dimension is
3. Throughout this article, Latin indices vary in the set {1, 2, 3} when they are not used
for indexing sequences, and the summation convention with respect to repeated indices is
systematically used in conjunction with this rule. Tensors of zeroth, first, second, third,
fourth, fifth and sixth ranks are respectively denoted by a, a , a

∼
, a

⌢
, a

≈

, a
∼

⌢

and a
⌢⌢
. To

avoid any confusion, the intrinsic notation is usually complemented by the index notation
with reference to a Cartesian orthonormal basis (e 1,e 2,e 3). The space of first, second
and third rank tensors are respectively denoted by R (so that R = R

3), R
∼

and R
⌢
. The

subscript S appended to R
∼
and R

⌢
denotes the space of symmetric second and third rank

tensors with respect to the first two indices:

∀a
∼
= (aij) ∈ R

∼S
, aij = aji and ∀a

⌢
= (aijk) ∈ R

⌢S
, aijk = ajik.
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The dimension of the vector space R
∼S

(resp. R
⌢S

) is therefore 6 (resp. 18). These spaces
are respectively endowed with the following scalar products:

a
∼
: a

∼

′ = aij a
′
ij , a

⌢
∴ a

⌢

′ = aijk a
′
ijk.

For any a
⌢
∈ R

⌢S
and any b

∼
∈ R

∼S
, we define

a
⌢
: b

∼
= aijk bjk e i.

We recall that any symmetric second rank tensor a
∼

∈ R
∼S

can be decomposed into a

spherical part a
∼

s ∈ R
∼

s
S
⊂ R

∼S
and a deviatoric part a

∼

d ∈ R
∼

d
S
⊂ R

∼S
as

a
∼
= a

∼

s + a
∼

d

with

a
∼

s =
1

3

(
Tra

∼

)
1
∼
,

where 1
∼
is the second rank identity tensor. We see that

a
∼

s : a
∼

d = 0.

The space of spherical second rank tensors is R
s
S =

{
a1

∼
, a ∈ R

}
while the space of

deviatoric second rank tensors is R
∼

d
S
=

{
a
∼
∈ R

∼S
, Tra

∼
= 0

}
.

A similar decomposition can be introduced for third rank tensors. Let

R
⌢

d
S
=

{
a
⌢
∈ R

⌢S
, a

⌢
: 1

∼
= 0

}
=

{
a
⌢
∈ R

⌢S
, aijk δjk = 0

}

be the space of deviatoric symmetric third rank tensors, where δjk is the Kronecker symbol.

Let R
⌢

s
S
=

(
R
⌢

d
S

)⊥
, so that R

⌢S
= R

⌢

s
S
⊕R

⌢

d
S
. Any symmetric third rank tensor a

⌢
∈ R

⌢S
can be

decomposed into a spherical part a
⌢

s ∈ R
⌢

s
S
⊂ R

⌢S
and a deviatoric part a

⌢

d ∈ R
⌢

d
S
⊂ R

⌢S
as

a
⌢
= a

⌢

s + a
⌢

d

with

asijk =
1

4
(ailmδlmδjk + ajlmδlmδik) . (1)

Remark 1. In the two-dimensional case, the formula (1) should be replaced by

asijk =
1

3
(ailmδlmδjk + ajlmδlmδik) ,

where the indices i, j and k only take the value 1 or 2.

The tensor product is denoted by ⊗. We define the symmetrized tensor product as

a
s
⊗b =

1

2
(a ⊗ b + b ⊗ a ), a(ibj) =

1

2
(aibj + ajbi).
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The nabla operator is denoted by ∇ , with ∇i =
∂

∂xi
. It operates as follows on a vector

field u :

u ⊗∇ =
∂ui
∂xj

e i ⊗ e j = ui,j e i ⊗ e j.

The Cauchy stress tensor is a symmetric second rank tensor denoted by σ
∼
, which has the

following components:
σ
∼
= σij e i ⊗ e j.

Its divergence is the vector
σ
∼
·∇ = σij,j e i.

The stress gradient tensor is a third rank tensor, defined by

σ
∼
⊗∇ = σij,k e i ⊗ e j ⊗ e k.

Its components are symmetric with respect to the first two indices. It is hence in R
⌢S

. We
note that the spherical part of the stress gradient is directly related to the divergence of
the stress tensor by

(σ
∼
⊗∇ )sijk =

1

4
(σim,mδjk + σjm,mδik) =

1

4

( [
(σ
∼
·∇ ) · e i

]
δjk +

[
(σ
∼
·∇ ) · e j

]
δik

)
(2)

or equivalently,
(σ
∼
⊗∇ ) : 1

∼
= (σ

∼
⊗∇ )s : 1

∼
= σ

∼
·∇ . (3)

In particular
σ
∼
·∇ = 0 if and only if (σ

∼
⊗∇ )s = 0. (4)

2.2. Functional spaces

We consider a bounded, connected, open subset Ω of R3 whose boundary is Lipschitz-
continuous in the sense of Necas (1967) or Adams (1975). Usual notations of functional
analysis are used. So, D(Ω) denotes the space of functions defined on Ω, that are infinitely
differentiable and have compact support. In turn, D′(Ω) denotes the space of distributions
defined over Ω. The notations Hm(Ω), m ∈ Z, with H0(Ω) = L2(Ω), and H1

0 (Ω) denote
the usual Sobolev spaces. Spaces of vector fields and tensor fields are denoted according to
the tensorial notations introduced in Section 2.1. The subscript S appended to a special
Roman capital letter denotes a space of symmetric tensor fields. For instance, D (Ω)
denotes the space of vector fields having their components in D(Ω), D

∼ S
(Ω) denotes the

space of symmetric second rank tensor fields having their components in D(Ω), D
⌢ S

(Ω)
denotes the space of third rank tensor fields being symmetric with respect to the first
two indices and having their components in D(Ω). Likewise, L 2 (Ω), L

∼

2
S
(Ω) and L

⌢

2
S
(Ω)

denote, respectively, the space of vector fields, symmetric second rank fields and symmetric
third rank fields having their components in L2 (Ω). The L2 norm involves the natural
scalar product on these spaces. Hence, it is defined by

‖a ‖2
L

2

(Ω)
=

∫

Ω
a · a ,

∥∥a
∼

∥∥2
L
∼

2

S
(Ω)

=

∫

Ω
a
∼
: a

∼
,

∥∥a
⌢

∥∥2
L
⌢

2

S
(Ω)

=

∫

Ω
a
⌢
∴ a

⌢
.

The following theorems will be useful in the sequel. Let u ∈ D ′(Ω):
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• The distribution u
s
⊗∇ ∈ D

∼

′

S
(Ω) vanishes if, and only if, there exist some constants

t ∈ R and ω ∈ R such that u is a function satisfying (Moreau, 1979)

∀x ∈ Ω, u (x ) = t + ω × x , (5)

where t and ω are respectively called the translation vector and the rotation vector
of the infinitesimal rigid body displacement field u . We denote by R the vector
space of such rigid body displacement fields:

R = {u is a function of the form (5)} . (6)

• The distribution u
s
⊗∇ is in H

∼

−1
S

(Ω) if, and only if, u is in L 2(Ω) (see (Amrouche
et al., 2006, Theorem 3.1)). Moreover, in view of (Amrouche et al., 2006, Proof of
Theorem 3.2), there exists a constant C such that

∀u ∈ L 2(Ω), inf
r ∈R

‖u − r ‖
L

2

(Ω)
≤ C

∥∥∥u
s
⊗∇

∥∥∥
H
∼

−1

S
(Ω)

. (7)

3. Formulation of the stress gradient elasticity model according to (Forest and
Sab, 2012)

We consider a homogeneous elastic stress gradient material occupying the domain Ω.
Its complementary energy is given by

P∗
(
σ
∼

)
=

∫

Ω
w∗

(
σ
∼
, (σ

∼
⊗∇ )d

)
, (8)

where we introduced the stress energy density potential w∗(σ
∼
,R

⌢
), which is assumed to

be a symmetric definite positive quadratic form of the variables σ
∼

∈ R
∼S

and R
⌢

∈ R
⌢

d
S
.

