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The flexural waves propagating in a beam can be efficiently absorbed if one extremity is tapered with a power law profile and covered by a thin layer of additional damping material. Such a termination induces the so-called "acoustic black hole effect" (ABH): if the thickness decreases locally, flexural waves slow down and the amplitude of the displacement field increases, leading to efficient energy dissipation if an absorbing layer is placed where the thickness is minimum. This paper presents a specific study of the reflection coefficient of ABH beam terminations. A Kundt-like measurement method of the reflection coefficient of a beam termination is proposed. The method is validated using theoretical results in the case of a beam free end.

Results for several ABH extremities show a clear decrease of the modulus of the reflection coefficient R. The phase of R due to the decreasing thickness profile is also investigated and is interpreted by defining a correction length for the tapered termination. These experimental results are compared with several models: geometrical acoustics based model, beam waveguide model

Introduction

The reduction of unwanted vibrations is important for structural security, stability and comfort in many industrial applications. A classical vibration damping method consists in using surface damping treatments. Indeed, these methods have proven to be very efficient [START_REF] Ross | Damping of plate flexural vibrations by means of viscoelastic laminae[END_REF][START_REF] Nashif | Vibration Damping[END_REF], although they often result in an increased mass of the treated structure. This may be unacceptable for ecological and economical reasons in the transport industry for example. It is then of a great interest to develop lightweight vibration damping methods.

It is well known that the sharpness of the resonances of a structure depends on both the damping properties of the constitutive material and the boundary conditions [START_REF] Vemula | Attenuation of waves in plates and bars using a graded impedance interface at edges[END_REF]. Therefore, for a given beam structure made of a particular material, a reduction of the resonant behaviour can be obtained by attenuating bending wave reflections at the edges. In this matter, a method using a graded impedance interface at the edges of a beam is proposed by Vemula et al. [START_REF] Vemula | Attenuation of waves in plates and bars using a graded impedance interface at edges[END_REF], and consists in assembling several pieces of beams made with different materials. The energy dissipation within the composite material at the free end, coupled with relatively large amplitude vibrations caused by the impedance gradation, results in a smaller reflectivity. The so-called Acoustic Black Hole (ABH) effect can also be used to reduce the reflection coefficient of a beam free end [START_REF] Krylov | New type of vibration dampers utilising the effect of acoustic 'black holes[END_REF][START_REF] Krylov | Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates[END_REF][START_REF] Georgiev | Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[END_REF]. The ABH effect can be obtained from the bending wave properties in a beam of decreasing thickness: assuming geometrical acoustics hypothesis, Mironov [START_REF] Mironov | Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[END_REF] shows that in the neighbourhood of a beam edge whose thickness decreases smoothly to zero, flexural waves slow down and stop without being reflected. The condition of sufficient smoothness can be fulfilled by a power-law thickness profile h(x) in the form:

h(x) = x m , ( 1 
)
where x is the spatial coordinate and m ≥ 2. If the thickness is strictly zero at the edge [START_REF] Mironov | Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[END_REF], it can be shown that the time taken by a wave to reach the edge becomes infinite. For a practical structure with a finite thickness, the reflection coefficient tends to zero with the decrease of the residual thickness at the tip of the tapered profile. It is however shown that manufacturing processes are such that this residual thickness can never be small enough for the effect to be attractive.

Krylov et al. [START_REF] Krylov | New type of vibration dampers utilising the effect of acoustic 'black holes[END_REF][START_REF] Krylov | Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates[END_REF] show, also in the framework of geometrical acoustics (i.e. ignoring attenuating flexural waves in the medium), that covering the tapered profile by a thin damping layer compensates the finite thickness at the edge of experimental structures. The obtained analytical reflection coefficient has drastically reduced values compared to a free uniform extremity.

