
HAL Id: hal-01288285
https://hal.science/hal-01288285

Preprint submitted on 14 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Comparative expressiveness of ShEx and SHACL (Early
working draft)

Iovka Boneva

To cite this version:
Iovka Boneva. Comparative expressiveness of ShEx and SHACL (Early working draft). 2016. �hal-
01288285�

https://hal.science/hal-01288285
https://hal.archives-ouvertes.fr

Comparative expressiveness of ShEx and SHACL

(Early working draft)

Iovka Boneva

March 14, 2016

Contributions

• We propose a simple formal language for graph shapes that subsumes
both ShEx and SHACL. The semantics of the language is based on the
semantics of Datalog, and also equivalently defined in terms of Monadic
Second Order Logic with Presburger constraints.

• We propose a formal semantics of SHACL as a translation to this lan-
guage. Thanks to this translation, we show that SHACL can be extended
with well-defined stratified recursion.

• We show how ShEx can be translated to this language.

• We explore the necessary restrictions on ShEx so that it can be translated
to SHACL, and also the possible modifications of SHACL so that it can
capture a bigger fragment of ShEx.

1 Preliminaries

Glossary
n, k natural constants
u variable over naturals
p, q property
x, y, z,X, Y, Z MSO variables
t term in Presburger logic
e element of a graph

RDF graph We define a logical structure that corresponds to RDF graphs.
Let Dom = Iri ∪ Blank ∪ Lit be a three-sorted set, where Iri , Blank and Lit
are three countably infinite sets and are mutually disjoint. Consider the purely
relational1 signature σRDF = ({Triple}∪{F | F ∈ F}), where Triple is a ternary
relation, and F is a family of unary relations.

An RDF graph, or simply a graph G = (TripleG ∪
⋃

F∈F FG) is a finite
σRDF-structure over Dom. We denote by dom(G) the active domain of G. The
triples in Triple define the graph structure and are such that the first element
of a triple cannot be in Lit , and the second element of a triple can only be

1All symbols in the signature are first order relation symbols.

1

element of Iri . The unary relations in F are used for describing properties
of the elements of the nodes of the graph, such as ”a node is a literal of type
integer and its value is smaller than 5”, ”an Iri starts with http://foaf.org/”,
etc. We suppose that for every such relation F , F also contains its complement
relation, denoted F̄ . That is, in every graph G and for every relation F ∈ F ,
we have F̄G = dom(G) \ FG. The family F is potentially infinite, however in
every graph we are going to use only a finite subset of such relation symbols.

Given a graph G and a node n in dom(G), the neighbourhood of n in G is
the set of facts neighG(n) = {Triple

G(n, p, n′) | TripleG(n, p, n′) ∈ G}.

Typed RDF graph Assume a finite set S of shape names, and let σTRDF =
σRDF∪{S}S∈S be the purely relational signature obtained by adding to σRDF the
unary relational symbols from S. A typed RDF graph, or simply a typed graph is
a finite σTRDF-structure. Given a graph G, a typing of G is as an extension of G
by an interpretation of the relations in S. That is, if G = (TripleG∪

⋃

F∈F FG),

then Gt = (TripleG ∪
⋃

F∈F FG ∪
⋃

S∈S SG) for SG being a unary relation on
dom(G), for all S ∈ S.

Notation: for a typed graph Gt as above, e ∈ dom(G) and for a unary
relation symbol F ∈ F , we sometimes write e ∈ FG as synonym of FG(e), and
similarly e ∈ SG for a shape name S.

How a typed RDF graph relates to ShEx and SHACL ? Both ShEx
and SHACL aim at answering the following problem: Given

• a set of shape constraints, say {S1, . . . , Sn} that possibly refer to each
other,

• a RDF graph G,

• a set of node-shape associations {(e1, S′
1), . . . (em, S′

m)} where the e1, /dots, em
are nodes of G and the S′

j are among {S1, . . . , Sn}.

answer the question (yes or no answer) whether ej satisfies the constraint S
′
j for

all j ∈ 1..m.
In the above question, the word ”satisfies” is not precisely stated. By defin-

ing semantics for ShEx and SHACL, we means giving a precise mathematical
meaning of this word in this context. We propose the following formalization.

ej satisfies S′
j for all j ∈ 1..m means that there exists a typed graph

Gt that is a typing of G, and such that Gt is a model for the shape
constraints {S1, . . . , Sn} and such that S′

j(ej) ∈ Gt for all j ∈ 1..m.

We give a precise mathematical meaning of Gt is a model for the shape con-
straints {S1, . . . , Sn}. TODO: refer to the sections and explain how this claim
here relates to the sequel.