In what follows, we assume that w∗ does not couple σ
∼
and R

⌢
(this for instance holds in

the case of point symmetry). There thus exist a fourth order stress compliance tensor S
≈

σ

(with Sσ
ijkl = Sσ

jikl = Sσ
klij) and a sixth order stress gradient compliance tensor S

⌢⌢

R (with

SR
ijklmn = SR

jiklmn = SR
lmnijk) such that

w∗
(
σ
∼
,R

⌢

)
=

1

2
σ
∼
: S

≈

σ : σ
∼
+

1

2
R
⌢

∴ S
⌢⌢

R
∴ R

⌢
, (9)

where S
≈

σ and S
⌢⌢

R are positive definite in the sense that there exists c > 0 such that

∀σ
∼
∈ R

∼S
, σ

∼
: S

≈

σ : σ
∼
≥ cσ

∼
: σ

∼
, (10)

∀R
⌢

∈ R
⌢

d
S
, R

⌢
∴ S

⌢⌢

R
∴ R

⌢
≥ cR

⌢
∴ R

⌢
. (11)

We hence see that w∗(σ
∼
,R

⌢
) vanishes only when

(
σ
∼
,R

⌢

)
=

(
0
∼
,0
⌢

)
.
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Remark 2. To keep notations simple, we assume here that the material is homogeneous,
which implies that S

≈

σ and S
⌢⌢

R do not depend on the spatial variable x . Our approach

carries over to the case when S
≈

σ and S
⌢⌢

R depend on x . The assumption (10) should then

be replaced by: S
≈

σ ∈ L
≈

∞ (Ω) and there exists c > 0 such that

∀σ
∼
∈ R

∼S
, σ

∼
: S

≈

σ(x ) : σ
∼
≥ cσ

∼
: σ

∼
almost everywhere on Ω,

and likewise for (11).

The solid is subjected to body forces f ∈ L 2(Ω) and clamping conditions are imposed
at its boundary ∂Ω. Introduce the space of statically admissible generalized stress fields

SA
(
f
)
=

{
σ
∼
∈ H

∼

1
S
(Ω), σ

∼
·∇ + f = 0 on Ω

}
. (12)

The variational formulation of the problem consists in minimizing the complementary
energy with respect to all statically admissible generalized stress fields:

inf

{
P∗

(
σ
∼

)
=

∫

Ω
w∗

(
σ
∼
, (σ

∼
⊗∇ )d

)
, σ

∼
∈ SA

(
f
)}

, (13)

where w∗ is given by (9). Note that, when σ
∼
∈ SA

(
f
)
, the divergence of σ

∼
and therefore,

in view of (2), the spherical part of the stress gradient, is entirely determined. It is hence
natural that only the deviatoric part of the stress gradient enters the stress energy density
potential w∗.

3.1. Well-posedness of the stress formulation (13)

We have the following result:

Theorem 3. Under assumptions (10) and (11), the problem (9)–(13) has a unique so-
lution σ

∼

#. This field is also the unique solution in SA
(
f
)
of the following variational

formulation: find σ
∼

# ∈ SA
(
f
)
such that

∀ϕ
∼

∈ SA(0 ),

∫

Ω
ϕ
∼

: S
≈

σ : σ
∼
+ (ϕ

∼

⊗∇ )d ∴ S
⌢⌢

R
∴ (σ

∼
⊗∇ )d = 0. (14)

Proof. The proof is straightforward. We provide it for the sake of completeness. Introduce
the symmetric bilinear form

as(ϕ
∼

,σ
∼
) =

∫

Ω
ϕ
∼

: S
≈

σ : σ
∼
+ (ϕ

∼

⊗∇ )d ∴ S
⌢⌢

R
∴ (σ

∼
⊗∇ )d

so that P∗
(
σ
∼

)
=

1

2
as(σ

∼
,σ
∼
). Let σ

∼

f be any element in SA(f ). Then the problem (13) is

equivalent to

inf

{
1

2
as(σ

∼
,σ

∼
) + as(σ

∼

f ,σ
∼
), σ

∼
∈ SA(0 )

}
. (15)
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The space SA(0 ), endowed with the scalar product

〈ϕ
∼

,σ
∼
〉SA =

∫

Ω
ϕ
∼

: σ
∼
+ (ϕ

∼

⊗∇ ) ∴ (σ
∼
⊗∇ ),

is a Hilbert space. The bilinear form as is continuous on SA(0 ). In view of (10)–(11)
and (4), it is also coercive on SA(0 ):

as(σ
∼
,σ

∼
) ≥ c

∫

Ω
σ
∼
: σ

∼
+ (σ

∼
⊗∇ )d ∴ (σ

∼
⊗∇ )d = c 〈σ

∼
,σ
∼
〉SA.

Using the Lax-Milgram theorem on (15), we deduce that the problem (13) is well-posed.
Its unique solution σ

∼

# ∈ SA(f ) satisfies

∀ϕ ∈ SA(0 ), as(ϕ
∼

,σ
∼

#) = 0,

which is exactly (14).

3.2. Displacement formulation

The direct formulation of (13), i.e., a formulation in terms of generalized displacement
fields, has been obtained by Forest and Sab (2012) using standard variational techniques.
Let us introduce the strain fields e

∼
and Φ

⌢
, which are conjugate through the stress energy

density w∗ to the stress fields σ
∼
and R

⌢
= (σ

∼
⊗∇ )d:

e
∼
=

∂w∗

∂σ
∼

(
σ
∼
,R

⌢

)
= S

≈

σ : σ
∼
, Φ

⌢
=

∂w∗

∂R
⌢

(
σ
∼
,R
⌢

)
= S

⌢⌢

R
∴ R

⌢
. (16)

Note that the new kinematic degrees of freedom Φ
⌢

form a deviatoric third order tensor.
They are called microdisplacements in (Forest and Sab, 2012). The above relations play
the role of constitutive equations in the model.

It was found that the field e
∼
can be written in terms of Φ

⌢
and of a displacement vector

field u as

e
∼
= u

s
⊗∇ +Φ

⌢
· ∇ , i.e., eij =

1

2
(ui,j + uj,i) + Φijk,k. (17)

Moreover, the clamping conditions on ∂Ω read

u
s
⊗n +Φ

⌢
· n = 0, i.e., u(inj) +Φijknk = 0 on ∂Ω, (18)

where n is the outer normal vector to ∂Ω.

The purpose of this article is to show the existence and uniqueness of a solution to the
above boundary value problem: find u , Φ

⌢
, e

∼
, σ

∼
and R

⌢
solution to equations (16), (17),

(18), as well as the equilibrium equations

σ
∼
·∇ + f = 0, R

⌢
= (σ

∼
⊗∇ )d. (19)

Rather than working with the vector u ∈ R and the deviatoric third rank tensor Φ
⌢

∈ R
⌢

d
S
,

it is actually more convenient to work with the kinematic variable Ψ
⌢

= Ψ
⌢

s + Ψ
⌢

d ∈ R
⌢S

8



defined as follows. We set Ψ
⌢

d, the deviatoric part of Ψ
⌢
, to be equal to Φ

⌢
, and we define

its spherical part Ψ
⌢

s by

Ψs
ijk =

1

2
(δikuj + δjkui). (20)

We have the remarkable properties

Ψ
⌢

s · ∇ = u
s
⊗∇ , Ψ

⌢

s · n = u
s
⊗n . (21)

Conversely, for any given Ψ
⌢

∈ R
⌢
, we can extract a unique vector uΨ ∈ R from its spherical

part such that (20) holds true. This vector uΨ is given by

uΨ =
1

2
Ψ
⌢

: 1
∼
=

1

2
Ψ
⌢

s : 1
∼
, uΨi =

1

2
Ψijkδjk =

1

2
Ψs

ijkδjk. (22)

Note that
1

2
Ψ
⌢

s
∴ Ψ

⌢

s = uΨ · uΨ. (23)

Then, it is clear from (17) that

e
∼
= Ψ

⌢
· ∇ , eij = Ψijk,k, and Φ

⌢
= Ψ

⌢

d. (24)

In turn, (18) implies that the clamping boundary conditions on ∂Ω read

Ψ
⌢

· n = 0, Ψijk nk = 0. (25)

Hence, with this new kinematic variable Ψ
⌢
, which we call the generalized displacement

in the sequel, the boundary value problem consists in finding Ψ
⌢
, e

∼
, Φ

⌢
, σ

∼
and R

⌢
solu-

tions to (16), (19), (24) and (25). The existence and uniqueness of a solution to that
problem will be shown by Theorem 7 below, that we prove by minimizing an appropriate
potential energy (namely, (30) below) over a set of kinematically compatible generalized
displacements.

