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Abstract

The so-called ”acoustic black hole” effect (ABH) is a passive vibration con-

trol technique based on the flexural waves properties in thin structure of

varying thickness. A usual implementation consists in using a plate with

tapered extremity with a power-law profile, covered with a thin damping

layer. The inhomogeneity of the structure leads to a decrease of flexural

wave speed and an increase of their amplitude, therefore resulting in an ef-

ficient energy dissipation if damping layer is placed where the thickness is

minimal. The manufacture of an efficient extremity is difficult because of

the small thickness, and often generates imperfections and tearing. More-

over, previous works suggest multiple that flexural modes are propagating

across the width of the ABH tip. A model of an ABH multimodal waveguide

taking into account an imperfect termination is developed. It shows that an

elementary imperfection can affect the reflection coefficient of the extrem-

ity and reduce it. Scattering and propagation properties of the extremity
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are also studied. An incident mode excites several modes that are localised

in the tapered region and local resonances explain the drops in the reflec-

tion coefficient. Experimental evidence of the influence of the imperfection

on the reflection coefficient is provided. A key result of the paper is that

manufacturing imperfections are not detrimental to the ABH effect.
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1. Introduction

The control of unwanted vibrations is important for reliability, stability

and comfort in many industrial applications [1]. Indeed, vibrations can gen-

erate radiated noise [2] but are also a source of structural damage [3]. Most

of the classical vibration control methods involve surface damping treatment.5

The efficiency of these methods has been widely proven, but a major draw-

back is that they involve an increased mass of the treated structure. This

is a concern in many engineering domains for economical or ecological cost.

The development of passive vibration control techniques without added mass

is interesting in this matter.10

The Acoustic Black Hole (ABH) effect [4, 5, 6] is a passive vibration con-

trol technique taking advantage of bending wave properties in structures of

decreasing thickness in order to attenuate the reflections at the edge, and

consequently decreasing the resonant behaviour. An example of such bound-

ary damping is given in the pioneer work of Vemula et al. [7] which proposes15
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to use a graded impedance interface at the edges of a beam, consisting in

the association of several pieces of beams made with different materials. The

results show that lower reflectivity is caused by energy dissipation within the

composite material at the free end coupled with relatively large amplitude

vibrations caused by the impedance gradation. In the ABH effect, as first de-20

scribed by Mironov [8], the thickness of a beam edge decreasing smoothly to

zero cause flexural waves to slow down and stop without being reflected. The

condition of sufficient smoothness can be fulfilled by a power-law thickness

profile h(x) in the form:

h(x) = εxm, (1)

where x is the spatial coordinate and m ≥ 2 (see Fig. 1(a)). If the thickness25

is strictly zero at the edge [8], it can be shown that the time taken by a

wave to reach the edge becomes infinite. For a practical structure with a

finite thickness, the reflection coefficient tends to zero with the decrease of

the residual thickness at the tip of the tapered profile. It is however shown

that manufacturing processes are such that this residual thickness can never30

be small enough for the effect to be attractive.

As it is shown by Krylov et al. [4, 5] in the framework of geometrical

acoustics, the negative effect of the finite thickness at the edge can be com-

pensated by covering the profile with a thin damping layer. A low reflection35

coefficient can be obtained for the ABH termination. This model has been

refined by Georgiev et al. [6] by using a Euler-Bernoulli beam modelling. In

this work, reflection and impedance matrices along the tapered beam are

computed solving a Riccati equation. Practical rules for determining the op-
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timal geometrical and material properties of the damping layer [9] are found40

using this model. Further investigations from Denis et al. [10] show that the

small thickness of the extremity induces a local plate behaviour in a beam

with an ABH extremity, and that a two-dimensional behaviour has to be

taken into account to model the tapered zone; local transverse eigenmodes

can be found in the beam structure. Note that two-dimensional ABH have45

also been described in the literature: circular ABH used as plate vibration

damper has been firstly proposed by Gautier et al. [11] and studied both

experimentally [11, 12, 13] and theoretically [14, 15, 16].

Most of the literature [4, 6, 10] considers a perfect tapered extremity: the

free edge is considered straight and normal in the direction of propagation50

x. The consequence is that an incident plane wave propagating along the

x-axis remains plane and that the reflected wave is also stricly plane. Thus

there should be no excitation of the trapped eigenmodes mentioned in [10].