2 The shapes-constraint language

We define a simple language for graph shapes.

2

2.1 Presburger logic

The language uses numerical constraints on the neighbourhood of nodes in a
graph. These constraint will be expressed using sentences of Presburger logic
that we introduce here.

Let U be a countable set of variables over natural numbers. A quantifier-free
Presburger formulas α is defined by the following syntax:

α ::= t ≤ t′ | Divk(t) | α ∧ α | ¬α k ∈ N

t ::= n | u | t+ t (u ∈ U , n ∈ N)

where ≤ is the natural ordering over N and where for every natural number k,
the unary predicate Divk(n) holds if n is divisible by k. Given a Presburger
formula α and a valuation µ that maps the free variables in α, we say that µ
satisfies α, written µ |= α, if the structure of natural numbers with addition
and Divk (k ∈ N) is a model of α under the valuation µ.

For example, consider the formula α = (u1 + 2 ≤ 4) ∧ Div3(u2 + 1). Then
the valuation µ = (u1 7→ 1, u2 7→ 26) satisfies α.

Remark that α1 ∨α2 can be defined in the usual way using conjunction and
negation.

2.2 Syntax of the shapes-constraint language

Assume the σTRDF signature with S a finite set of shape names, and F is a family
of unary predicates. A triple constraint is defined by the following syntax:

T := P :: F | P :: @S | P :: @S̄ | P ::

where P is a finite or co-finite subset of Iri , F ∈ F and S ∈ S. Intuitively, a
triple constraint is a filter on the triples in a graph. For all four kinds of triple
constraints, a triple satisfies a constraint P ::X if its predicate is in the set P
(whatever X is). Moreover, P ::F is satisfied by all triples whose object belongs
to F . P ::@S is satisfied by all triples whose object satisfies the shape S. P ::@S̄
is satisfied by all triples whose object does not satisfy the shape S. Finally, P ::
does not impose a constraint on the object of the triples. We give in the sequel
formal definition of what it means for a triple to satisfy or not satisfy S.

Remark that when P is a singleton set say P = {p}, we write in triple
constraints e.g. p :: F instead of {p} :: F .

Given a finite set T C of triple constraints, consider the set of natural variables
U = {#T | T ∈ T C}. A shape definition is of the form

S ← α

where S ∈ S and α is a Presburger formula with free variables from U . A shapes-
constraint is a sequence2 of shape definitions such that every shape name that
appears in the right hand side of some shape definition is defined exactly once
(i.e. appears exactly once in the left-hand side of a shape definition).

2TODO: needed ? We use a sequence instead of a set in order to be able to identify

the definitions by their rank in the sequence. The ordering in the sequence is not otherwise

important.

3

Example 1. Suppose that name, firstName, lastName, friend are elements of
Iri . Let S = {Person} contains a unique shape name. Consider the following
triple constraints Tn, Tfn, Tln, Tfr, To. Note that when a set of Iri is a
singleton, we omit writing the curly braces {}. The Fstr relation contains all
literals that are strings, and the Fnotstr relation contains all nodes that are not
literal strings (literals, IRI or blank nodes), i.e. Fnotstr is the complement of
Fstr in every graph.

• Tn = name :: Fstr (the predicate is name and the object is a string);

• Tfn = firstName :: Fstr ;

• Tln = lastName :: Fstr ;

• Tfr = friend :: @Person (the predicate is friend and the object satisfies
the shape Person) ;

• To = P :: where P = {name, firstName, lastName, friend} ;

• Tcl = Pcl :: where Pcl = Iri \ P (i.e. predicate is not one of name,
firstName, lastName.

The following shape Person specifies that a person has either one name, or one
firstName and one lastName, and at least one friend, and has no other properties
than those specified (i.e. it is a closed shape).

Person← ((#Tn = 1 ∧#Tfn = 0 ∧#Tln = 0) ∨ (#Tn = 0 ∧#Tfn = 1 ∧#Tln = 1)) ∧

#Tfr ≥ 1 ∧

#To = #Tn +#Tfn +#Tln +#Tfr ∧

#Tcl = 0

The first line expresses the constraint either one name, or one first name and one
last name. The second line expresses that a person has at least one friend. The
third line expresses that the predicates name, firstName, lastName and friend
should not appear differently than with the above stated constraints. Finally,
the last line expresses the fact that no other predicates than those mentioned
can appear.