In the framework of Euler-Bernoulli beam modelling, a wave-based approach that takes into account the effect of attenuating waves has been proposed by Georgiev et al. [START_REF] Georgiev | Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[END_REF]. From a wave-vector formulation, a Riccati equation is numerically solved to compute a mechanical impedance matrix along the tapered beam and to derive a reflection matrix. Some practical rules for determining the optimal geometrical and material properties of the damping layer are found using this model [START_REF] Georgiev | Numerical and experimental investigation of the acoutic black hole effect for vibration damping in beams and elliptical plates[END_REF]. Further investigations from Denis et al. [START_REF] Denis | Modal overlap factor of a beam with an acoustic black hole termination[END_REF] show that a two-dimensional behaviour has to be taken into account to model the tapered zone: the small thickness of the extremity induces a local plate behaviour in a beam with an ABH extremity, and local transverse eigenmodes can be found in the beam structure. Note that two-dimensional ABH have also been described in the literature: circular ABH used as plate vibration damper has been firstly proposed by Gautier et al. [START_REF] Gautier | Experimental investigation of the acoustic black hole effect for vibration damping in elliptical plates[END_REF] and studied both experimentally [START_REF] Gautier | Experimental investigation of the acoustic black hole effect for vibration damping in elliptical plates[END_REF][START_REF] Bowyer | Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile[END_REF][START_REF] Bowyer | Experimental inverstigations of damping flexural vibrations in plates containing tapered indentations of power-law profile[END_REF] and theoretically [START_REF] O'boy | Damping of flexural vibrations in circular plates with tapered central holes[END_REF][START_REF] Aklouche | Scattering of flexural waves from an acoustic black hole in an infinite thin plate[END_REF][START_REF] Aklouche | Modle de la diffusion des ondes de flexion par un trou noir acoustique bi-dimensionnel[END_REF].

A claim of the previous studies is that the ABH effect is a way to obtain a quasi-anechoic termination; yet, most of the experimental studies observe frequency responses and not an actual reflection coefficient, which can be considered as a more direct indicator. Although this method has been developed for ABH termination, it remains applicable to any arbitrary beam end. This article focuses on the measurement of the reflection coefficient for flexural waves in a beam which carries an ABH on its extremity. First, the experimental setup is described and the measurement method is detailed in Sec. 2. In Sec. 3, the experimental results for the reflection coefficient of a uniform beam and several ABH beams are shown and commented. Sec. 4

presents different models of the literature and compares them with the experimental results. A conclusion is given in Sec. 5.

Measurement method

Reflection in beams has been thoroughly studied [START_REF] Lin | A brief survey of transfer matrix techniques with special reference to the analysis of aircraft panels[END_REF][START_REF] Mace | Wave reflection and transmission in beams[END_REF]. Several methods allow the estimation of reflection properties of beam extremities. Linjama et al. [START_REF] Linjama | Estimation of bending wave intensity in beams using the frequency response technique[END_REF][START_REF] Linjama | Measurement of bending wave reflection and impedance in a beam by the structural intensity technique[END_REF] propose to measure the reflection of bending waves using a structural intensity technique. Vemula et al. [START_REF] Vemula | Attenuation of waves in plates and bars using a graded impedance interface at edges[END_REF] estimate the reflected energy of bending waves in a graded impedance interface using the half power bandwidth of the resonance peaks of the transfer function. Carniel et al. [START_REF] Carniel | Vibrational power flow measurement: structure characterization and wave reflection coefficient measurement[END_REF] and Piaud et al. [START_REF] Piaud | La mesure de l'impdance mcanique[END_REF] both propose expressions for the far field reflection coefficient in a beam. Moulet et al. [START_REF] Gautier | Reflection, transmission and coupling of longitudinal and flexural waves at beam junctions. part I: Measurement methods[END_REF][START_REF] Moulet | Reflection, transmission and coupling of longitudinal and flexural waves at beam junctions. part ii: Experimental and theoretical results[END_REF] use a Kundt tube-like technique in order to estimate the scattering properties of a junction between two beams from the measurements of velocities along the beam. A method inspired by [START_REF] Gautier | Reflection, transmission and coupling of longitudinal and flexural waves at beam junctions. part I: Measurement methods[END_REF][START_REF] Moulet | Reflection, transmission and coupling of longitudinal and flexural waves at beam junctions. part ii: Experimental and theoretical results[END_REF] is used in the current paper.

Experimental setup

Setup

The estimation of the reflection coefficient is based on mobility transfer functions measurements. In order to avoid static deformation due to gravity, the beam to be tested is hanged vertically (see Fig. 1a andb). The extremity whose reflection coefficient is estimated is oriented towards the bottom. An measurement points.

Samples

Two constitutive materials are used for the beams: aluminium and polymer (Vero White Plus FullCure 835). For each material, two beams are tested: a uniform beam (i.e. constant cross section) used as a reference for the estimation method, and a beam with an ABH termination, whose geometry is described on Fig. 2. A layer of damping material made with viscoelastic tape is stuck on the flat side of the tapered profile. The dimensions and material characteristics (Young modulus, mass density, loss factor and Poisson coefficient) of the samples are given in Tab. 1.