However the practical realisation fails the assumption of perfect edge because

the manufacture of such small thicknesses is difficult and leads to irregular55

and teared extremities (see Figs. 1(b) and (c)). Moreover, it is observed that

the wave field is not unidimensional for some frequencies [17, 18]. Bowyer

et al. [12] study experimentally imperfections of ABH by comparing an

imperfect termination and a shorter thus thicker perfect termination; From

this experimental comparison, they conclude that even imperfect, a thinner60

extremity has a better damping performance. It is proposed in this paper

to observe what effects are induced by imperfections for a given thickness

at the end to gain design insight needed for enhancing and optimizing ABH

performance.
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A model of the inhomogeneous plate seen as a multimodal waveguide65

is developed in Sec. 2. It is numerically solved in order to compute the

couplings in the waveguide. Sec. 3 presents typical results from the model

and proposes an explanation for the phenomena that are observed. Sec. 4

presents an experimental observation of the effect of imperfections. Some

conclusions are given in Sec. 5.70

z

y

x

(a) (b)

(c)

Figure 1: (a) Nominal shape of the ABH termination (perspective view), (b) scheme of

imperfect ABH termination and (c) picture of imperfections taking place at the tip of an

ABH extremity (top view). Deformations come from stress relaxation during machining.
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2. Model of an imperfect ABH termination

2.1. Problem statement

The ABH extremity (see Fig. 2) is considered as an inhomogeneous struc-

tural waveguide. In order to describe coupling phenomena between guided

modes at the extremity from imperfect edge conditions and to extend the75

study of the reflection coefficient made in [19], the aim is to obtain the reflec-

tion matrix of the extremity or of a region of the waveguide. This reflection

matrix can be obtained by either the knowledge of the impedance matrix of

the waveguide when it is ended with a free boundary condition, or as part

of the scattering matrix of a region of the waveguide. We propose in this80

section to compute numerically the scattering of a waveguide region.
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Figure 2: Model of plate with ABH extremity: edges along x are simply supported, edges

along y are free. (a) Side view and (b) front view.

Bending stiffness D(x) and thickness h(x) describe the waveguide and

their expressions are given by (see Fig. 2)

D(x) =
Eh(x)3

12ρ(1− ν2)
(1 + jη(x)), (2)

where E, ρ and ν are the Young’s modulus, mass density and Poisson ratio of

the plate material, respectively, and η(x) is the loss factor, and the thickness85
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is

h(x) =

h0
(x+x0)m

(x0+xABH)m
if x ≤ xABH,

h0 if x > xABH.

(3)

The effect of the viscoelastic layer can be modelled by an equivalent loss

factor [20] which depends on x via [4]

η(x) =

ηp, if x ≤ xl,

ηp + ηl
3Elhl
Eh(x)

, if x > xl,

(4)

where ηp is the loss factor of the plate, and El, ηl, hl the Young’s modulus,

the loss factor and the thickness of the viscoelastic layer, respectively.90

2.2. Governing equations

The governing equations for the flexural motion of plate with inhomo-

geneities along the longitudinal x-direction (plate parameters remains in-

variant along transverse y-direction), and in harmonic regime at pulsation

ω (with the ejωt time convention) give the relations between variables of95

displacement w, slope θx, bending moment Mx and effort Vx and their first-

order partial derivatives with respect to x [21]. After several derivations, the

following relations are obtained:

∂w

∂x
= θx, (5)

∂θx
∂x

= − 1

D
Mx − ν

∂2w

∂y2
, (6)

100

∂Mx

∂x
= Vx − 2(1− ν)D

∂2θx
∂y2

, (7)
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∂Vx
∂x

= −ρhω2w +D(1− ν2)
∂4w

∂y4
− ν ∂

2w

∂y2
. (8)

For simplicity, the two edges along x (y=0 and y=b) are simply supported,

allowing to write a Levy-type analytical solution [22, 23, 24] for Eqs. (5)–(8)

as a product of beam functions; this cannot properly be done assuming free

conditions on the four edges [21]. Such lateral boundary conditions define the105

waveguide which will be studied. This waveguide is represented on Fig. 2(c)

and is called a Levy-waveguide. The boundary condition is not realistic

for general insight on beam ABH applications at low frequencies, but is a

reasonable condition for high frequencies. Therefore, this choice rules out

a direct comparison with the experiment made with beams but allows a110

multimodal analysis of the effects of the imperfection. The two edges along

y (x=0 and x=L) are free. The boundary condition of the edge x = 0 is

modified in Sec. 2.5 for taking into account the imperfect extremity.

Each variable g(x, y) (standing for w, θx, Mx and Vx) is then written as

the multimodal expansion115

g(x, y) =
∞∑
q=1

gq(x)Ψq(y), (9)

where

Ψq(y) =
√

2 sin
(qπ
b
y
)

(10)

are the orthogonal modes of a simply supported beam [25] also called the

transverse modes of the waveguide.