Definition 1 (Dependency graph). Given a shapes-constraint H = S1 ←
α1, . . . , Sn ← αn, its dependency graph DepH is a graph whose set of nodes
is {S1, . . . , Sn}, and that has two types of edge relations E+ and E− (for posi-
tive and negative). There is an edge E+(Si, Sj) iff there exists a triple constraint
of the form P ::@Sj in αi, and there is an edge E−(Si, Sj) iff there exists a triple
constraint of the from P :: @S̄j in αi, for P a set of properties. If E+(Si, Sj),
then we say that Si depends positively on Sj, and if E−(Si, Sj), then we say
that Si depends negatively on Sj .

Definition 2 (Stratified shapes-constraint). A shapes-constraint H = S1 ←
α1, . . . , Sn ← αn is called stratified if there exist a natural number k and a
partitioning stratum : {S1, . . . , Sn} → 1..k of the shapes that appear in H s.t.
for all shape names Si, Sj :

• if E+(Si, Sj), then stratum(Si) ≥ stratum(Sj);

4

• if E−(Si, Sj), then stratum(Si) > stratum(Sj).

From now on, we consider only stratified shapes-constraints. Remark that
a shape constraint w/o recursion (i.e. without loops in the dependency graph)
is stratified, and also a shapes-constraint w/o negative dependencies.

2.3 Semantics of the shapes-constraint language

The semantics of shapes-constraints captures how one can associate shape names
with the nodes of a graph so that every node satisfies the shape names associated
with it. This is captured by the notion of typing of a graph.

We present both an operational and a model-theoretical semantics of shapes-
constraints. For the former, a shapes-constraint is seen as a logical program.
For the latter, it is seen as a sentence in Monadic Second-Order logic (MSO).

2.3.1 Model

We start by defining a notation. Let a typed graph G = (TripleG ∪
⋃

F∈F FG ∪
⋃

S∈S SG) and P ⊆ Iri a finite or co-finite set of IRI. Given a set D ⊆ dom(G),

for all element e ∈ dom(G) and all i ∈ 1..n, we denote TripleG|e,P,D the set of

triples {TripleG(e, p, e′) | p ∈ P and e ∈ D}. That is, TripleG|e,P,D is the set of
neighbourhood triples of e whose predicate is in P and whose object is in D.
This will be used with D being either SG or FG, for some S ∈ S and F ∈ F .

Definition 3 (Model). Let a shapes-constraint H = S1 ← α1, . . . , Sn ← αn,
and a typed graph G = (TripleG ∪

⋃

F∈F FG ∪
⋃

S∈S SG). For all i ∈ 1..n, let
Ui be the set of free variables of αi. Recall that every variable in Ui is of the
form #T for some triple constraint T . For all i ∈ 1..n and all e s.t. e ∈ SG

i , we
define the valuation µG

e,i of the variables in Ui defined depending on the kind of
triple constraint as:

• if T = P :: F , then µG
e,i(#T) = |TripleG|e,P,FG |;

• if T = P :: @Sj, then µG
e,i(#T) = |TripleG|e,P,SG

j
| (for j ∈ 1..n);

• if T = P :: @S̄j , then µG
e,i(#T) = |TripleG|e,P,D| where D = dom(G) \ SG

j

(for j ∈ 1..n);

• if T = P :: then µG
e,i(#T) = |TripleG|e,P,dom(G)|.

We say that G is a model of H , written G |= H , if for all i ∈ 1..n and for all
e ∈ dom(G), it is the case that if µG

e,i |= αi, then Si(e) holds in G.

Remark 1 (Properties of models of shapes-constraints). The following proper-
ties can be witnessed by simple examples.

• There exist shapes-constraints that do not admit a model. This is due to
the Presburger constraints that can be unsatisfiable. Moreover, the empty
typing might not be a model because of the ”ground” triple constraints
(i.e. involving the F relations) might not be satisfied.

• For the same graph, there can exist several different typed graphs that are
all models of H .

5

2.3.2 Operational semantics

The operational semantics of shapes-constraints is based on the semantics of
stratified Datalog programs.

For the sequel of this section we consider S = {S1, . . . , Sn}, and we assume
fixed a graph G and a shapes-constraint H = S1 ← α1, . . . , Sn ← αn.

