

How can imitation counterbalance innovation? An ABM Bass model for competing products

Philippe Collard, Wilfried Segretier

▶ To cite this version:

Philippe Collard, Wilfried Segretier. How can imitation counterbalance innovation? An ABM Bass model for competing products. IEEE RCIS 2014 Eighth International Conference on Research Challenges in Information Science, May 2014, Marrakech, Morocco. hal-01288467

HAL Id: hal-01288467

https://hal.science/hal-01288467

Submitted on 15 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

How can imitation counterbalance innovation? An ABM Bass model for competing products

Philippe Collard Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271 06900 Sophia Antipolis, France Email: philippe.collard@unice.fr

Abstract—The general context of this paper is the Bass model which presented a theory of the adoption of new products. We propose an agent based modelling to allow to model the respective grow of competing products. We assume that there is competition for the same market among two trademarks: each one has its own rate of spontaneous innovation and its own rate of imitation. This paper deals with the relative weight of these competing behaviours on the global dynamics; in particular, we ask the question of the equivalence between mass media influence and word-of-mouth effect.

Keywords—Agent based modelling, Bass model, Marketing, Competing products

I. INTRODUCTION

The major development of the diffusion of innovation theory is attributed to Everett Rogers; in his works he indicated that the spread of a new technology depends on innovation or imitation [1]. In the seventies, Frank Bass proposed a simple model of diffusion of innovation [3][2][6] where the innovation and imitation factors shape the speed at which the technology is adopted. There are three parameters: N the market potential; p the rate of spontaneous innovation/adoption (i.e. mass media influence); q the rate of imitation (i.e. word-of-mouth effect). A(t) is the fraction of customers who have adopted the product at exactly time t since introduction.

 $\label{eq:aggregate} \textit{Aggregate Modelling:} \ \ A(t) \ \ \text{follows the differential}$ equation:

$$\frac{dA(t)}{t} = (p + q.A(t)).(1 - A(t)) \tag{1}$$

and the solution follows a S-shape if (q > p) with A(t) tends to 1 in the limit.

As the Bass model is *versatile* and allows *prediction*, it became one of the most popular in the field of marketing. For instance, table I gives parameters p and q from a cross-section representing different categories of products¹: on average, we obtain p=0.03 and q=0.38 [5].

Agent Based Modelling: Following the guidelines for rigorous ABM modelling in marketing proposed in [4], we build an ABM that produces similar results to the original analytic Bass model (algo. 1)². Thus, in the following, we shall be able to investigate what happens when two products compete for the same market.

Wilfried Segretier
LAMIA Laboratory
University of the French West Indies and Guiana
Email: Wilfried.Segretier@univ-ag.fr

TABLE I. PARAMETERS p and q from a cross-section of categories

Product	p	q	Product	p	q
Cable TV	.100	.060	VCR	.025	.603
Camcoder	.044	.304	Dishwasher	.000	.179
CD player	.157	.000	Microwave	.002	.357
Cellular	.008	.421	Hybrid Corn	.000	.797
Home PC	.121	.281	Radio	.027	0.435
Ultrasound	.000	.534	Tractor	.000	.234

II. COMPETING MODEL BASED ON AN ABM BASS MODEL

While the Bass model was initially proposed for forecasting the adoption of a new product for which no closely competing alternatives exist, we relax this constraint by assuming there is two competing products for the same market. This means that (i) initially all customers are set to the state of not having adopted none of the two products; (ii) one customers can adopt only one of the two products; (iii) the main algorithm (algo. 2) stops when all the customers have purchased one of the two products. The output of the model is the gain of P_1 relative to P_0 : $g = \frac{2 \cdot V - N}{N}$ where V is the number of products P_1 adopted at the end of the run. If $(p_0, q_0) = (p_1, q_1)$ there will be as many adopted product P_0 as product P_1 and so the gain is null. If all the agents adopt P_0 (resp. P_1) then g = -1 (resp. g = +1).

We use the *NetLogo* multiagent programmable modelling environment [7]. The space is a 2-dimensional grid connected circularly and simulations are performed on a rectangular lattice composed of N=20000 agents. We fix the parameters for the first product to (p_0,q_0) =(0.03, 0.38) (see tab. I)) and p_1 and q_1 will vary from 0 to 1. The question is on the influence of both innovation and imitation when a product competes with one other for the same market. To study the relation between the input parameters and the resulting gain, we draw the 3-D surface S of all the points $(p_1,q_1,g(p_1,q_1))$. To know if there is a functional relation between innovation and imitation in case of equivalent gain, we pay special attention to contour lines in S where $g(p_1,q_1)$ is constant.

