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Résumé – La vision périphérique a été souvent négligée dans les modèles, qui simulent pour une grande partie la vision centrale,
et dans les expériences comportementales, qui étudient majoritairement les capacités de la vision centrale. A partir d’un modèle de
vision centrale déjà existant, nous testons si l’ajout d’un filtrage spatialement variant modélisant la diminution d’acuité visuelle en
périphérie nous permet de répliquer des performances humaines de catégorisation de scènes présentées à différentes excentricités.
Les résultats obtenus correspondent aux résultats comportementaux pour une sous-base d’images sans être généralisables à la
totalité de la base. Nous expliquons ces résultats par le fait que notre modèle ne prend pas en compte l’information de couleur
et utilise uniquement l’information de luminance pour décrire les images.

Abstract – Peripheral vision has been left aside both in modeling approaches and in psychological experiments, with the
majority of existing studies mainly dedicated to our central vision exclusively. Using an existing model of central vision, we
investigate whether adding a spatially variant filter simulating the decrease of visual acuity toward periphery allows us to
reproduce human performances in a task of categorization of scenes positioned at different eccentricities in the visual field. The
results we obtain fit human performances for a subset of images of natural scenes, however, for the moment these results cannot
be extended to the entire database. We explain this result by the fact that the human performances were measured using colored
scenes and the proposed model only processed the luminance information.

1 Introduction

1.1 Context

Most models of the human visual system (HVS) only
simulate the central vision. However, a better understan-
ding and quantification of the capacities of our peripheral
vision is crucial, for example, for people suffering from
age-related macular degeneration (AMD), who are sub-
ject to partial or complete loss of their central vision and
use their peripheral vision in everyday life. Thus, unders-
tanding the ability of performing various tasks in func-
tion of the eccentricity of the visual stimulus could give
comprehensive insights on how visually impaired persons
perform their everyday life activities and, more interestin-
gly, on how new devices could be developed for facilitating
these activities.

In this paper, we present a simplified bio-inspired mo-
del of the HVS, adapted to both central and peripheral
vision. We illustrate the results obtained with this mo-
del compared to behavioral data on a visual task of scene
categorization at various eccentricities.

1.2 Existing models

The decomposition of visual content with cortical-like
filters using a bank of Gabor filters has already been exten-

sively used for reproducing the performances of the HVS
on various tasks, from texture segmentation [1], to more
complex image categorization [2], [3]. Other models have
gone further on the modeling of the HVS by adding the
pre-processing performed by retinal cells [4], [5]. However,
these models have only focused on the central vision and
are thus only able to reproduce the performances of the
HVS for stimuli visualized in the center of the visual field.

In the present article, we propose to extend these pre-
vious results, by taking into account the fact that our cen-
tral vision has a high acuity whereas our peripheral vision
has a lower visual acuity. Note that in this model we only
investigate the processing of static stimulus without stu-
dying the peripheral vision particularly efficient to detect
moving objects. Hence we modeled the visual processing
made by our HVS for a stimulus appearing anywhere in
the visual field.

2 The proposed model

The proposed model is organized in two main layers,
the retina and the cortex. Before these two layers, we in-
clude a spatially variant (SV) processing layer to model
the loss of visual acuity with the increasing eccentricity of
the visual stimulus. This pre-processing step takes into ac-



count the position of the visual stimulus in the visual field
and consequently establishes the degree of precision with
witch the stimulus is further processed. The structure of
the proposed model is schematized in Figure 1.
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Figure 1 – The structure of the proposed model.

2.1 Input

The input of the model has to be an image in a gray-
level format, since for the moment we only focus on the
luminance information, without taking into account the
chrominance. Along with the input image, its visualiza-
tion distance must be provided, since this parameter de-
termines directly its size in the visual field and therefore
some of the parameters of the subsequent processing.

2.2 SV processing

The SV processing layer not only models the non-uniform
density of retinal photoreceptors but also the ratio of re-
tina output cells for input cells that dramatically decreases
with eccentricity. The aim is to take into account the loss
in visual acuity from the central retina towards the per-
iphery of the visual field [6].

It has already been shown that the retinal and cortical
cells distribution is reflected by experimental data on the
sensitivity to contrast of the HVS [7]. Thus, the SV pro-
cessing consists of applying the contrast sensitivity curve
of [8], which was obtained by modeling the data in [9]
and [7]. More precisely, we use this curve as it was repro-
duced in [10]:

contrast threshold (e) = A
α

α+ e
, (1)

where e is the eccentricity in degrees of visual angle at
which the image is visualized. The A constant related to
the visualization distance is set to 1 and the α parameter
controlling the decrease in contrast is set to 2.3◦. This law
thus explains the contrast to be perceived when visualizing

an image at a given eccentricity. Its graphical illustration
is given in Figure 2.

Figure 2 – The contrast sensitivity curve of [8] that ex-
plains the decrease in visual acuity in peripheral vision.
The 0◦ eccentricity point corresponds to the center of the
retina and subsequently to the fixation point.

By using this contrast sensitivity curve and by conside-
ring the parameter giving the position of the input image
in the visual field, we are able to filter this image accordin-
gly, leading to a visual content similar to what an observer
would see if the image was displayed in his or her field of
view.

2.3 Retina

The retina layer reproduces the functioning of the prin-
cipal types of cells in the human retina. Hence, the retina
processing step corresponds to a series of digital filters, as
explained in [11]. Such processing leads to local contrast
enhancement and spectral whitening as illustrated by Fi-
gure 3.