To build that potential energy, it is useful to introduce the Legendre transform w of
w∗, which is defined as

∀
(
e
∼
,Φ
⌢

)
∈ R

∼S
× R

⌢

d
S
, w

(
e
∼
,Φ
⌢

)
= Max

σ
∼
∈R

∼S
,R
⌢

∈R
⌢

d

S

(
σ
∼
: e

∼
+R

⌢
∴ Φ

⌢
−w∗

(
σ
∼
,R

⌢

) )
.

We have assumed that w∗ is given by (9). We hence have that

w
(
e
∼
,Φ
⌢

)
=

1

2
e
∼
: C

≈

e : e
∼
+

1

2
Φ
⌢

∴ C
⌢⌢

Φ
∴ Φ

⌢
(26)

where C
≈

e =

(
S
≈

σ

)−1

and C
⌢⌢

Φ =

(
S
≈

R

)−1

are the so-called stiffness tensors. They are

symmetric, definite and positive, in the sense that there exists β > 0 such that

∀e
∼
∈ R

∼S
, ∀Φ

⌢
∈ R

⌢

d
S
, β

(
e
∼
: e

∼
+Φ

⌢
∴ Φ

⌢

)
≤ e

∼
: C

≈

e : e
∼
+Φ

⌢
∴ C

⌢⌢

Φ
∴ Φ

⌢
. (27)
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We can then express the generalized stresses
(
σ
∼
,R
⌢

)
in terms of the generalized strains(

e
∼
,Φ
⌢

)
as

σ
∼
=

∂w

∂e
∼

(
e
∼
,Φ
⌢

)
and R

⌢
=

∂w

∂Φ
⌢

(
e
∼
,Φ
⌢

)
, (28)

hence, in view of the specific form (26),

σ
∼
= C

≈

e : e
∼

and R
⌢

= C
⌢⌢

Φ
∴ Φ

⌢
. (29)

4. Minimum of the potential energy with clamping boundary conditions

In this section, we introduce a displacement formulation in the form of the minimization
of a potential energy over an appropriate space of kinematically compatible displacement
fields (see (34) below). In Theorem 6, we next show that the minimization problem is
well-posed.

4.1. Formulation of the problem

Let Ψ
⌢

be a generalized displacement field defined over Ω. We know from physical
considerations that the potential energy P(Ψ

⌢
) is equal to the strain energy of Ψ

⌢
minus

the work of the external load f . Hence, we have

P(Ψ
⌢
) =

∫

Ω
w
(
Ψ
⌢

·∇ ,Ψ
⌢

d
)
−

∫

Ω

1

2
f ·

(
Ψ
⌢

: 1
∼

)
, (30)

where w is given by (26). Recall that f ∈ L 2 (Ω). Clearly, P(Ψ
⌢
) is well defined as soon

as Ψ
⌢

∈ KC, where KC is the space of kinematically compatible generalized displacement
fields defined by

KC =
{
Ψ
⌢

∈ L
⌢

2
S
(Ω) ; Ψ

⌢
·∇ ∈ L

∼

2
S
(Ω)

}
.

Lemma 4. The vector space KC, endowed with the scalar product

〈Ψ
⌢1

,Ψ
⌢ 2

〉KC =

∫

Ω

(
Ψ
⌢1

·∇
)
:
(
Ψ
⌢2

·∇
)
+Ψ

⌢ 1
∴ Ψ

⌢2
, (31)

is a Hilbert space.

Proof. Again, the proof is based on standard arguments. The application (31) is obviously
bilinear, symmetric, definite and positive. Hence, it is a scalar product. The associated
norm is denoted ‖·‖KC . Let us prove that (KC, ‖·‖KC) is complete.

Let Ψ
⌢n

∈ KC, n ∈ N, be a Cauchy sequence in the norm ‖·‖KC . Then,
(
Ψ
⌢n

)
is a

Cauchy sequence in L
⌢

2
S
(Ω) and

(
Ψ
⌢n

·∇
)
is a Cauchy sequence in L

∼

2
S
(Ω). Therefore, there

exists Ψ
⌢0

∈ L
⌢

2
S
(Ω) and e

∼0 ∈ L
∼

2
S
(Ω) such that Ψ

⌢n
and Ψ

⌢n
·∇ converge to Ψ

⌢0
in L

⌢

2
S
(Ω)

and to e
∼0 in L

∼

2
S
(Ω), respectively. We thus have that Ψ

⌢n
converges to Ψ

⌢0
in D

⌢

′

S
(Ω), hence

Ψ
⌢n

· ∇ converges to Ψ
⌢0

· ∇ in D
∼

′

S
(Ω). We also have that Ψ

⌢n
· ∇ converges to e

∼0
in

D
∼

′

S
(Ω). Therefore, e

∼0
= Ψ

⌢0
·∇ . This proves that Ψ

⌢0
∈ KC and that Ψ

⌢n
converges to

Ψ
⌢0

according to the norm ‖·‖KC .
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We now give a rigorous sense to the boundary condition (25). Recall indeed that the
trace on ∂Ω of Ψ

⌢
∈ KC is not defined, as Ψ

⌢
does not belong to H

⌢

1
S
(Ω). However, the

trace of Ψ
⌢

· n can be defined. For smooth fields Ψ
⌢

and ϕ
∼

in C
∼

∞

S
(Ω), we have

∫

Ω
ϕ
∼

:
(
Ψ
⌢

·∇
)
+

(
ϕ
∼

⊗∇

)
∴ Ψ

⌢
=

∫

∂Ω
ϕ
∼

:
(
Ψ
⌢

· n
)
. (32)

Because ϕ
∼

can be arbitrary prescribed on ∂Ω, imposing Ψ
⌢

·n = 0 on ∂Ω is equivalent to
imposing ∫

Ω
ϕ
∼

:
(
Ψ
⌢

·∇
)
+

(
ϕ
∼

⊗∇

)
∴ Ψ

⌢
= 0 (33)

for all ϕ
∼

∈ C
∼

∞

S
(Ω). We thus define KC0 ⊂ KC, the subspace of generalized displacements

which are kinematically compatible with clamping boundary conditions, as

KC0 =
{
Ψ
⌢

∈ KC; (33) holds true for allϕ
∼

∈ H
∼

1
S
(Ω)

}
.

It is readily seen that the subspace KC0 is closed in KC equipped with its norm ‖·‖KC .
Hence, KC0, endowed with the scalar product 〈·, ·〉KC , is a Hilbert space.

The stress gradient problem with clamped boundary conditions consists in minimizing
the potential energy P(Ψ

⌢
) over all Ψ

⌢
∈ KC0:

inf
{
P(Ψ

⌢
), Ψ

⌢
∈ KC0

}
(34)

where P(Ψ
⌢
) is defined by (30). Note that

P(Ψ
⌢
) =

1

2
a(Ψ

⌢
,Ψ

⌢
)− b(Ψ

⌢
),

where the bilinear form a is defined on KC ×KC by

a(Ψ
⌢1

,Ψ
⌢ 2

) =

∫

Ω

(
Ψ
⌢1

·∇
)
: C

≈

e :
(
Ψ
⌢2

·∇
)
+Ψ

⌢

d
1
∴ C

⌢⌢

Φ
∴ Ψ

⌢

d
2
, (35)

and the linear form b is defined on KC by

b(Ψ
⌢
) =

1

2

∫

Ω
f ·

(
Ψ
⌢

: 1
∼

)
. (36)

Obviously, b is a continuous linear form on KC and a is a continuous symmetric bilinear
form on KC ×KC. To show that (34) is well-posed, we are thus left with showing that
the bilinear form a is coercive on KC0. The difficulty comes from the fact that only the
deviatoric part Ψ

⌢

d of Ψ
⌢

appears in a, while the norm ‖·‖KC is written in terms of the full
tensor Ψ

⌢
.