The projection of Eqs. (5)-(8) on the transverse modes yields a set of
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projected equations that can be rewritten as the following state equation120

d

dx
W(x) = H(x)W(x), (11)

where the state vector W(x)

W(x) =


w(x)

θx(x)

Mx(x)

Vx(x)

 , (12)

is the concatenation of displacement, slope, bending moment and force modal

vectors. For example, if we consider that the series expansion in Eq. (9) is

truncated with K terms, we have:

w(x) = [w1(x), w2(x), ..., wK(x)]T . (13)

Matrix H embeds the plate equations and is expressed as125

H(x) =

 H1(x) H2(x)

H3(x) H4(x)

 , (14)

with

H1(x) =

 O I

−νI2 O

 , H2(x) =

 O O

−I/D O

 ,
H3(x) =

 O −2(ν − 1)DI2

−ρhω2I + (1− ν2)DI4 O

 , H4(x) =

 O I

−νI2 O

 ,
(15)
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where I is the K ×K identity matrix, O is the K ×K zero matrix and I2qj

and I4qj are defined as

I2qj = −
(qπ
b

)2

δqj,

I4qj =
(qπ
b

)4

δqj.
(16)

Moreover, the local impedance matrix Z(x) can be defined as Mx(x)

Vx(x)

 = jωZ(x)

 w(x)

θx(x)

 . (17)

Substituting Eq. (17) in Eq. (11), a Riccati non-linear equation is obtained

for the impedance matrix [26, 6]:130

∂Z(x)

∂x
= −Z(x)H1(x)− jωZ(x)H2(x)Z(x) +

H3(x)

jω
+ H4(x)Z(x). (18)

The boundary value problem is transformed into an initial value problem.

The free boundary condition translates into the initial condition Z(x = 0) =

O.

2.3. Wave expansion of the state vector

Eigenspace of matrix H(x) is described by 4K eigenvalues and their as-135

sociated eigenvectors. The relation between them is

E(x)H(x) = Λ(x)E(x), (19)

where Λ(x) is the diagonal matrix containing the eigenvalues of H(x) on its

diagonal and

E(x) =

 E1 E2

E3 E4

 , (20)
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with E1 to E4 being 2K × 2K matrices, is a matrix whose columns are the

associated eigenvectors; E is also the transition matrix between eigenspace140

and state space. The change of basis is applied using the relation

W(x) = E(x)V(x), (21)

where V(x) is the wave vector, describing for each mode q the propagating

and attenuating waves travelling towards x > 0 and x < 0.

For the sake of simplicity, let us first assume a single transverse mode q

verifying the dispersion equation145

k4
q(x) = −k4

f (x) +
(qπ
b

)4

, (22)

where kf = 4
√
ω2ρh/D is the flexural wave number and kq is the guide wave

number. Then the eigenvalue matrix Λ of H writes:

Λ = diag (jk1q, k2q,−jk1q,−k2q) , (23)

where

k1q =
√
k2
f − (qπ/b)2, (24)

k2q =
√
k2
f + (qπ/b)2. (25)

It can easily be shown that the eigenvalues verify the dispersion equation

(22). In the absence of dissipation, second and fourth eigenvalues are real

and are related to attenuating waves. Depending on the sign of k2
f − (qπ/b)2,150

first and third eigenvalues are real or imaginary and are related to effectively

propagating waves (k2
f−(qπ/b)2 > 0) or evanescent waves (k2

f−(qπ/b)2 < 0).

The sign of the eigenvalue indicates the travelling direction of the associated
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wave: from the chosen convention first and second eigenvalues are related

to travelling waves towards x < 0 and third and fourth eigenvalues are re-155

lated to travelling waves towards x > 0. When several transverse modes are

considered, a similar classification is chosen, thus:

Λ = diag(p−, a−,p+, a+), (26)

where p and a indicate a vector of eigenvalues related to propagating or

attenuating waves, respectively, and the sign indicates the direction of travel

of the associated waves. The wave vector is thus noted160

V =


V−p

V−a

V+
p

V+
a

 . (27)

2.4. Scattering matrices in the ABH waveguide

Let Ω be a region of the waveguide delimited by two abscissas t− and

t+ (see Fig. 3). Vout and Vin are the outcoming wave vector from Ω and

incoming wave vector to Ω, respectively. They write

Vout =

 V−(t−)

V+(t+)

 and Vin =

 V−(t+)

V+(t−)

 . (28)

The scattering matrix S (size 4K × 4K) of Ω is defined by165

Vout = SVin, (29)

and writes

S =

 T+− R−

R+ T−+

 , (30)
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where matrix R+ (size 2K × 2K) represents the reflection of the incident

waves at side t+ (denoted V−(t+)) on the reflected waves at side t+ (denoted

V+(t+)). Matrix T+− (size 2K × 2K) represents the transmission of the

incident waves at side t+ on the transmitted waves at side t−. Moreover, fol-170

lowing the form of the wave vector (see Eq. 27), the term (R+
pa)qj quantify the

reflection from the incident propagating mode q on the reflected attenuating

mode j.

x

y

t−

t+

V−(t+) V+(t+)

V+(t−)
V−(t−)

Ω

Figure 3: Region Ω of the waveguide delimited by x = [t−, t+]. Incoming and outgoing

waves are represented.