For a fixed graph G, we define a partial ordering relation ≺ on the typings
of G. Let G1 and G2 be two typings of G, then

G1 ≺ G2 if SG1 ⊆ SG2 for all S ∈ S

Note that a typingG1 of G can be defined by giving simply the interpretation
of the S relations, thus we write G1 = G ∪ SG1

1 ∪ . . . ∪ SG1

n .
Let stratum be a stratification ofH withm strata. For all k ∈ 1..m, we define

the operator Rk
H on typed graphs associated with the kth stratum. Intuitively,

this operator enriches the types in the kth stratum by new types that can be
deduced assuming some initial typing is correct. For a typed graph G1 = G ∪
SG1

1 ∪ . . . ∪ SG1

n :

Rk
H(G1) = G2, with

SG2

i = SG1

i ∪
{

e | µG1

e,i |= αi

}

for all i s.t. stratum(i) = k

SG2

i = SG1

i for all i s.t. stratum(i) 6= k

and where for all e ∈ dom(G) and all i ∈ 1..n, the valuation µG1

e,i is as in

Definition 3. Remark that the Rk
H operators leaves unchanged all SG1

i such
that stratum(i) 6= k. Note now that for all typed graph G1 and all k ∈ 1..m,
we have G1 ≺ Rk

H(G1). Therefore, the Rk
H operators are monotonic (for all

k ∈ 1..m), and because the number of possible typings of G is finite, we deduce
that the Rk

H operators when applied iteratively starting for some typed graph
will converge to a fixed point. For a typed graph G1 and a stratum k ∈ 1..m,
we denote fp(Rk

H(G1)) the fixed point obtained by iterating Rk
H starting from

G1.

Definition 4 (Operational solution). Now consider the sequence of typed graphs
given by:

G0 = G ∪ ∅ ∪ . . . ∪ ∅ (n times ∅)

Gk = fp(Rk
H(Gk−1))

The graph Gk is called operational solution of G,H with the stratification
stratum.

The following Lemma 1 and Theorem 1 are conjectured here, and should be
provable by using similar arguments as for stratified Datalog. The differences
w.r.t. Datalog is that the rules of the form Si ← αi are not expressible as
constraints in first-order logic, because of the counting constraints. This however
should not invalidate the arguments used for showing the minimality of the
solution being computed.

Lemma 1. The operational solution is independent on the stratification stratum.

Theorem 1 (Operational solution is a minimal model). For all graph G and
shapes-constraint H = S1 ← α1, . . . , Sn ← αn, if Gt is the operational solution
of G,H then Gk |= H. Moreover, for all G1 s.t. G1 |= H, it holds that Gt ⊑ G1.

6

2.3.3 Model theory semantics

The model theory semantics defines what is a desired typing independently on
the way how it can be computed. With every shapes-constraint we associate a
sentence (closed formula) of Presburger Mondadic Second-Order Logic (PMSO),
and we define a model as a typed graph that satisfies that sentence. We also
conjecture that the minimal model is equivalent to the operational solution from
Definition 4. The model theory semantics is explained in Section 7.

3 Translating SHACL to shapes-constraint

We propose how to map SHACL constraints to the shapes-constraint language.
We start by a discussion aiming to explain the contributions of this section, and
how they relate to the current SHACL specification.

3.1 Foreword

The current SHACL specification proposes an RDF vocabulary which aim is
to be able to define constraints on graphs. This vocabulary contains particular
terms that specify kinds of constraints, e.g. property constraint, or constraint
(disjunction), and constraint (conjunction), qualified value constraint, etc. The
specification also gives what are the allowed properties of each kind of constraint,
and explains how it should be understood. The explanation is given both in
textual form and as a SPARQL query. The current specification does not make
it explicit what is to be considered as a meaningful shape constraint (i.e. there is
no ”SHACL for SHACL”). One can write graphs using the SHACL vocabulary
for which it is not clear whether they define a meaningful constraint.

Therefore, we do not pretend to give here a formal semantics of every graph
using the SHACL vocabulary. We rather describe our understanding of the kind
of constraints that SHACL aims to be able to define. This is done by seeing a
SHACL constraints graph in some abstract form, and then by showing how it
can be translated to a shapes-constraints (as defined in the previous section).
In particular,

We claim that if the SHACL language is syntactically restricted so
that it only allows to write the constraints from the abstraction
proposed here, then our formal semantics can be used as formal se-
mantics for SHACL. We believe that our formal semantics coincides
with the intended semantics for SHACL. Additionally, the semantics
that we propose is well defined for recursion with stratified negation,
so it allows to enrich SHACL with recursion with stratified negation.

It should also be pointed out that the semantics that we propose, even though
operational, does not necessarily allow to evaluate SHACL in a top-down fash-
ion, which we believe is the preferable one. Without recursion, the current
evaluation mechanism of SHACL does work, the difficulty of evaluation might
come from recursion with stratified negation. We discuss evaluation in Sec-
tion 6, in particular we believe that the evaluation mechanism already proposed
for ShEx can be adapted and used for SHACL top-down evaluation.