11



4.2. Coercivity of the bilinear form a

Due to the definite positiveness of C
≈

e and C
⌢⌢

Φ (see (27)), we have that

β
(
e
∼
: e

∼
+Φ

⌢
∴ Φ

⌢

)
≤ e

∼
: C

≈

e : e
∼
+Φ

⌢
∴ C

⌢⌢

Φ
∴ Φ

⌢

for all e
∼
∈ R

∼S
and all Φ

⌢
∈ R

⌢

d
S
, where β > 0. Introduce the vector space KCd defined by

KCd =
{
Ψ
⌢

∈ D
⌢

′

S
(Ω) ; Ψ

⌢

d ∈ L
⌢

2
S
(Ω) ; Ψ

⌢
·∇ ∈ L

∼

2
S
(Ω)

}
,

which differs from KC by the fact that we do not assume that the spherical component
Ψ
⌢

s belongs to L
⌢

2
S
(Ω). We endow KCd with the scalar product

〈Ψ
⌢1

,Ψ
⌢2

〉KCd =

∫

Ω

(
Ψ
⌢1

·∇
)
:
(
Ψ
⌢2

·∇
)
+Ψ

⌢

d
1
∴ Ψ

⌢

d
2

and the induced norm ∥∥Ψ
⌢

∥∥2
KCd = 〈Ψ

⌢
,Ψ

⌢
〉KCd . (37)

We have that KC ⊂ KCd and that

∀Ψ
⌢

∈ KC, β
∥∥Ψ

⌢

∥∥2
KCd ≤ a(Ψ

⌢
,Ψ

⌢
).

The coercivity of a over KC0 equipped with the norm ‖·‖KC is a direct consequence of
the following result:

Lemma 5. We have that KCd = KC and ‖·‖KCd defines a norm on KC0 which is
equivalent to the norm ‖·‖KC.

Proof. The proof falls in three steps.
Step 1. Let Ψ

⌢
∈ KCd. We prove that the spherical part of Ψ

⌢
is in L

⌢

2
S
(Ω). To that

aim, consider the vector field uΨ ∈ D ′(Ω) defined by (22). Then,

uΨ
s
⊗∇ = Ψ

⌢

s · ∇ =
(
Ψ
⌢

· ∇
)
−

(
Ψ
⌢

d · ∇
)

(38)

is inH
∼

−1
S

(Ω) because, by definition ofKCd, we have thatΨ
⌢
·∇ ∈ L

∼

2
S
(Ω) andΨ

⌢

d ∈ L
⌢

2
S
(Ω).

Therefore, according to (Amrouche et al., 2006, Theorem 3.1), uΨ is in L 2(Ω). Hence, in
view of (23), we obtain that Ψ

⌢

s ∈ L
⌢

2
S
(Ω). This proves that Ψ

⌢
∈ KC, thus KCd ⊂ KC.

The converse inclusion being obvious, we have that KCd = KC.
Note that

∀Ψ
⌢

∈ KC,
∥∥Ψ

⌢

∥∥2
KC

=
∥∥Ψ

⌢

∥∥2
KCd +

∥∥Ψ
⌢

s
∥∥2
L
∼

2

S
(Ω)

≥
∥∥Ψ

⌢

∥∥2
KCd . (39)

Step 2. We now show that the positive symmetric bilinear form 〈·, ·〉KCd is definite on
KC0, and hence it is a scalar product on KC0. Let Ψ

⌢
∈ KC0 such that

∥∥Ψ
⌢

∥∥
KCd = 0.

Then Ψ
⌢

d = 0 and Ψ
⌢
·∇ = 0. From (38), we get that uΨ

s
⊗∇ = 0. Therefore, uΨ is a rigid

12



body displacement field of the form (5) (see (Moreau, 1979)). We hence infer from (20)
that Ψ

⌢

s is smooth.
In addition, since Ψ

⌢
∈ KC0, it satisfies (33), which reads, taking into account that

Ψ
⌢

d = 0 and Ψ
⌢

·∇ = 0:

∀ϕ
∼

∈ H
∼

1
S
(Ω),

∫

Ω

(
ϕ
∼

⊗∇

)
∴ Ψ

⌢

s = 0.

Since Ψ
⌢

s is smooth, we can integrate by part in the above expression. This yields, in view
of (32), that

∀ϕ
∼

∈ H
∼

1
S
(Ω),

∫

Ω
ϕ
∼

:
(
Ψ
⌢

s ·∇
)
=

∫

∂Ω
ϕ
∼

:
(
Ψ
⌢

s · n
)
.

Using (21), we have Ψ
⌢

s ·∇ = uΨ
s
⊗∇ = 0 and Ψ

⌢

s · n = uΨ
s
⊗n . We hence deduce that,

for any ϕ
∼

∈ H
∼

1
S
(Ω),

0 =

∫

∂Ω
ϕ
∼

:
(
uΨ

s
⊗n

)
=

∫

∂Ω

(
ϕ
∼

· n
)
· uΨ =

∫

∂Ω

(
ϕ
∼

· n
)
· (t + ω × x )

=

[∫

∂Ω
ϕ
∼

· n

]
· t +

[∫

∂Ω
x ×

(
ϕ
∼

· n
)]

· ω .

The tensor ϕ
∼

being arbitrary, we obtain that t = ω = 0. This implies that uΨ = 0, hence

Ψ
⌢

s = 0, hence Ψ
⌢

= 0. We have thus shown that, if Ψ
⌢

∈ KC0 satisfies
∥∥Ψ

⌢

∥∥
KCd = 0, then

Ψ
⌢

= 0.

Step 3. We claim that there exists a constant C ′ > 0 such that

∀Ψ
⌢

∈ KC0,
∥∥Ψ

⌢

∥∥
KC

≤ C ′
∥∥Ψ

⌢

∥∥
KCd . (40)

To prove this claim, we proceed by contradiction. If (40) does not hold, then, for all k ∈ N,
there exists Ψ

⌢k
∈ KC0 such that

∥∥Ψ
⌢ k

∥∥
KC

= 1,
∥∥Ψ

⌢k

∥∥
KCd

≤
1

k
.

We therefore have
∥∥Ψ

⌢k
·∇

∥∥
L
∼

2

S
(Ω)

≤ 1/k. In addition, we have
∥∥∥Ψ

⌢

d
k

∥∥∥
L
⌢

2

S
(Ω)

≤ 1/k, which

implies that
∥∥∥Ψ

⌢

d
k
·∇

∥∥∥
H
∼

−1

S
(Ω)

≤ 1/k.

Consider the sequence of vector fields u k defined from Ψ
⌢k

by (22). We know that the

corresponding sequence of strain fields, which is given by (38), satisfies
∥∥∥u k

s
⊗∇

∥∥∥
H
∼

−1

S
(Ω)

≤

2/k. In view of (7), we deduce that

inf
r ∈R

‖u k − r ‖
L

2

(Ω)
≤

C

k
. (41)
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We now point out that the above infimum is actually attained at a unique r k ∈ R ,
which simply is the orthogonal projection of u k on R in the sense of the scalar product
(·, ·)

L
2

(Ω)
. Hence, ‖r k‖L 2

(Ω)
≤ ‖u k‖L 2

(Ω)
, which is bounded in L 2 (Ω) because we have∥∥Ψ

⌢ k

∥∥
KC

= 1. Consequently, the sequence (r k) is also bounded in the six-dimensional
spaceR of rigid body displacements. Thus, there exists a subsequence (r l) which strongly
converges in L 2 (Ω) to some r 0 ∈ R . In view of (41), we write

‖u l − r l‖L 2

(Ω)
= inf

r ∈R
‖u l − r ‖

L
2

(Ω)
≤

C

l
,

which implies that the subsequence (u l) strongly converges in L 2 (Ω) to r 0 ∈ R . There-
fore,

(
Ψ
⌢ l

)
strongly converges in KC to some element Ψ

⌢0
satisfying

∥∥Ψ
⌢0

∥∥
KCd

= 0. In
addition, Ψ

⌢k
∈ KC0 for all k, hence Ψ

⌢0
∈ KC0. In view of the conclusion of Step 2, this

implies that Ψ
⌢0

= 0. This is a contradiction with the fact that
∥∥Ψ

⌢ l

∥∥
KC

= 1 for all l and
that Ψ

⌢ l
strongly converges in KC to Ψ

⌢0
. This concludes the proof of the claim (40).