For any region of the waveguide defined by the abscissa x including

the end of the waveguide at x=0, the scattering matrix S[0, x] represent-175

ing the waveguide free extremity is defined in agreement with the definition

of Ref. [7]: transmission towards the surrounding medium T+−, transmission

towards the inside T−+ and reflection of the outside R− are zero. Only R+

is non-zero. Hence:

S[0, x] =

 O O

R+(x) O

 . (31)

Matrix R+(x) is then called the reflection matrix of the guide extremity (i.e.180

the region [0, x]). Eqs. (17), (20) and (19) yields the relation between R+(x)
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and Z(x):

R+(x) = (−jωZ(x)E2 + E4)−1(−E3 + jωZ(x)E1). (32)

Sx=0 S]0, xABH]

Figure 4: Boundary condition at x = 0 and region ]0, xABH]. The assembly of the two

regions defines region [0, xABH] (see Eq. (33)).

When x=0, S[0, x] is the scattering matrix of the boundary condition Sx=0.

The relation between scattering matrix S[0, x] of region including the bound-

ary condition and scattering matrix S]0, x] of region excluding the boundary185

condition is (see Fig. 4)

S[0, xABH] = Sx=0 ? S]0, xABH], (33)

where the ? assembly operator is defined in Appendix A. It is therefore

important to distinguish R+(x) and R+
]0, x]. Practically, Eq. (33) will be

used to determine S[0, xABH]. Details about Sx=0 and S]0, x] are given in

Sec. 2.5 which proposes a model for the imperfect boundary condition, and190

Sec. 2.6 which proposes to find numerically the scattering in the ABH profile.

2.5. Imperfect boundary condition

Identifying and modelling imperfections or defaults in a structure is closely

related to structural health monitoring [27] where the main interest is usually
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cracks. Those are usually modelled by local stiffness changes [28]. A simpler195

model is used in this study: the imperfection is described as a material ex-

tension of small variable length a(y) along direction x. It is constituted of

infinitesimal rigid bars of width dy, that are not coupled between each other

(see Fig. 5). These bars are supposed to follow the kinematics of the last

cross section of the waveguide: this leads to the fact that the displacement200

w(0, y) and slope θx(0, y) of the last cross section are such as the ones of the

bars. These bars have a mass density ρ identical to that of the waveguide

and their thickness h is assumed constant and equal to that of the extremity

of the waveguide. The only actual parameter is then the length a(y) which

controls, for each infinitesimal element, the force Vx(0, y) and bending mo-205

ment Mx(0, y) applied on the guide extremity. Finally, this simple model

is well adapted to represent any arbitrary imperfection by a distribution of

mechanical load at the extremity.

Newton’s Second Law is applied to each element and leads to

ρha(y)dyz̈(y) = −Vx(0, y), (34)

I0θ̈x(0, y)x = −Mx(0, y), (35)

with ρha(y) the mass of the element, assumed concentrated in its centre

of mass, whose vertical displacement is z(y) = w(0, y) + a(y)
2
θx(0, y). The210

moment of inertia I0 writes:

I0 =

∫ a(y)

0

s2ρhdy ds =
ρha(y)3dy

3
. (36)
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(a)

0 x

z

ht

(b)

0 x

y

dy

a(y)

Figure 5: Model of imperfection as an extension constituted of infinitesimal rigid bars: (a)

side view and (b) top view.
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Eqs. (34) and (35) then write

Vx(0, y) = ρha(y)dyω2(w +
aθx
2

), (37)

Mx(0, y) =
ρha(y)3dy

3
ω2θx. (38)

From the impedance matrix definition of Eq. (17), the boundary condition

at x=0 is expressed as an initial impedance condition:

Z0 =
1

jω

 O ρhω2

3b

∫ b
0
a(y)3ΨqΨj dy

ρhω2

b

∫ b
0
a(y)ΨqΨj dy ρhω2

2b

∫ b
0
a(y)2ΨqΨj dy

 . (39)

In the general case, matrix Z0 does not have a purely analytical expres-

sion. The reality of imperfections is complex but this model gives a simple215

way to represent it with a single parameter a(y). This parameter has to be

small with regard to the wavelength at x=0 for the model to be valid and

the bars to respect the assumption of inflexibility. Following this hypoth-

esis, the imperfect termination adds inertial effects but no elastic effects.

The elementary academic imperfection presented here induces wave conver-220

sion mechanisms similar to those induced by a complex imperfection. The

couplings due to elementary imperfections can then be studied.

Because of a(y) is supposed to be small, terms ρhω2

2b

∫ b
0
a(y)2ΨqΨj dy and

ρhω2

3b

∫ b
0
a(y)3ΨqΨj dy can actually be neglected in regards of ρhω

2

b

∫ b
0
a(y)ΨqΨj dy.

The model of Eq. (39) is then simplified in the followings: the effects of rigid225

bars are restricted to their localised masses, therefore

Z0 =
1

jω

 O O
ω2

b

∫ b
0
m(y)ΨqΨj dy O

 , (40)
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with m(y) = ρha(y). Computing Sx=0 is immediate using Eqs. (31), (32)

and (40).