The ABH termination for the aluminium beam is manufactured using a conventional machining process, allowing to obtain a minimum thickness at the extremity of about 20 µm. The process requires high precision work and often generates irregularities and tearing at the tip of the profile. The loss factor for aluminium has an arbitrarily chosen low value reflecting a very lightly damped beam and allowing to obtain convincing results. The polymer beam is manufactured using UV polymerisation, which is a rapid prototyping process. This manufacturing process allows a thinner minimum thickness of about 16 µm to be obtained and enables a better control on the profile but restricts the choice of the material. For this material, a standard measurement of the complex Young modulus versus frequency has been done.

The results of the Dynamical Mechanical Analysis (DMA) [START_REF] Menard | Dynamic mechanical analysis: a practical introduction[END_REF] between 0.4 and 40 Hz have been extrapolated on the 0-12 kHz range using the Williams- Landel-Ferry model [START_REF] Ferry | Viscoelastic properties of Polymers[END_REF]. They provide the indicative values given in Tab. 1.
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Variable complex Young modulus from the DMA results has been actually used in the following and is plotted on Fig. 3. Frequency (kHz) Table 1: Geometrical and material characteristics of the sample beams and damping layer.
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Geometrical characteristics Characteristics of material

Aluminium beam

L=0.8 m, b=0.02 m, E 1 =70 GPa, η 1 =0.1 %, l ABH =0.06 m, l t =0.07 m, ρ 1 =2700 kg.m -3 , ν=0.3. h 0 =1.5 mm, m=2.
Polymer beam

L=0.6 m, b=0.02 m, E 1 3.5 GPa, η 1 2.8 %, l ABH =0.06 m, h t =0.16 mm ρ 1 =1175 kg.m -3 , ν=0.3. h 0 =1.5 mm, m=2.
Damping layer

h l =0.1 mm, E 2 =7 GPa, η 2 =40 %, d=0.05 m. ρ 2 =1000 kg.m -3 .
points at the right and left hand side of the neutral axis, with distances a l = A l A 0 and a r = A r A 0 , respectively. Let E and F (E) be the excitation point at abscissa x f and the force applied in E, respectively. The studied reflection coefficient concerns only flexural waves. The measured velocity Ẇi at a given abscissa x i can be written as

130 Ẇi = Ẇif + Ẇit , (2) 
where Ẇif and Ẇit correspond to pure beam flexural motion and beam torsional motion, respectively. Only the flexural contribution should be estimated. The mobility on the neutral axis, where there is no torsional contribution, is defined as

Y (A 0 , E) = Ẇif F (E) . (3) 
It can be shown that

Y (A 0 , E) = a l Y (A l , E) + a r Y (A r , E) a l + a r = αY (A l , E) + Y (A r , E) 1 + α , (4) 
where α = a l /a r . The α coefficient is adjusted in order to minimize the amplitude of the first torsional peak, allowing to find Y (A 0 , E) from the measurements of Y (A l , E) and Y (A r , E). The effect of torsion on the wave field is therefore efficiently reduced on a wide frequency range for each abscissa. Fig. 4b shows the mobility transfer function between the excitation and a random measurement abscissa for the uniform aluminium beam at left and right hand sides of the centreline (full and dashed gray lines). The transfer function on the neutral axis (thick black line) is also plotted and shows that the first torsional peak at 197 Hz vanishes. Mobilities of the uniform and ABH beams made of aluminium are plotted on Fig. 4c; the torsional peaks are minimized and the smoothing effect of the ABH treatment can be noticed.

The quality of the transfer function measurements is estimated using ordinary coherence function. It is easily shown that excitation level has to be large enough to get coherence function close to 1. To make sure that this condition is valid over a wide frequency range, the whole useful band 0-12 kHz is split in two bands: 0-2 kHz and 2-12 kHz for which two different levels are applied for the swept sine excitation. Hence, for each couple (E, A 0 ), two sets of measurements are performed in order to compute the mobility. 
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Methodology for the estimation of the reflection coefficient

Wave field solution for beams

Let us consider a beam of constant cross section whose extremity x=0 bears an ABH profile seen as an unknown boundary condition (see Fig. 5).