In order to deal with the informal way of defining the semantics of SHACL,
we use here informal definitions and informal conjectures, instead of definitions,

7

conjectures and theorems, hoping that the readers will understand those the
same way as the author meant them.

3.2 The translation

We give what we mean by a SHACL constraint.

Informal definition 1 (SHACL constraint). A SHACL constraint Q is an
RDF graph using the SHACL vocabulary, and that conforms to the restrictions
stated in the current SHACL specification regarding the allowed predicates for
nodes of some type (e.g. allowed predicates for a node y s.t. (x sh:Shape y) is
in Q).

Consider a fixed RDF graph G, and a fixed SHACL constraint Q. Let
Sx1

, . . . Sxn
be all the nodes in Q that have rdf:type sh:Shape. We assume

that the rff:type sh:Shape is never omitted for such nodes, in particular when
they are objects of sh:valueShape or sh:qualifiedValueShape3 We are going to
explain how to translate the constraints in Q into a shapes-constraint H =
Sx1
← α1, . . . , Sxn

← αn s.t. for all constraint Sxi
(i ∈ 1..n) and all node e

in G, e satisfies Sxi
in SHACL iff SGt

xi
(e) holds, where Gt is the operational

solution of G,H .
Some of the aspects of SHACL constraints are going to be encoded in the

F -relations of the graph. Other will be handled as shape names. The counting
constraints are handled by the Presburger logic. Finally, the aspects that allow
to compare values among them are not handled by the shapes-constraint lan-
guage. Figure 1 classifies every property kind of a sh:property constraint in one
of the above four categories, called in the sequel F -constraints, S-constraints,
and counting constraints as defined on that figure. Note the currently non sup-
ported aspects can be added to the logic while keeping all the good properties
of models as studied in Section 2. We prefer here to avoid the unnecessary
complications that it would require, and that are not in the focus of this study.

F -constraints S-constraints counting constraints not supported

sh:class sh:valueShape sh:xxxCount sh:equals
sh:classIn sh:qualifiedValueShape sh:qualifiedXxxCount sh:lessThan
sh:datatype sh:lessaThanOrEquals
sh:datatypeIn sh:notEquals
sh:directType sh:uniqueLang
sh:in sh:hasValue
sh:xxxLength
sh:xxxXclusive
sh:nodeKind
sh:pattern

Figure 1: How the different aspects of a SHACL constraint are handled in a
shapes-constraint.

Let us explain what we mean by aspects handled in the F -relations. We
are now interested only in the F -constraints, i.e. those in the left-most column

3The SHACL specification says that rdf:type sh:Shape can be omitted.

8

on Figure 1. Remark that all of them restrict all the values of the focus node
reachable by a given property.

Assumption on SHACL 1. The current SHACL specification gives the mean-
ing of each type of constraint independently on the others, whereas a sh:property
constraint is allowed to use all the constraints from Figure 1 (provided none is
repeated). Because the SHACL specification does not specify the meaning of
combinations of different kinds of properties, we assume that combinations are
understood as conjunction, i.e. all the properties must hold.

Informal definition 2 (Treatment of the F -constraints). For all triple (q
sh:property x) that occurs in Q, let (x p1 y1), . . . , (x pk yk) be all the triples
with subject x and such that their objects yj appear in the left-most column of
Figure 1. We assume that F contains a relation Fy1,...,yk and FG

y1,...,yk contains
exactly those nodes of G that satisfy all the constraints given by the yj.

For example, if (x sh:datatype ex:Animal) (x sh:minInclusive 3.14) appear in
Q, and there are no other (x p y) in Q with p in the left-most column of Figure 1,
then we assume that F contains the relation Fdatatype ex:Animal, value ≥ 3.14 and
its interpretation in G contains exactly the animals that are greater or equal to
pi.

We are now ready to explain the translation, by giving for every Si (i ∈ 1..n)
its specification αi. We distinguish between the different types of constraints.