2.6. Numerical resolution for the ABH profile

2.6.1. Magnus method230

A Magnus scheme [29, 30, 31] can be used to solve the Riccati equation

(18) in a similar way as in [6]. It is used in this paper for computing the

scattering matrix of a section. A fourth-order Magnus scheme is used. The

waveguide is discretized along the x-direction with a constant step. The

Magnus scheme is applied to Eq. (11) and yields:235

W(x̄n+1) = eΩnW(x̄n), (41)

where x̄n is the longitudinal discrete coordinate and Ωn is the fourth-order

Magnus matrix [32]:

Ωn =
∆

2
(H1 + H2) +

√
3

12
∆2[H2,H1], (42)

where ∆ = x̄n+1 − x̄n is the constant spatial step,

H1 = H(x̄n +

(
1

2
−
√

3

6

)
∆), (43)

H2 = H(x̄n +

(
1

2
+

√
3

6

)
∆), (44)

and [H2,H1] is the commutator between H2 and H1.
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2.6.2. Computation of the elementary scattering matrix from Magnus scheme

The scattering matrix Selem of an elementary section of length ∆ is ob-240

tained from Magnus scheme. Combining Eq. (41) and Eq. (21) gives

Vx̄n+1 = E−1
x̄n+1

eΩnEx̄nVx̄n . (45)

The local transfer matrix Q [33] is identified in Eq. (45):

Q = E−1
x̄n+1

eΩnEx̄n =

 Q1 Q2

Q3 Q4

 . (46)

Rewriting Vx̄n+1 and Vx̄n in Vout and Vin (referring to the elementary sec-

tion) allows to reorganize matrix Q in order to obtain the scattering matrix

Selem of the elementary section:245

Selem =

 Q1
−1 −Q1

−1Q2

Q3Q1
−1 Q4 −Q3Q1

−1Q2

 . (47)

It can be noticed that, by construction, if transition matrices Ex̄n are

Ex̄n+1 are equal (in the case of an homogeneous waveguide), matrix Selem is

assimilated to the wave propagator between these two abscissas: it is then

diagonal. Using the ? operator defined in Appendix A, the numerically

computed elementary scattering matrices are combined in order to compute250

S]0, x] (in Sec. 3.4) or S[0, x] (in Sec. 3.2). Namely, if the ABH region is

discretized in N elements, it is possible to write its scattering matrix Sregion

as

Sregion = S0
elem ? S1

elem ? S2
elem ? ... ? SNelem. (48)

In the following, the computation is done with ∆ = 10−4 m and 30 modes

have been taken into account. A convergence study (not presented in this pa-255

per) shows that using 30 modes for this configuration in the frequency range
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of interest is sufficient to accurately model the effect of the imperfection.

The number of modes used should be in any case greater than the number

of propagating modes at the ABH tip at the highest frequency.

3. Scattering induced by imperfections260

3.1. Characteristics of the simulated waveguide

The case of an ABH waveguide made of aluminium is considered. Pa-

rameters used in the numerical applications of the model are summarized in

Tab. 1; parameters for the damping layer are realistic but do not result from

characterization tests. Moreover, as a first step the imperfection is mod-265

elled by a single mass localised at (x = 0, y0 = b/2). The mass represents

about 0.2% of the total mass of the ABH termination. This mass localisa-

tion induces that only waveguide modes with odd numbers are concerned

with possible coupling. The initial condition (40) then simplifies:

Z0 = − jm0ω

b

 O O

Ψj(y0)Ψk(y0) O

 . (49)

In this configuration, mode 1 is propagating above 360 Hz in the homo-270

geneous region (this is assessed further in Sec. 3.3) and the next odd mode

is mode 3 which is propagating above 2000 Hz. Therefore, numerical results

concerning mode 1 are shown in the 400–2000 Hz frequency range.

3.2. Typical results for the reflection coefficient

Fig. 6 presents variations of reflection coefficient (R+
pp)11 (of incident mode275

1 on reflected mode 1) with frequency, for terminations described in Tab. 1
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Geometrical characteristics Characteristics of material

Aluminium plate

L=0.8 m, b=0.1 m, E1=70 GPa, η1=0.2 %,

xABH=0.06 m, x0=0.01 m, ρ1=2700 kg.m−3, ν=0.3.

h0=1.5 mm, m=2.

Damping layer

hl=0.1 mm, E2=7 GPa, η2=20 %,

xl=0.05 m. ρ2=1000 kg.m−3.

Imperfection

y0=0.05 m m0=1.5× 10−5 kg

Table 1: Geometrical and material characteristics of the simulated ABH waveguide.

with or without imperfection. The reflection on the ABH extremity without

imperfection and without damping layer (full gray line) is close to unity. This

is not surprising since the non covered ABH is known to be inefficient [8].

Covered ABH without imperfection (dashed gray line) gives an interesting280

result as its reflection coefficient can be as low as 0.5 with oscillations; this

results can be compared to earlier results [6].