The equivalence of the norms ‖·‖KCd and ‖·‖KC on KC0 is a direct consequence of (39)
and (40).

4.3. Existence and uniqueness of the solution to (34)

The symmetric bilinear form a being continuous and coercive on the Hilbert space
KC0 endowed with the scalar product 〈·, ·〉KC , and the linear form b being continuous on
this space, we obtain the following result as a consequence of the Lax-Milgram theorem:

Theorem 6. Assume that f ∈ L 2 (Ω) and that the stiffness tensors C
≈

e and C
⌢⌢

Φ are

symmetric and positive definite in the sense of (27). Then the minimization problem (34)
admits a unique solution Ψ

⌢

#. It is also the unique solution of the following problem: find

Ψ
⌢

# in KC0 such that a
(
Ψ
⌢

#,Ψ
⌢

)
= b

(
Ψ
⌢

)
for all Ψ

⌢
in KC0, where a and b are defined

by (35) and (36).

5. Relation between the stress and the displacement formulations

We have considered above a stress formulation of the problem, namely (13). As shown
by Theorem 3, this problem has a unique solution. We next have considered the displace-
ment formulation (34), which also has a unique solution, in view of Theorem 6. We now
show that one can build the solution of the former using the solution of the latter.

Theorem 7. Under the assumptions of Theorem 6, let Ψ
⌢

# be the unique solution to the
minimization problem (34). Let

e
∼

# = Ψ
⌢

# · ∇ and Φ
⌢

# = (Ψ
⌢

#)d

be the generalized strain fields associated to Ψ
⌢

# by the compatibility conditions (24) and
let

σ
∼

# = C
≈

e : e
∼

# and R
⌢

# = C
⌢⌢

Φ
∴ Φ

⌢

#
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be the generalized stress fields associated to the generalized strain fields by the constitutive
law (29).

Then σ
∼

# is in the space SA(f ) defined by (12) while R
⌢

# = (σ
∼

# ⊗∇ )d. In addition,

σ
∼

# is the unique solution to the stress formulation problem (13), where w∗ is defined
by (9).

Proof. By construction, we have that e
∼

# ∈ L
∼

2
S
(Ω), Φ

⌢

# ∈ L
⌢

2
S
(Ω), σ

∼

# ∈ L
∼

2
S
(Ω) and

R
⌢

# ∈ L
⌢

2
S
(Ω). According to the variational equation satisfied by Ψ

⌢

# (see Theorem 6), we
have that, for all Ψ

⌢
∈ KC0,
∫

Ω
σ
∼

# :
(
Ψ
⌢

·∇
)
+R

⌢

#
∴ Ψ

⌢

d =

∫

Ω

1

2
f ·

(
Ψ
⌢

: 1
∼

)
.

Restricting the above relation to Ψ
⌢

∈ D
⌢ S

(Ω) ⊂ KC0, we obtain

∀Ψ
⌢

∈ D
⌢ S

(Ω),
〈(

R
⌢

# − F
⌢

s − σ
∼

# ⊗∇

)
,Ψ

⌢

〉
D
⌢

′

S
(Ω),D

⌢ S
(Ω)

= 0,

where we have used the fact that R
⌢

# is deviatoric to substitute R
⌢

#
∴ Ψ

⌢
for R

⌢

#
∴ Ψ

⌢

d,
and where F

⌢

s ∈ R
⌢

s
S
is defined by

F s
ijk =

1

4
(δikfj + δjkfi), (42)

so that F
⌢

s
∴ Ψ

⌢
=

1

2
f ·

(
Ψ
⌢

: 1
∼

)
. Hence, we have shown that

σ
∼

# ⊗∇ = R
⌢

# − F
⌢

s (43)

in the sense of distributions. Taking the spherical part of (43), we obtain

(σ
∼

# ⊗∇ )s = −F
⌢

s

since F
⌢

s is spherical by construction, while R
⌢

# is deviatoric. Using (3), we deduce that

σ
∼

# ·∇ = −F
⌢

s : 1
∼
= −f .

Taking now the deviatoric part of (43), we obtain

(σ
∼

# ⊗∇ )d = R
⌢

#.

Moreover, the equation (43) shows that the stress gradient components are in L2 (Ω). We
therefore obtain that σ

∼

# ∈ SA(f ).

We now show that σ
∼

# is the unique solution to the stress formulation problem (13).
Let σ

∼
be any element in SA

(
f
)
, and set σ

∼

′ = σ
∼
−σ

∼

#. Then, by simple algebra, we have

P∗
(
σ
∼

)
= P∗

(
σ
∼

#
)
+ P∗

(
σ
∼

′
)
+

∫

Ω
σ
∼

′ : S
≈

σ : σ
∼

# + (σ
∼

′ ⊗∇ )d ∴ S
⌢⌢

R
∴ (σ

∼

# ⊗∇ )d

= P∗

(
σ
∼

#
)
+ P∗

(
σ
∼

′
)
+

∫

Ω
σ
∼

′ :
(
Ψ
⌢

# ·∇
)
+ (σ

∼

′ ⊗∇ )d ∴ (Ψ
⌢

#)d,
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where we have used that Ψ
⌢

# ·∇ = e
∼

# = S
≈

σ : σ
∼

# and (Ψ
⌢

#)d = Φ
⌢

# = S
⌢⌢

R
∴ R

⌢

# = S
⌢⌢

R
∴

(σ
∼

# ⊗∇ )d. Observe that

(σ
∼

′ ⊗∇ )d ∴ (Ψ
⌢

#)d = (σ
∼

′ ⊗∇ )d ∴ Ψ
⌢

# = (σ
∼

′ ⊗∇ ) ∴ Ψ
⌢

#,

the last equality being a consequence of the fact that σ
∼

′ ∈ SA (0 ). We hence get that

P∗
(
σ
∼

)
= P∗

(
σ
∼

#
)
+ P∗

(
σ
∼

′
)
+

∫

Ω
σ
∼

′ :
(
Ψ
⌢

# ·∇
)
+ (σ

∼

′ ⊗∇ ) ∴ Ψ
⌢

#.

The generalized displacement field Ψ
⌢

# belongs to KC0, hence satisfies (33), and therefore
the last term in the above equation vanishes. We obtain that

P∗
(
σ
∼

)
= P∗

(
σ
∼

#
)
+ P∗

(
σ
∼

′
)

and we eventually note that P∗
(
σ
∼

′
)
is positive as soon as σ

∼

′ does not vanish. Thus
σ
∼

# ∈ SA(f ) is indeed the unique solution to (13).

6. Minimum of the potential energy with free boundary conditions

The purpose of this section is to study the problem when the free boundary condition

σ
∼
= 0 on ∂Ω (44)

is substituted to the clamping boundary condition (25). The boundary value problem
with free boundary conditions hence consists in finding Ψ

⌢
, e

∼
, Φ

⌢
, σ

∼
and R

⌢
solution to (16),

(19), (24) and (44).
We first introduce an appropriate displacement formulation (see (48) below) before

showing that the corresponding minimization problem is well-posed (Theorem 10). We
eventually show the link with a stress formulation in Theorem 12

6.1. Formulation of the problem

Because there are no contact forces at the boundary ∂Ω, the applied body forces
f ∈ L 2 (Ω), or their third rank tensor representation F

⌢

s defined by (42), must be self-
balanced, that is

∀Ψ
⌢

∈ R
⌢
, b(Ψ

⌢
) =

1

2

∫

Ω
f ·

(
Ψ
⌢

: 1
∼

)
=

∫

Ω
f · uΨ =

∫

Ω
F
⌢

s
∴ Ψ

⌢
= 0.