2.4 Cortex

The cortex layer models the functioning of some cor-
tical cells. These cells have been found to preferentially
respond to precise orientations and spatial frequencies of
the visual stimulus [12]. Moreover, it has been shown that
the response of these cells can been successfully modeled
by Gabor filters [13]. A specific type of such filters, the
log-Gabor filters, which have the profile of Gabor filters
viewed on a logarithmic scale, was found to be particularly
adequate for processing natural images.

Therefore, in order to simulate a column of cortical cells
sensitive to multiple orientations and spatial frequencies,
we used a set of log-Gabor filters with predefined para-
meters. The frequency response of each of these filters is
defined as:

G(u, v) = exp

[
−
(

log(u′/f0)2

2σ2
u

+
v′2

2σ2
v

)]
, (2)

where f0 is its central frequency, (u′, v′) are obtained by



Figure 3 – An example of photographed image (left) and
the profile of its amplitude spectrum (right) before (top)
and after (bottom) the retina processing.

rotating the filter axes, (u, v), with an angle θ, and σu
and σv are the standard deviation values of the Gaussian
in the u′ and v′ directions, determined as:

σu =
log 2Bξb

4α
and σy =

f0 tan
(

Ω
2

)
2α

, (3)

with Bξb , the radial band in octave, set to 1.
The filter bank configuration we use is that of 20 log-

Gabor filters, capturing 4 different orientations and 5 dif-
ferent spatial frequencies. The maximum central frequency
is 0.25 and the central frequencies of the following kth fil-
ters are computed using fk = 0.25/2k. This configuration
is illustrated in Figure 4.

Figure 4 – The contours of the filter banks at half-height
and 99% height of the amplitude spectrum (left) and their
profile along the horizontal spatial frequency axis (right).

2.5 Output

To summarize, for any input image, the model produces
the output of the layers of filters presented. Thus, as a last
step, by applying the series of 20 cortex-like filters to the
retina-processed image, a decomposition into 20 cortical
features is obtained. As a consequence, for an input image,

the model allows the computation of a 20-element numeric
descriptor, where each value represents the total energy of
a cortical feature.

3 Scene categorization

Scene descriptors as tho ones provided by the proposed
model might be efficient to predict the category of a scene
or at least the gist of a scene [2], [3].

The aim of our model is to test whether such results
might be extended to scenes presented in the periphery.
To validate our model we used behavioral results on large
eccentricity scene categorization described below.

3.1 Experimental data

The experimental data that we consider as ground-truth
reference for our computational model is the data collected
during Experiment 1 in [14]. This data corresponds pre-
cisely to a natural vs. urban categorization task. In this
experiment, observers were attributed a target category,
i.e. natural or urban, then watched random natural-urban
or urban-natural pairs of images, with one image displayed
to the left and the other to the right of the central fixation
point that observers were supposed to fixate, at the same
eccentricity. For each pair of images, they voted left or
right, in function of the side where they saw the target ca-
tegory scene. The images were displayed at 10◦, 30◦, 50◦,
and 70◦ of horizontal eccentricity. The results obtained in
this study consist of mean percent correct responses ob-
tained in function of the horizontal eccentricity at which
the visual stimuli have been displayed. They are plotted
in Figure 5.

3.2 Test data set

For comparing the performances of our model to those
obtained experimentally, we use the same image data set
as in [14]. Hence, we consider 200 images visualized at a
distance of 2.1m and covering 20◦× 20◦ of eccentricity in
the visual field. Half of the images are natural and half
are urban.

3.3 Method

We perform the scene categorization using a machine
learning approach with a comparison of distances between
20-element vectors (our image descriptors). We perform
the training procedure on the scenes processed as visuali-
zed at 0◦ of eccentricity and the testing procedure on the
same images, but processed as visualized at the eccentri-
cities used in the original experiment: 10◦, 30◦, 50◦, and
70◦.

During the training procedure we computed two mean
descriptors, one for the natural images and one for the



urban images, using the 20-element descriptors obtained
on the training images of each of these two classes.

Then, during the testing procedure, we test the same
trial configurations as those used for the 12 participants
of the study. We thus consider the target category attribu-
ted to each participant and, for each natural-urban pair of
images visualized by this participant, we apply the deci-
sion rule relative to that target category. This rule decides
which among two images belongs to the target category
by choosing the shortest euclidean distance between the
mean descriptor of the target category and each of the two
image descriptors.

3.4 Results

The results are shown in Figure 5.

Figure 5 –  – the experimental results in [14]; � and *
– the computational results obtained with our model on
the 200 images and 20 images data sets, respectively.

Despite the fact that the mean percent correct responses
obtained with our model are inferior to the experimental
ones, the decrease in performance with eccentricity ap-
proaches the slope of the experimental results. The major
factor influencing the low percentages of correct responses
obtained seems to be the large variability of the images
in the data set under study, visible in the large variabi-
lity of the spectral features inside of each category. The
data set from [14] contains, especially for the urban cate-
gory, images of various contents, which are to be argued
whether representative for the category they represent. To
illustrate this point, we also show in Figure 5 the results
obtained with our model, by following a similar proce-
dure, on a selection of only 20 images from the initial data
set. This small test data set was selected so that the 10
images of each category would unambiguously represent
the two categories. The results of this test illustrate how,
for images that are characteristic of the two categories, the
bio-inspired model of the HVS that we propose reaches
very good categorization performances.

4 Conclusion

The study presented in this article is work in progress.
At present, we could show that the decrease in perfor-

mance of the HVS with eccentricity can be reproduced
with the bio-inspired model proposed, however more in-
sight is necessary on the influence of the data set content
on the results.

An interesting perspective envisaged is the extension of
the current model by taking into account the chromatic
information as well and a more in-depth analysis of the
luminance approach vs. the chrominance approach.
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