The case of the non covered but imperfect ABH termination (single mass

at the centre of the cross-section, full black line) is mostly identical to the

perfect termination except that it displays several very deep minima localised285

in frequency. With a damping layer the imperfect termination (dashed black

line), |(R+
pp)11| clearly leads to a smaller reflection than the perfect covered

case; the difference can be as much as 0.1. Notice that local minima seen on

the non-covered imperfect extremity can still be observed in the covered case

but are much less localised in frequency.290
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Figure 6: Modulus of the reflection coefficient (R+
pp)11 for perfect non covered (full gray

line), perfect covered (dashed gray line), imperfect non covered (full black line) and im-

perfect covered (full dashed line) ABH terminations (parameters of Tab. 1).

3.3. Cut-off frequency

In an homogeneous structure of a given thickness, whether a mode q is

propagating or not only depends on the frequency according to the dispersion

relation for mode q (see Eq. (22)). In an inhomogeneous structure such as

the tapered profile studied here (see Fig. 7(a)), the propagating behaviour295

depends on both the frequency and the thickness, therefore on the axial

coordinate.

At a given frequency, it is shown on Fig. 7(b) that the eigenvalues as-

sociated with propagating waves of modes q=1, 3, 5, 7 (for example) are

functions of abscissa (see Eq.(22)). A mode becomes propagating at its cut-300

off abscissa, which is indicated by the change of nature of the associated

eigenvalue (real or imaginary). These cut-off abscissas allow for each mode

q to define coloured region on Fig. 7(a). Fig. 7(c) shows that the cut-off
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frequency of mode q depends on the abscissa, i.e. on the local thickness of

the waveguide. In this case, in the uniform region of the waveguide mode 1305

is propagating above 360 Hz while modes 3, 5 and 7 are not. They are thus

confined in the tapered extremity.

3.4. Reflection induced by the tapered profile itself

The geometrical acoustics analysis [8], which is based on the WKB ap-

proximation and only considers propagating waves, suggests that an incident310

wave reflects only at the boundary and that there is no reflection inside the

tapered profile. The model presented in Sec. 2 gives the scattering properties

in a region ]0, xABH] of the waveguide that does not include the free bound-

ary condition. Zero reflection implies that the scattering matrix is diagonal:

it contains only transmission terms and reflection terms are zero. Scatter-315

ing matrices S]0, x] and S[0, x] are computed with respect to frequency and

allow to observe the reflection of the ABH profile with or without the free

condition, respectively.

Fig. 8 shows indeed that for mode 1, there is a non zero reflection along

the tapered profile that does not depend on the free boundary condition:320

the tapered section reflects a low part of incident waves (full gray line).

Note that covering the profile with a damping layer does not affect this

behaviour consistently (full black line). The observed reflection coefficient

displays oscillations that can directly be compared to oscillations in the full

ABH termination (i.e. including the boundary condition, dashed black line).325

Oscillations of the reflection coefficient have been observed first in [6], where

the authors hypothesize that oscillations are due to sharpness and length of
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Figure 7: (a) Thickness profile of the extremity with zone of propagation of modes k < 3

(white), k < 5 (light gray), k < 7 (dark gray) and k > 7 (black) at 1000 Hz. (b) Real

(grey) and imaginary (black) parts of λ1 (thick full), λ3 (thin full), λ5 (dashed) and λ7

(dashdotted) at 1000 Hz. (c) Cut-off frequency for mode 1 (thick full), 3 (thin full), 5

(dashed), 7 (dashdotted).
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the profile. Note that the geometrical acoustics approach and the associated

WKB solution [8, 34] does not yield oscillations; therefore, it may indicate

that the approximations made in this approach are not valid for the studied330

geometry, especially the approximation of sufficient smoothness. This is also

recently suggested in a study of Feurtado et al. [35] who study the parameters

yielding a smooth profile, but was also briefly discussed in Ref. [34].
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Figure 8: Modulus of the term (1, 1) of the reflection matrix R+
]0, xABH] with damping layer

(full black), without damping layer (full grey) and of the reflection matrix R+(x) with

damping layer (dashed black).

3.5. Coupling mechanisms and mode trapping

Let us consider a propagating incident wave q arriving at the extremity.335

The reflection matrix R+
pp(x = 0) is displayed on Fig. 9(a). It shows the mode

coupling at the imperfect free end: the diagonal terms of |R+
pp| represent the

reflection of a mode on itself, and are less that unity in this case. The out-of-

diagonal terms represent the reflection of an incident mode on one or several
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scattered modes; some of these terms are non-zero. The incident energy is340

thus redistributed on modes that are propagating at the extremity. This

phenomenon is present at any frequency. The case of a single mass located

in the centre of the extremity induces that only odd modes are concerned

with couplings, as expected. Note that while an incident mode q is partially

reflected on mode j, the incident mode j is partially reflected on mode q.345

Let us now consider a reflected wave j resulting from the scattering de-

scribed above. The wave is coming from the edge and its interaction with

the propagating medium is described by the reflection matrix R−pp associated

to scattering matrix S]0, x]. The reflection matrix R−pp is diagonal. Fig. 9(b)

shows diagonal terms of matrix R−pp, corresponding to reflection of modes q350

on themselves. The energy coming from the extremity toward the uniform

part of the waveguide is fully reflected at some point in the tapered zone. The

full reflection is indicated by a coefficient equal to 1 in modulus. The point

at which there is full reflection corresponds to the cut-off abscissa shown on

Fig. 7(b). A mode j excited by the imperfection at x=0 can then be reflected355

toward the extremity x=0 at some point in the tapered profile. A scheme for

the proposed excitation and reflection mechanisms is displayed on Fig. 10.