This is equivalent to the two standard conditions

∫

Ω
f = 0 and

∫

Ω
x × f = 0. (45)

We have introduced in (6) the space R of rigid body displacements. We have also seen
that we can associate a spherical third rank tensor Ψ

⌢
to any displacement field u by (20).
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It is hence natural to introduce the set of spherical third rank tensors that are associated
to R :

R
⌢

=

{
Ψ
⌢

∈ KC; Ψijk =
1

2
(δikuj + δjkui); u is a function of the form (5)

}
. (46)

Introduce next the quotient space K̂C = KC/R
⌢
. All the elements Ψ

⌢
of Ψ̂

⌢
∈ K̂C have

the same deviatoric part. Their spherical parts differ by an element of R
⌢
.

The space R
⌢

is a closed subspace of the Hilbert space KC. We can therefore consider
the orthogonal projection of KC on R

⌢
according to the scalar product 〈·, ·〉KC : for any

Ψ
⌢

∈ KC, there exists a unique Π(Ψ
⌢
) ∈ R

⌢
such that

∥∥Ψ
⌢

−Π(Ψ
⌢
)
∥∥
KC

= inf
z∈R

⌢

∥∥Ψ
⌢

− z
∥∥
KC

.

Lemma 8. The quotient space K̂C = KC/R
⌢
, endowed with the scalar product

〈
Ψ̂
⌢1

, Ψ̂
⌢2

〉
K̂C

=
〈
Ψ
⌢1

−Π(Ψ
⌢ 1

),Ψ
⌢2

−Π(Ψ
⌢ 2

)
〉
KC

, (47)

where Ψ
⌢1

(resp. Ψ
⌢2

) is any element in Ψ̂
⌢1

(resp. Ψ̂
⌢2

), is a Hilbert space.

Proof. We first show that the scalar product (47) is well-defined. Consider Ψ
⌢ 1

and Ψ
⌢

′

1

two elements in Ψ̂
⌢ 1

. We see that

Ψ
⌢

′

1
−Π(Ψ

⌢

′

1
) =

(
Ψ
⌢

′

1
−Ψ

⌢1
−Π(Ψ

⌢

′

1
−Ψ

⌢1
)
)
+Ψ

⌢1
−Π(Ψ

⌢ 1
)

and we recall that Ψ
⌢

′

1
− Ψ

⌢1
is an element of R

⌢
. The first term in the above right-hand

side hence vanishes. This implies that Ψ
⌢

′

1
− Π(Ψ

⌢

′

1
) = Ψ

⌢ 1
− Π(Ψ

⌢ 1
) and thus the scalar

product (47) is well-defined on K̂C.

We now show that K̂C is a Hilbert space. Let Ψ̂
⌢n

∈ K̂C, n ∈ N, be a Cauchy sequence
in the norm ‖·‖

K̂C
. We thus see that Ψ

⌢n
− Π(Ψ

⌢n
) is a Cauchy sequence in KC, which

thus converges to some Ψ
⌢∞

satisfying Π(Ψ
⌢∞

) = 0 by continuity of the projection Π. We
now observe that ∥∥∥Ψ̂

⌢n
− Ψ̂

⌢∞

∥∥∥
2

K̂C
=

∥∥Ψ
⌢n

−Ψ
⌢∞

−Π(Ψ
⌢n

)
∥∥2
KC

,

hence Ψ̂
⌢n

converges to Ψ̂
⌢∞

in K̂C. This proves that K̂C is a complete space.

We now introduce a variational formulation on K̂C, inspired by the one established
on KC0 in Theorem 6. In the spirit of (36), we introduce on K̂C the linear form

∀Ψ̂
⌢

∈ K̂C, b̂(Ψ̂
⌢
) = b(Ψ

⌢
) =

∫

Ω
F
⌢

s
∴ Ψ

⌢

s

where Ψ
⌢

is any element in Ψ̂
⌢
. Because of (45), the above right-hand side does not depend

on the choice of Ψ
⌢
. Using the continuity of b on KC, we see that, for any Ψ̂

⌢
∈ K̂C,

∣∣∣̂b(Ψ̂
⌢
)
∣∣∣ =

∣∣b(Ψ −Π(Ψ
⌢
))
∣∣ ≤ C

∥∥Ψ
⌢

−Π(Ψ
⌢
)
∥∥
KC

= C
∥∥∥Ψ̂

⌢

∥∥∥
K̂C

.
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The linear form b̂ is hence continuous on K̂C.
Likewise, in the spirit of (35), we introduce on K̂C the bilinear form

â(Ψ̂
⌢1

, Ψ̂
⌢ 2

) = a(Ψ
⌢1

,Ψ
⌢2

) =

∫

Ω

(
Ψ
⌢1

·∇
)
: C

≈

e :
(
Ψ
⌢2

·∇
)
+Ψ

⌢

d
1
∴ C

⌢⌢

Φ
∴ Ψ

⌢

d
2
,

where Ψ
⌢1

(resp. Ψ
⌢2

) is any element in Ψ̂
⌢1

(resp. Ψ̂
⌢2

). Note that, thanks to (38), the

generalized strains e
∼
= Ψ

⌢
· ∇ and Φ

⌢
= Ψ

⌢

d associated to any Ψ
⌢

in Ψ̂
⌢

∈ K̂C are uniquely

determined by Ψ̂
⌢
: the above right-hand side is hence well-defined. As above, we have

∣∣∣â(Ψ̂
⌢ 1

, Ψ̂
⌢2

)
∣∣∣ =

∣∣a(Ψ
⌢1

−Π(Ψ
⌢ 1

),Ψ
⌢2

−Π(Ψ
⌢ 2

))
∣∣

≤ C
∥∥Ψ

⌢1
−Π(Ψ

⌢ 1
)
∥∥
KC

∥∥Ψ
⌢2

−Π(Ψ
⌢ 2

)
∥∥
KC

= C
∥∥∥Ψ̂

⌢1

∥∥∥
K̂C

∥∥∥Ψ̂
⌢2

∥∥∥
K̂C

,

which shows that â is continuous on K̂C.

We consider the minimization problem

inf
{
P̂
(
Ψ̂
⌢

)
, Ψ̂

⌢
∈ K̂C

}
, (48)

where

P̂
(
Ψ̂
⌢

)
=

1

2
â(Ψ̂

⌢
, Ψ̂

⌢
)− b̂(Ψ̂

⌢
).

To show that this problem is well-posed, we are left with showing the coercivity of â.

6.2. Coercivity of the bilinear form â

We have the following result:

Lemma 9. Let Ψ̂
⌢

∈ K̂C. There exists c > 0 such that

∥∥Ψ
⌢

∥∥
KCd ≤

∥∥∥Ψ̂
⌢

∥∥∥
K̂C

≤ c
∥∥Ψ

⌢

∥∥
KCd

where Ψ
⌢

is any element in Ψ̂
⌢

and the norm ‖·‖KCd is defined by (37).

Recall that all the elements Ψ
⌢

of Ψ̂
⌢

∈ K̂C have the same deviatoric part, and that
their spherical parts differ by an element of R

⌢
. The quantity

∥∥Ψ
⌢

∥∥
KCd is hence the same

for all Ψ
⌢

∈ Ψ̂
⌢
.