Property constraints (sh:property) Let (x sh:property y) defining a prop-
erty constraint (note that in this case, (x rdf:type sh:Shape) in Q). Let p be
the predicate of y, i.e. (y sh:predicate p) in Q, and let Fy be the relation as
defined in Informal definition 2. Then αx is obtained as a conjunction of several
elements, some of which are omitted depending on the constraints on y:

αx =#(p ::) ≥ min ∧ (1)

#(p ::) ≤ max ∧ (2)

#(p :: Fy) = #(p ::) ∧ (3)

#(p :: Sz) = #(p ::) ∧ (4)

#(p :: Sqz) ≥ qmin ∧ (5)

#(p :: Sqz) ≤ qmax (6)

where

• min is such that (y sh:minCount min), and line (1) is omitted when there
is no sh:minCount specified;

• max is such that (y sh:maxCount max), and line (2) is omitted when there
is no sh:maxCount specified;

• Fy is the relation as defined in Informal definition 2, and line 3 is omitted
if there is no (y q min) with q being a F − constraint;

• Sz is such that (y sh:valueShape z), and line (4) is omitted if there is no
sh:valueShape specified;

• Sqz is such that (y sh:qualifiedValueShape qz), and line (5) is omitted
when there is no sh:qualifiedMinCount specified, and similarly line (6) is
omitted when there is no sh:qualifiedMaxCount specified.

9

And, Or and Not constraints Let (x rdf:type sh:Shape) and (x sh:constraint
y) and (y sh:not z) in Q, is this case (z rdf:type sh:Shape). Then we define

αx = ¬αz

Let (x rdf:type sh:Shape) and (x sh:constraint y) and (y sh:and (z1, . . . , zk))
in Q, where (z1, . . . , zk) is a list of nodes that are rdf:type sh:Shape. Then we
define

αx =
∧

i∈1..k

αzi

Finally, let (x rdf:type sh:Shape) and (x sh:constraint y) and (y sh:or (z1, . . . , zk))
in Q, where (z1, . . . , zk) is a list of nodes that are rdf:type sh:Shape. Then we
define

αx =
∨

i∈1..k

αzi

Correctness of the translation

Informal conjecture 1 (SHACL translation is correct). The translation de-
scribed in this section is correct w.r.t. the SHACL specification. That is, for all
graph Q that specifies SHACL constraints without recursion and that does not
use any of the properties from the right-most column on Figure 1, for all RDF
graph G enriched with an interpretation of the F-relations, and for all node e
is G, it is the case that e satisfies a constraint x (where x is a rdf:type sh:Shape
node in Q) iff SGt

x (e) holds in Gt, the operational solution of G,H, where H is
the translation of SHACL into shapes-constraint described in this section.

Note that in the current SHACL specification, recursion is not allowed, so
Q from Informal conjunction 1 is non-recursive. Note also that, as far as we are
aware of, the current SHACL specification does not state what it means for a
constraint Q to be recursive. We define the notion of recursion in the following
section, and we propose semantics for SHACL with recursion.

3.3 Recursion in SHACL

For Q a graph defining a SHACL constraint and two sh:Shape nodes x and y,
we say that x depends on y if there is a non empty path from x to y using
only the predicates sh:Property, sh:valueShape, sh:qualifiedValueShape, sh:and,
sh:or, sh:not, sh:constraint. Such a path is called a dependency path. [TODO:
check whether this is a precise definition of dependence]. We say that Q is
recursive if there exists a node x s.t. (x rdf:type sh:Shape) and x depends on
x. We say that Q is with stratified negation if for all dependency path from x
to x (and for all x), the dependency path does not contain a sh:not edge. It is
well known that this is an equivalent definition for stratification, and that if the
dependency graph satisfies such constraint, then an actual stratification does
exist. From now on we assume only stratified SHACL constraints.

We now argue, in a quite informal way, how to extend SHACL with recursion.
Let Q be SHACL constraint possibly with recursion and negation. We can
translate Q into a shapes-constraint H as explained in Section 3.2. Then we
conjecture that the resulting shapes-constraint is stratified. We also conjecture
that it defines the desired notion of recursion for SHACL. In particular, as

10

far as we know, one of required properties for recursion in SHACL is that if
during validation, in order to check whether node e satisfies shape S we need
to check this same thing again, then SHACL considers that there is violation.
This property is a least-fixed point property, and is intuitively verified by the
operational solution of a shapes-definition because the latter is defined as a least
fixed point.

4 Translating shapes-definition to SHACL

We conjecture that there is a simple syntactic restriction of shapes-definition
that allows to translate them to SHACL.

Conjecture 1. Let a shapes definition H = S1 ← α1, . . . , Sn ← αn such that:

• no Divk relation is used in none of the αi, and

• no + is used in none of the αi, and

• no triple constraint in H uses S̄ for some shape name S, and

• all triple constraint P :: F in H for F ∈ F is such that the relation F is
definable using the F-constraints from Figure 1.

Then there is a SHACL constraint Q that is equivalent to H, that is, such that
for all graph G and all node e in G, if Gt is the operational solution of G,H,
then SGt(e) holds iff e satisfies Q.