Gain vs. innovation and imitation (fig. 1): (i) If innovation is high, say p>0.6, the gain is close to 1; (ii) if innovation is relatively high, say p>0.4, imitation has a low influence on the sales volume; (iii) if innovation is low, say p<0.1, the role of imitation is significant as the gain increases with q.

Study at constant gain: Running simulations on the set of couples (innovation, imitation) such that the gain is constant results in equation $q = \alpha . ln(p) + \beta$ (fig. 2).

¹http://faculty.washington.edu/jdods/pdf/MktgTool_Bass.pdf

²To reproduce the results of the analytic Bass model, the agents are assumed to neighbour all other agents in procedure IMITATE (algo. 1).

Algorithm 1 ABM-Bass(P) N \triangleright coefficient of innovation for product Pp \triangleright coefficient of imitation for product Pagents-own $[isAdopter_a^P]$ ▶ Begin SETUP(N, P)GO(P, p, q)⊳ End **procedure** SETUP(N, P)create N agents for each agent a do $isAdopter_a^P \leftarrow false \quad \triangleright isNotAdopter_a = true$ end for end procedure **procedure** GO(P, p, q)loop INNOVATE(P, p)IMITATE(P, q)end loop end procedure **procedure** INNOVATE(P, p)for each agent a with $[isNotAdopter_a]$ do ADOPT(a, P, p)end for end procedure **procedure** IMITATE(P, q)for each agent a with $[isNotAdopter_a]$ do for each (agents-on neighbors) with $[isAdopter_{an}^{P}]$ **do** Adopt $(a, P, \frac{q}{nbNeighbor})$ end for end for end procedure **procedure** ADOPT(a, P, probability)**if** randomFloat 1 ; probability **then** $isAdopter_a^P \leftarrow true \quad \triangleright isNotAdopter_a = false$

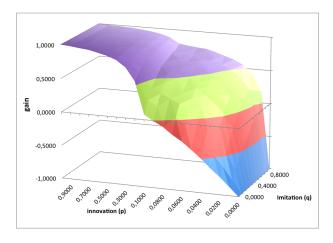


Fig. 1. Gain of P_1 relative to P_0

end if end procedure

III. CONCLUSION

The question of the counterbalance between innovation and imitation is important, because answers to this question guide a

```
Algorithm 2 ABM-Bass-Competing(P_0, P_1)
                                               \triangleright coefficients for product P_0
  p_0, q_0
                                   \triangleright coefficients for product P_1
  p_1, q_1
  agents-own [isAdopter_a^0, isAdopter_a^1]
                                                          ▶ Begin
  SETUP(N, *)
  GOCOMPETING(P_0, p_0, q_0, P_1, p_1, q_1)
                                                            ⊳ End
  procedure GoCompeting(P_0, p_0, q_0, P_1, p_1, q_1)
      t \leftarrow 0
      loop
          i = t \mod 2
          INNOVATE(P_i, p_i)
          IMITATE(P_i, q_i)
          t \leftarrow t + 1
      end loop
  end procedure
```

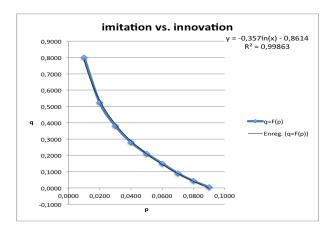


Fig. 2. Imitation as as function of innovation for g(p,q)=0

firm in its deployment of resources in marketing the innovation or in favouring imitation *via* social networks. The main result is that on can counterbalance a quadratic change in innovation by a linear change in imitation.

REFERENCES

- [1] Rogers, E.M., *Diffusion of Innovations*, 4th ed. Free press, New York, 1995
- [2] Bass, Frank M., Comments on "A new product growth for model consumer durables." Management Science, 50, 12, pp 1833-1840, 2004.
- [3] Bass, Frank M., A new product growth model for consumer durables Management Science, 15, pp 215-227, 1969.
- [4] William Rand and Roland T. Rust, Agent-based modeling in marketing: Guidelines for rigor International Journal of Research in Marketing, 2011
- [5] Lilien and Rangaswamy, Marketing Engineering, Revised Second Edition The Free press, New York, 2004.
- [6] Dodson and Muller, Models of New Product Advertising and Word-of-Mouth Management Science, 1978.
- [7] U. Wilensky, Center for Connected Learning and Computer-Based Modeling http://ccl.northwestern.edu/netlogo/, Northwestern University, Evanston, IL 1999.