Proof. Let Ψ̂
⌢

∈ K̂C and Ψ
⌢

∈ Ψ̂
⌢
. We have

∥∥∥Ψ̂
⌢

∥∥∥
2

K̂C
=

∥∥Ψ
⌢

−Π(Ψ
⌢
)
∥∥2
KC

=
∥∥Ψ

⌢
−Π(Ψ

⌢
)
∥∥2
KCd +

∥∥∥
(
Ψ
⌢

−Π(Ψ
⌢
)
)s∥∥∥

2

L
∼

2

S
(Ω)

(49)

hence ∥∥∥Ψ̂
⌢

∥∥∥
2

K̂C
≥

∥∥Ψ
⌢

−Π(Ψ
⌢
)
∥∥2
KCd =

∥∥Ψ
⌢

∥∥2
KCd . (50)
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Conversely, let u be the vector associated to the spherical tensor Ψ
⌢

s using (22). We have

∥∥∥
(
Ψ
⌢

−Π(Ψ
⌢
)
)s∥∥∥

2

L
∼

2

S
(Ω)

= 2 ‖u − π(u )‖2
L

2

(Ω)
= 2 inf

r ∈R
‖u − r ‖2

L
2

(Ω)

where π is the orthogonal projection of L 2 (Ω) on R . Using (7) and (38), we deduce that

∥∥∥
(
Ψ
⌢

−Π(Ψ
⌢
)
)s∥∥∥

2

L
∼

2

S
(Ω)

≤ C
∥∥∥u

s
⊗∇

∥∥∥
2

H
∼

−1

S
(Ω)

≤ 2C
∥∥Ψ

⌢
· ∇

∥∥2
H
∼

−1

S
(Ω)

+2C
∥∥∥Ψ

⌢

d · ∇
∥∥∥
2

H
∼

−1

S
(Ω)

≤ 2C
∥∥Ψ

⌢
· ∇

∥∥2
L
∼

2

S
(Ω)

+ 2C
∥∥∥Ψ

⌢

d
∥∥∥
2

L
⌢

2

S
(Ω)

= 2C
∥∥Ψ

⌢

∥∥2
KCd .

We thus deduce from (49) that
∥∥∥Ψ̂

⌢

∥∥∥
2

K̂C
≤

∥∥Ψ
⌢

∥∥2
KCd + 2C

∥∥Ψ
⌢

∥∥2
KCd .

Collecting this bound with (50), we conclude the proof of Lemma 9.

6.3. Well-posedness of (48)

We have shown above that b̂ is a continuous linear form on the Hilbert space K̂C, and
that â is a continuous bilinear symmetric coercive form. Using the Lax-Milgram theorem,
we deduce the following result:

Theorem 10. Consider some external forces f ∈ L 2 (Ω) that satisfy (45). Assume that

the stiffness tensors C
≈

e and C
⌢⌢

Φ are symmetric and positive definite in the sense of (27).

Then the minimization problem (48) admits a unique solution Ψ̂
⌢

#
.

Moreover, Ψ̂
⌢

#
is also the unique solution of the following problem: find Ψ̂

⌢

#
in K̂C

such that â
(
Ψ̂
⌢

#
, Ψ̂

⌢

)
= b̂

(
Ψ̂
⌢

)
for all Ψ̂

⌢
in K̂C.

We now build from Ψ̂
⌢

#
a solution to the boundary value problem with free boundary

conditions (16), (19), (24) and (44).

Theorem 11. Under the assumptions of Theorem 10, let Ψ̂
⌢

#
be the unique solution to

the minimization problem (48). Let Ψ
⌢

# be any element in Ψ̂
⌢

#
and let

e
∼

# = Ψ
⌢

# · ∇ and Φ
⌢

# = (Ψ
⌢

#)d

be the generalized strain fields associated to Ψ
⌢

# by the compatibility conditions (24). Recall

these fields are independent of the choice of Ψ
⌢

# ∈ Ψ̂
⌢

#
. Let

σ
∼

# = C
≈

e : e
∼

# and R
⌢

# = C
⌢⌢

Φ
∴ Φ

⌢

#

be the generalized stress fields associated to the generalized strain fields by the constitutive
law (29).

Then σ
∼

# is in the space SA(f ) defined by (12) while R
⌢

# = (σ
∼

# ⊗∇ )d. Moreover,

σ
∼

# satisfies (44).

19



Proof. We follow the same lines as in the proof of Theorem 7. According to the variational

equation satisfied by Ψ̂
⌢

#
(see Theorem 10), we have that, for all Ψ̂

⌢
∈ K̂C,

∫

Ω
σ
∼

# :
(
Ψ
⌢

·∇
)
+R

⌢

#
∴ Ψ

⌢

d =

∫

Ω

1

2
f ·

(
Ψ
⌢

: 1
∼

)
, (51)

where Ψ
⌢

is any element in Ψ̂
⌢
. The above relation hence holds for any Ψ

⌢
∈ KC. Following

the arguments of the proof of Theorem 7, we obtain that σ
∼

# ∈ SA(f ) while R
⌢

# =

(σ
∼

# ⊗∇ )d.
It remains to show that σ

∼

# satisfies (44). Consider some Ψ
⌢

∈ C
⌢

∞

S
(Ω) ⊂ KC. Inte-

grating by part in (51), we deduce that

∀Ψ
⌢

∈ C
⌢

∞

S
(Ω),

∫

∂Ω
σ
∼

# :
(
Ψ
⌢

· n
)
= 0.

We have used the fact that the trace of σ
∼

# ∈ H
∼

1
S
(Ω) is well defined on the regular

boundary ∂Ω. The quantity Ψ
⌢
· n can be arbitrary prescribed on ∂Ω, which implies that

σ
∼

# = 0 on ∂Ω.

6.4. Link with a stress formulation

In Theorem 11, we have built the generalized stress fields
(
σ#
∼

,R
⌢

#
)
solution to the

boundary value problem with free boundary conditions. Furthermore, we have shown that
R
⌢

# = (σ
∼

# ⊗ ∇ )d and that σ#
∼

∈ SA0

(
f
)
, the set of statically admissible stress fields

defined by
SA0

(
f
)
=

{
σ
∼
∈ SA

(
f
)
, σ

∼
satisfies (44)

}
.

Similarly to the last assertion of Theorem 7, we have the following result:

Theorem 12. Under the assumptions of Theorem 10 and with the notations of Theo-
rem 11, the stress field σ

∼

# defined in Theorem 11 is the unique solution to the problem

inf

{
P∗

(
σ
∼

)
=

∫

Ω
w∗

(
σ
∼
, (σ

∼
⊗∇ )d

)
, σ

∼
∈ SA0

(
f
)}

, (52)

where w∗ is defined by (9).

Proof. The proof follows the same lines as the second part of that of Theorem 7, where
SA0

(
f
)
is substituted to SA

(
f
)
. Let σ

∼
be any element in SA0

(
f
)
, and set σ

∼

′ = σ
∼
−σ

∼

#.
Then, by simple algebra, and using the fact that σ

∼

′ ·∇ = 0, we have

P∗
(
σ
∼

)
= P∗

(
σ
∼

#
)
+ P∗

(
σ
∼

′
)
+

∫

Ω
σ
∼

′ :
(
Ψ
⌢

# ·∇
)
+ (σ

∼

′ ⊗∇ ) ∴ Ψ
⌢

#.

By integration by part, and using that σ
∼

′ = 0 on ∂Ω, we see that the last term in the
above equation vanishes. We hence obtain that

P∗
(
σ
∼

)
= P∗

(
σ
∼

#
)
+ P∗

(
σ
∼

′
)

and we eventually note that P∗
(
σ
∼

′
)
is positive as soon as σ

∼

′ does not vanish. Thus
σ
∼

# ∈ SA0(f ) is the unique solution to (52).
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7. Generalizations

In this section, we point out various generalizations of the theory we have developed
here.

7.1. Body forces

A straightforward generalization of the previous results is to consider body forces as
fields F

⌢
∈ L

⌢

2
S
(Ω), rather than fields F

⌢

s constructed from f following (42). We then
replace the definition (36) by

∀Ψ
⌢

∈ KC, b
(
Ψ
⌢

)
=

∫

Ω
F
⌢

∴ Ψ
⌢
.

Consider the problem with clamped boundary conditions considered in Section 4. The
linear form b is again continuous on KC0. The minimization problem (34) again has a
unique solution Ψ

⌢

#, and Theorem 6 holds. The generalized stresses σ
∼

# and R
⌢

# defined

from Ψ
⌢

# as in Theorem 7 satisfy the following balance equations:

σ
∼

# ·∇ + F
⌢

: 1
∼
= 0, R

⌢

# = (σ
∼

# ⊗∇ )d + F
⌢

d,

which are substituted for (19). As a consequence, in the stress formulation associated
to (34), one should be careful in the definition of the complementary energy P∗

(
σ
∼

)
.