Waves of a given mode then travel between the extremity and the cut-

off abscissa of this mode, indicating the possibility of local resonances (on

this topic, Krylov [36] mentions the ray turning point of a mode). Minima360

appearing at precise frequencies are shown in Fig. 6 for the imperfect case if it

is not covered with a damping layer. It suggests that only at these frequencies

the energy is trapped and that there exist local resonances responsible for

the drop in the reflection coefficient.
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Figure 9: (a) Reflection matrix |R+
pp| at point x=0 and for f=1000 Hz and (b) Third

(full), fifth (dashed) and seventh (dashdotted) diagonal terms of the reflection matrix |R−
pp|

of the region ]0, x] at f=1000 Hz.
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Figure 10: Scheme of the excitation and reflection mechanisms in the imperfect ABH

termination. xjc indicates the cut-off abscissa for mode j. In step (1) the incident mode q

is scattered on mode j, in step (2) mode j is reflected towards the extremity and in step

(3) mode j is scattered on mode q.
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3.6. Effect of the imperfection parameters365

3.6.1. Effect of the position of the imperfection

Let us consider the same mass figuring the imperfection at two more po-

sitions: y0=b/3 and y0=4b/5. Reflection matrices for these cases are plotted

on Fig. 11 and show the couplings between modes; note the slight differences

compared to Fig. 9(a). Fig. 12 shows the results for |(R+
pp)11| in these config-370

urations. In the case of the non covered tapered profile, reflection coefficients

for b/2 and b/3 are different as they do not display the same minima: this can

be expected since they do not couple the same modes. When the termina-

tion is covered, the three cases are rather similar (see Fig. 13). It is however

noticeable, that the best performance is reached when y0=b/2, which is the375

position of maximum displacement for mode 1.

3.6.2. Effect of the number of imperfections

Fig. 13 presents results on |(R+
pp)11| for combined imperfections. Combina-

tion b/2+b/3 and b/2+b/3+4b/5 are studied. Note that theses configurations

combines the minima of cases studied in Sec. 3.6.1. Cancellation of mutual380

effect may appear at some frequencies when the termination is not covered.

Broad drops of |(R+
pp)11| appears (at 1600 Hz) that are the consequence of

two close consecutive minima. In the covered case, combining imperfections

seems beneficial for the reflection coefficient which is reduced in the 500–700,

900–1100 and 1400–2000 Hz ranges when masses are added to the model.385

The gain reaches 0.2 at some frequencies. Compared to Sec. 3.6.1, it appears

that multiplying the imperfections helps obtaining a significant reduction
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Figure 11: Reflection matrices |R+
pp| at x=0, 1000 Hz for masses located in (a) y=b/3

and (b) y=4b/5.
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Figure 12: Modulus of the reflection coefficient (R+
pp)11 for imperfect cases of ABH ter-

mination with mass at y=b/2 (black), y=b/3 (light grey) and y=4b/5 (dark grey), non

covered (full lines) and covered (dashed lines).

of |(R+
pp)11|, assuming that there is no cancellation effects. This fact sug-

gests that naturally obtained imperfections are not necessarily detrimental

and that controlled irregularities of the ABH extremity can be used in order390

to enhance its damping performance for a given minimum thickness; it is

reminded that a thinner extremity provides better results.

4. Experimental investigations on an imperfect ABH termination

4.1. Experimental setup

This experiment uses the setup and the method detailed by the authors in395

[19] for measuring the reflection coefficient of a beam. The method is similar

to Kundt-method in acoustics. A wave model and a least-square technique
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Figure 13: Modulus of the reflection coefficient (R+
pp)11 for imperfect cases of ABH ter-

mination with mass at y=b/2 (black), y=[b/2;b/3] (light grey) and y=[b/2;b/3;4b/5] (dark

grey), non covered (full lines) and covered (dashed lines).

are used to get the reflection coefficient from frequency response functions at

several locations on the beam. The tested beam is vertically suspended and

is excited by a swept-sine from 100 to 8000 Hz using a shaker. Beam velocity400

is measured using a laser vibrometer (Polytec OFV-400) at 21 abscissas in a

0.1 m long measurement zone.

The unique sample consists in an aluminium beam with an ABH extrem-

ity (see Fig. 14(a)), whose parameters are described in Tab. 2. The tip is as

clean and undamaged as possible but displays a small permanent deformation405

(less than a millimeter) and a small notch. A thin damping layer (striped

tape) is stuck on the flat side of the tapered profile (see Fig. 14(b)). This

configuration is referred as ”non-damaged”. With the help of a FEM model

(COMSOL) of this beam, the first transverse ABH mode can be found at 1050
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Hz. After a first measurement of the reflection coefficient of the beam, an410

point mass (tin drop) is stuck at the tip of the tapered profile (see Fig. 14(c)).