The translation is quite obvious. Regarding the proof of the conjecture, it
should be immediate if Informal conjecture 1 holds.

5 Translating ShEx to shapes-constraint

We adopt here a simplified syntax of ShEx along the lines of [3], but with
negation on shape names. We also adopt some syntactic restrictions on ShEx
with respect to the previous definitions in [3] and [1].

Let S be a finite set of shape names, and consider the set T of triple con-
straints as defined in Section 2.2. A regular bag expression E over T satisfies
the following grammar:

E ::= ǫ | T | E1| . . . |Ek | E1, . . . , Ek | E
I

where ǫ is interpreted as the empty bag, T ∈ T is a singleton bag containing only
T , the ’|’ in E1| . . . |Ek is the choice operator of regular expressions extended
to its k-ary version, we require that k ≥ 2, the ’,’ in E1, . . . , Ek is unordered
concatenation extended to a k-ary version for k ≥ 2, and I = [min,max] is a
(possibly unbounded) interval of natural numbers.

A ShEx schema is a set of rules of the form

S ← (EXTRAP)?(CLOSED)?E

for all S ∈ S, and where all E are regular bag expressions over T , P is a set of
Iri called extra properties, and CLOSED and EXTRA are reserved keywords.
Moreover, we require some syntactic restrictions on a ShEx schema:

11

• the interval constructs cannot be nested, and cannot appear above some
unordered conjunction. That is, i.e. in all EI that appears in some shape
expression (possibly as sub-expression), the regular bag expression E does
not contain the interval construct, neither the , construct;

• without loss of generality, we suppose that the | and , operators are flat-
tened, that is E1|(E2|E3) is transformed into E1|E2|E3.

Apart from the syntactic restrictions here above, the difference of this def-
inition of ShEx with respect to the one in [1] is that here, we do not allow
conjunctions in triple constraints. That is, here we do not allow triple con-
straints of the form p :: (F ∧ S ∧ ¬S′). Such constraints can be added to the
shapes-constraint language, but we prefer to avoid unnecessary complexity that
this would bring.

We now define the semantics of ShEX in terms of shapes-constraints. The
semantics defined here differs from the one in [1] in that it treats the , (unordered
concatenation) operator differently. This difference has two consequences. First,
the (theoretical) complexity of ShEx validation drops down from NP-complete
to polynomial. Second, the semantics of ShEx gets closer to SHACL, hopefully
allowing a more direct translation from one to another. These aspects will be
discussed in more detail. We will explain the differences in detail later on.

5.1 Semantics of ShEx as shapes-constraint

Note: this section is not well formalized in its current version, because of time
constraints.

It is well known4 that with every regular bag expression E over a finite
alphabet T , one can associate a Presburger formula βE which variables are
{#T | T ∈ T } and such that a bag w over T belongs to the language of E iff
the valuation µ = [#T1 7→ w(T1), . . . ,#Tn 7→ w(Tn)] satisfies βE . Recall that a
bag w over is a mapping from T to N. Moreover, this translation is effective.

Example 2. Let T = {Ta, T
′
a, Tb, Tc}. Let E = (Ta|Tb), (T

′
a|Tc). Then one

possible corresponding Presburger formula for E is #Ta+#Tb = 1∧#T ′
a+#Tc =

1. Another, equivalent formula is ((#Ta = 0 ∧#Tb = 1) ∨ (#Ta = 1 ∧#Tb =
0)) ∧ ((#T ′

a = 0 ∧ #Tc = 1) ∨ (#T ′
a = 0 ∧ #Tc = 1)). Note already that the

latter is translatable to SHACL, whether the former is not.

We now define the semantics of ShEx. For all S ← α with α = . . . E (where
the . . . represent the possible EXTRA and CLOSED modifiers that we will
treat later on), we define the Presburger formula βE as follows. If E has n
occurrences of triple constraints, then consider T = {T1, . . . , Tn} and a one-to-
one mapping from the triple constraints in E to the elements of T . Note that
the Ti are pairwise distinct. Then, replace every triple constraint in E by the
corresponding Ti. Thus, we rendered E a single occurrence expression. This
will result in a difference of the semantics of ShEx w.r.t. [3] and [1].

Now, we construct βE , the Presburger formula that corresponds to the single-
occurrence version of E. The fact that E is considered single-occurrence, to-

4by Parikh theorem, and by the properties of Presburger arithmetic, in particular that

every Presburger formula is equivalent to a quantification-free formula using the modula Divk

operators

12

gether with the syntactic constraints imposed here above, simplifies the con-
struction and βE , and also simplifies the formula itself. In particular, the for-
mula does not use the Divk relations.