Likewise, the set of statically admissible stress fields should be defined as

SA
(
F
⌢

)
=

{
σ
∼
∈ H

∼

1
S
(Ω), σ

∼
·∇ + F

⌢
: 1

∼
= 0 on Ω

}

instead of (12).

7.2. More general strain energy densities

Another generalization is to consider materials for which the strain energy density w
is a positive definite symmetric quadratic form of

(
e
∼
,Φ
⌢

)
that is not necessarily uncoupled

in terms of e
∼
and Φ

⌢
. The density is then given by

w
(
e
∼
,Φ
⌢

)
=

1

2
e
∼
: C

≈

e : e
∼
+

1

2
Φ
⌢

∴ C
⌢⌢

Φ
∴ Φ

⌢
+ e

∼
:
(
C
∼

⌢

eΦ
∴ Φ

⌢

)

with the symmetries Ce
ijkl = Ce

jikl = Ce
klij, C

Φ
ijklmn = CΦ

jiklmn = CΦ
lmnijk and CeΦ

ijlmn =

CeΦ
jilmn = CeΦ

ijmln, and such that

∀
(
e
∼
,Φ
⌢

)
∈ R

∼S
× R

⌢

d
S
, β

(
e
∼
: e

∼
+Φ

⌢
∴ Φ

⌢

)
≤ w

(
e
∼
,Φ
⌢

)

for some β > 0. In this case, the generalized stresses σ
∼
and R

⌢
, which are still defined by

the constitutive equation (28), are given by

σ
∼
= C

≈

e : e
∼
+C

∼

⌢

eΦ
∴ Φ

⌢
and R

⌢
= C

⌢⌢

Φ
∴ Φ

⌢
+C

∼

⌢

Φe : e
∼

where the tensor C
∼

⌢

Φe is defined by CΦe
lmnij = CeΦ

ijlmn. The above constitutive law can be

substituted for (29) in all the previous results. As pointed out in Remark 2, we can also
consider heterogeneous materials.
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7.3. Revisiting the free boundary conditions

The free boundary conditions of the stress gradient theory impose that all the compo-
nents of the second rank tensor σ

∼
vanish on the boundary ∂Ω, see (44). However, the free

boundary conditions in a standard Cauchy body impose that only the normal components
σ
∼
·n vanish (recall that n is the outer normal vector to ∂Ω). If we want to prescribe only

σ
∼
· n = 0 in the stress gradient model, we must prescribe also the kinematic condition

Ψ
⌢

d · n = 0 on the deviatoric part Ψ
⌢

d of Ψ
⌢

in the following weak sense:

∫

Ω
ϕ
∼

:
(
Ψ
⌢

d ·∇
)
+

(
ϕ
∼

⊗∇

)
∴ Ψ

⌢

d = 0 (53)

for all ϕ
∼

∈ H
∼

1
S
(Ω).

We can generalize our results of the displacement formulation (namely Theorems 10
and 11) to the case of the mixed boundary conditions σ

∼
·n = 0 and Ψ

⌢

d ·n = 0 as follows:

• The space of kinematically compatible generalized displacements is chosen as the
closed subspace K̂C

m
⊂ K̂C such that the equation (53) holds true for all ϕ

∼

∈

H
∼

1
S
(Ω), where, in (53), Ψ

⌢
is any element in Ψ̂

⌢
. Recall that Ψ

⌢

d is uniquely defined

by Ψ̂
⌢
.

• The body forces f are assumed to satisfy (45).

• Using the same arguments as for Theorem 10, we obtain that the minimization
problem

inf
{
P̂
(
Ψ̂
⌢

)
, Ψ̂

⌢
∈ K̂C

m
}

is well-posed.

• As in Theorem 11, we build the generalized stress fields σ
∼

# and R
⌢

#, that satisfy
(compare with (51))

∀Ψ̂
⌢

∈ K̂C
m
, ∀Ψ

⌢
∈ Ψ̂

⌢
,

∫

Ω
σ
∼

# :
(
Ψ
⌢

·∇
)
+R

⌢

#
∴ Ψ

⌢

d =

∫

Ω

1

2
f ·

(
Ψ
⌢

: 1
∼

)
, (54)

where Ψ
⌢

is any element in Ψ̂
⌢
. This implies that σ

∼

# is in the space SA(f ) defined

by (12) while R
⌢

# = (σ
∼

# ⊗∇ )d. We next deduce from (54) that

∫

Ω
σ
∼

# :
(
Ψ
⌢

·∇
)
+

(
(σ
∼

# ⊗∇ )d
)
∴ Ψ

⌢

d =

∫

Ω

1

2
f ·

(
Ψ
⌢

: 1
∼

)
,

hence ∫

Ω
σ
∼

# :
(
Ψ
⌢

·∇
)
+

(
σ
∼

# ⊗∇

)
∴ Ψ

⌢

d =

∫

Ω

1

2
f ·

(
Ψ
⌢

: 1
∼

)
.

Using (53), we thus get

∫

Ω
σ
∼

# :
(
Ψ
⌢

s ·∇
)
=

∫

Ω

1

2
f ·

(
Ψ
⌢

: 1
∼

)
. (55)
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Let u ∈ H 1(Ω), and consider the spherical third rank tensor Ψ
⌢

s associated to u

by (20). We consider the third rank tensor Ψ
⌢

= Ψ
⌢

s, which is admissible in (54).
Using (21), we see that (55) reads

∫

Ω
σ
∼

# :
(
u

s
⊗∇

)
=

∫

Ω
f · u .

Integrating by part and using the fact that σ
∼

# ·∇ + f = 0, we obtain that

∫

∂Ω
u ·

(
σ
∼

# · n
)
= 0 for any u ∈ H 1(Ω). This implies that σ

∼

# · n = 0 on ∂Ω.

Likewise, we can generalize Theorem 12 (stress formulation) to the case of the mixed
boundary conditions σ

∼
·n = 0 and Ψ

⌢

d ·n = 0. The set of statically admissible generalized
stresses should be the closed subset SAm

(
f
)
⊂ SA

(
f
)
of stress fields such that σ

∼
·n = 0

on ∂Ω (this condition is well-defined as SA
(
f
)
⊂ H

∼

1
S
(Ω)).

8. Conclusion

Generalized energy principles have been established for the recent theory of stress gra-
dient elasticity. They have been used to formulate existence and uniqueness theorems for
the solutions of boundary value problems involving either clamping or stress free bound-
ary conditions. The suitable clamping boundary conditions involve a combination of fixed
normal components of the displacement vector and microdisplacement tensor, the latter
being the additional kinematic degrees of freedom needed in the theory. The dual Neu-
mann boundary conditions amount to fixing all components of the stress tensor on the
boundary of the domain, which is a remarkable feature of the theory.

The stress gradient theory now stands as an alternative generalized continuum the-
ory to the well-established strain gradient approach. Once the mathematical features
of the theory have been settled, as done in the present work, it remains to address the
physical questions raised by the model, such as the derivation of the higher order elastic
moduli present in the model. This can be achieved for instance by means of general-
ized homogenization methods as tackled in the case of plate models by Lebée and Sab
(2011a,b). Such homogenization schemes for architectured composite materials generally
lead to anisotropic elastic properties.

The proposed stress gradient theory contains the usual fourth rank tensor of elastic
moduli and a new sixth rank tensor of higher order moduli. The structure of the latter
is similar to the sixth rank tensor arising in strain gradient elasticity. Note that, in
the absence of central point symmetry, a fifth rank tensor coupling the stress and stress
gradient tensors must be added to the constitutive model. This is a minor extension of
the presented model. The theorems derived in the present work apply to this generalized
case. The symmetry properties and corresponding symmetry group of these tensors can
be studied following recent works by Olive and Auffray (2013); Auffray et al. (2013); Olive
and Auffray (2014); Auffray (2014) for constitutive tensors of various orders.

The question of the performance of the stress gradient theory compared to the strain
gradient one is raised for elasticity problems involving singularities, for instance at a crack
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tip, but also in the case of plasticity where stress gradient plasticity could emerge as
an alternative to widely used strain gradient plasticity (Chakravarthy and Curtin, 2011).
Finite element implementation of the stress gradient model is the next step in this direction
to solve new boundary value problems in the mechanics of materials.
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