This second configuration is referred as ”damaged”. A second measurement

of the reflection coefficient is then made on the damaged beam.

Geometrical characteristics Characteristics of material

Aluminium beam

L=0.8 m, b=0.02 m, E1=70 GPa, η1=0.2 %,

xABH=0.06 m, x0=0.01 m, ρ1=2700 kg.m−3.

h0=1.5 mm, m=2.

Imperfection (tin drop)

y0=0.01 m m0=3.6× 10−4 kg

Table 2: Geometrical and material characteristics of the sample ABH.

4.2. Reflection coefficient of an imperfect ABH extremity

The resulting reflection coefficient for the two configurations can be seen415

in Fig. 15. On the one hand the reflection coefficient for the non damaged

configuration (gray curve) decreases with oscillations below 4000 Hz to reach

very low values (0.1 in magnitude) above 4000 Hz. This behaviour, including

the oscillatory phenomenon, is conform to the ABH models developed in the

literature [4, 6, 19]. On the other hand, the damaged configuration (black420

curve) displays a similar behaviour but presents lower values in the 0-4000

Hz region. Above 4000 Hz, there is no sensible difference between the two

configurations. The differences in magnitude can reach 0.2 and are due to

the addition of the point mass at the ABH tip. This experimental result

qualitatively agrees with the numerical results presented in Sec. 3425
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(a)

(b)

(c)

Figure 14: (a) Machined side of the tapered profile, (b) flat side of the tapered profile,

covered with viscoelastic layer (striped tape) and (c) extremity with stuck tin drop.
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Figure 15: Modulus of the reflection coefficient for the ”non damaged” (gray line) and

”damaged” (black line) ABH termination

5. Conclusions

This paper investigates the role of imperfections that are usually found

at the tip of the ABH tapered profile when it is made very thin, due to the

limitations of the manufacturing techniques.

A multimodal model of inhomogeneous waveguide with an ABH termina-430

tion with a simple imperfection is developed in order to obtain the scattering

matrix of a region of the waveguide as well as the reflection matrix of the

ABH extremity. It is numerically solved using a Magnus scheme. It is shown

that an elementary imperfection on the free extremity of the tapered profile

affects the reflection coefficient and reduces it. Effects are spectrally localised435

when the damping is weak, but are broadly extended when the damping is in-

creased due to the viscoelastic layer. At a given frequency, guided modes can
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be propagating in the tapered region while they are attenuating in the thicker

uniform region of the waveguide. They are thus confined or localised in the

tapered region. Due to couplings at the extremity, an incident waveguide440

mode is partially reflected on multiple modes. Because of the imperfection,

guided modes that are confined in the ABH are excited, leaving the possibil-

ity of local resonances that can explain the drop of the reflection coefficient

for the incident mode. Furthermore, the results suggest the use of controlled

imperfection of the tip of the ABH profile in order to enhance its damping445

performance. A key point for researchers and designers of ABH systems is

that imperfect extremities are not detrimental and can at best be beneficial.

Moreover, it is also shown that waves may be reflected inside the tapered

profile itself and not only by the extremity. It suggests that many experimen-

tal ABH profiles do not match the sufficient smoothness conditions described450

in [8] and can be improved practically to avoid internal reflections.

Finally, a measurement of the reflection coefficient of an artificially dam-

aged ABH extremity is realised and shows that it differs from the reflection

coefficient of a non damaged extremity. It is used to qualitatively confirm

the results of the model.455

Appendix A. Assembly rule for scattering matrices

In order to compute the scattering matrix of a whole inhomogeneous

guide from scattering matrices of elementary regions, it is useful to define an

operator that combine the scattering matrices SA and SB of two consecutive

regions A and B. If SAB is the scattering matrix of the concatenation of the460
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two regions, it can be shown that SAB can be computed from SA and SB by

using a ? operator [7]:

SAB = SA ? SB. (A.1)

with

SAB =

 T+−
AB R−AB

R+
AB T−+

AB

 , SA =

 T+−
A R−A

R+
A T−+

A

 , SB =

 T+−
B R−B

R+
B T−+

B

 .
(A.2)

Eq. (A.1) is also called assembly rule for scattering matrices. The four sub-

matrices T+−
AB, R−AB, R+

AB and T−+
AB of SAB write

T+−
AB = T+−

A (I−R−BR+
A)−1T+−

B , (A.3)

R−AB = R−A + T+−
A (I−R−BR+

A)−1R−BT−+
A , (A.4)

R+
AB = R+

B + T−+
B (I−R+

AR−B)−1R+
AT+−

B , (A.5)

T−+
AB = T−+

B (I−R+
AR−B)−1T−+

A . (A.6)
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