Because of time constraints, we only give a brief overview of the
missing results.

We give here an algorithm for the construction:
[TODO]
Then we enrich the resulting Presburger formulas so that they handle the

EXTRA and CLOSED constraints.
[TODO]
Then we show how we ”undo” the simple-occurrence requirement, and what

are the consequences for the ShEx semantics w.r.t. the previous version. One
consequence is that the validation problem becomes polynomial. The previous
and the current semantics coincide on graphs with so called ”excluded middle”,
that is, graphs in which the neighbors of a focus node never satisfy two different
triple constraints that participate in the definition of the same shape.

About the translation from ShEx to SHACL The Presburger formulas
that result from the translation from ShEx to shapes-definition use ’+’, there-
fore are not directly translatable in SHACL. For now, it is not clear whether
equivalent formulas w/o + can be obtained, this is not excluded.

Restrictions on the usage of EXTRA and CLOSED are also needed.
Naturally, if SHACL allows for some kind of ’+’ in the Presburger formulas,

then it would be able to capture the whole fragment of ShEx presented above.
If we further restrict ShEx and allow arbitrary intervals only on triple con-

straints, then ShEx becomes translatable to SHACL (which is not so surprising).
Maybe we can also allow unbounded intervals (Kleene *) on arbitrary expres-
sions (while still keeping the above stated restrictions).

About the recursion mechanism in ShEx The syntactic restriction of
ShEx from [1] corresponds to a limited form of stratification, in which positive
loops are allowed only in the highest stratum (whereas for general stratification,
positive loops can occur in every stratum).

A more fundamental difference is that ShEx does not consider the lest solu-
tion, but a solution that is minimal on all strata except for the highest one. The
user requirement behind that is that for the following graph and constraint, we
would like to say that < e1 > satisfies S.

Data

<e1> :p <e2> .

<e2> :p <e1> .

Shape

S <- #T = 1

with

T = :p :: @S

An ad-hoc proof of the well-foundedness of ShEx semantics is already given
in [1]. This proof can be made more elegant by exploiting the above mentioned
link with stratification, least model and any model.

13

6 Efficient evaluation of shapes-constraint

[TODO]

7 Presburger Monadic Second-Order Logic for
Graphs (PMSOG)

We consider Monadic Second-Order Logic that allows to define Presburger con-
straints on the neighbourhood of nodes. It is inspired by PMSO for trees from
[2]. Consider a countable set of Dom variables ranging over x, y, z, . . ., and a
countable set of Dom-set variables ranging over X,Y, Z, . . . (i.e. a variable X
will be interpreted as a subset of Dom). A PMSOG formula φ is defined by the
following syntax.

φ ::= Triple(x, y, z) | F (x) | x ∈ X | x/α | (for F ∈ F)

φ ∧ φ | ¬φ | ∃x.φ | ∃X.φ

where α is a Presburger formula with free variables of the form #X for X a set
variable. The interpretation of x/α is that that the neighbourhood of the node
x satisfies the Presburger formula α, where every variable #X is interpreted as
the number of neighbours of the node x that are in the set X .

[TODO: to be continued]
We show how the shapes-constraint language is expressible in PMSOG, thus

providing an alternative, model-theoretic semantics of that language.

References

[1] Iovka Boneva, Jose E. Labla Gayo, Eric Prud’hommeaux, and Slawek Sta-
worko. Shape expressions schemas. http://arxiv.org/abs/1510.05555,
2015.

[2] Helmut Seidl, Thomas Schwentick, and Anca Muscholl. Counting in trees.
In Logic and Automata: History and Perspectives [in Honor of Wolfgang
Thomas]., pages 575–612, 2008.

[3] Slawek Staworko, Iovka Boneva, Jose E. Labra Gayo, Samuel Hym, Eric
Prudhommeaux, and Harold Solbrig. Complexity and Expressiveness of
ShEx for RDF.

14

http://arxiv.org/abs/1510.05555

	Preliminaries
	The shapes-constraint language
	Presburger logic
	Syntax of the shapes-constraint language
	Semantics of the shapes-constraint language
	Model
	Operational semantics
	Model theory semantics

	Translating SHACL to shapes-constraint
	Foreword
	The translation
	Recursion in SHACL

	Translating shapes-definition to SHACL
	Translating ShEx to shapes-constraint
	Semantics of ShEx as shapes-constraint

	Efficient evaluation of shapes-constraint
	Presburger Monadic Second-Order Logic for Graphs (PMSOG)