Under the Euler-Bernoulli assumptions, the equation of harmonic flexural motion W (x, ω) of such a beam in the absence of excitation, and assuming a harmonic motion with time dependency e -jωt , is [START_REF] Mace | Wave reflection and transmission in beams[END_REF] 

E * I ∂ 4 W (x, ω) ∂x 4 -ρSω 2 W (x, ω) = 0 ∀x ∈ [0, L], (5) 
where ω is the angular frequency, E * = E(1 + jη) is the complex Young modulus (with E the storage modulus and η the loss factor), I is the moment of inertia of the cross-section, ρ is the mass density, S is the cross-section area and L is the length of the uniform part of the beam.

The general solution for the displacement can be written as the sum of four waves [START_REF] Mace | Wave reflection and transmission in beams[END_REF]:

W (x, ω) = A(ω)e -jk f x +B(ω)e +jk f x +C(ω)e -k f x +D(ω)e +k f x ∀x ∈ [0, L], (6) 
where the flexural wavenumber k f is such that

k 4 f = ρS E * I ω 2 . ( 7 
)
The scalar coefficients A, B, C and D represent the magnitude of backward and forward propagating and attenuating waves, respectively (see Fig. 5).

At the ABH extremity or the free extremity (x=0), the boundary conditions associated to the equation of motion ( 5) can be written as a reflection matrix R such that

175   A C   = R   B D   , (8) 
where

R =   R pp R ap R pa R aa   , (9) 
with R ij the reflection coefficient between incident wave i and reflected wave j; i and j symbolize p and a standing for propagating and attenuating respectively.
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We are interested in measuring terms of R. The boundary condition at x=L has to be defined for the experiment but do not play any role in the measurements of R. In practice, free boundary conditions are supposed at x=L.

Unknown boundary condition

Excitation 

0 x f x N x 2 x 1 x 0 x L A D C B

Far field assumption

Far from the excitation point and from the boundaries, attenuating waves vanish and the wave field can be well approximated as the sum of two propagating waves only:

W (x, ω) = A(ω)e -jk f x + B(ω)e +jk f x . ( 10 
)
The boundary condition can then be described with a far field reflection coefficient R that corresponds to R pp in Eq. ( 9). It is assumed that the far field assumption is valid at a given frequency when the attenuating waves coming from an excitation point or a boundary condition lose 90 % of their magnitude over the propagation length l. Therefore, there should be

     x N > l, x f -x 0 > l, (11) 
where the distance l satisfies [START_REF] Gautier | Reflection, transmission and coupling of longitudinal and flexural waves at beam junctions. part I: Measurement methods[END_REF] e -k f l = 0.1.

In the experiment described in Sec. 2.1, the closest measurement point is at l=0.1 m of the tapered zone of the aluminium ABH beam, so that the far field assumption is theoretically valid above 200 Hz.

Estimation of the wave and reflection coefficients

Let us consider N +1 points along the beam satisfying the far field assumption (see Fig. 5). The displacement measured for all abscissas x i (i ∈ [0, N ]) can be related to the coefficients A and B through the matrix equation

           W (x 0 , ω) W (x 1 , ω) W (x 2 , ω) ... W (x N , ω)            =            e -jk f x 0 e jk f x 0 e -jk f x 1 e jk f x 1 e -jk f x 2 e jk f x 2 ... ... e -jk f x N e jk f x N            M   A(ω) B(ω)   , (13) 
with M a (N × 2) matrix. A least-squares estimation of the [A, B] T vector can be effectively obtained with

  A(ω) B(ω)   = M †            W (x 0 , ω) W (x 1 , ω) W (x 2 , ω) ... W (x N , ω)            , (14) 
where M † = (M * M) -1 M * is the Moore-Penrose generalized inverse [START_REF] Penrose | A generalized inverse for matrices[END_REF] of
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M and M * is the conjugate transpose of M.

From this estimation of the wave coefficients, the far field reflection coefficient of the extremity can be derived:

R(ω) = A(ω) B(ω) . ( 15 
)
3. Measurement of the reflection coefficient

Validation on the uniform beam

It can be shown that the reflection coefficient for a free end is given by

[17] R = A B = -j. ( 16 
)
This result is used to validate the proposed measurement method. Fig. 6 presents the reflection coefficient of the free end at x=0 measured on aluminium (full black line), estimated with the method described in Sec. 2. It is checked that the theoretical result is experimentally obtained: modulus and phase are constant with respect to frequency and equal to 1 and -π 2 , respectively. It is remarkable to see that the experimental result of Fig. 6 is conform to the theoretical result of Eq. ( 16) on a wide frequency range.

Coherences of the measurements are close to 1 up to 12 kHz and make this estimation reliable. This verification of the theoretical result assesses the measurement method. Fig. 6 also shows the reflection of the free end in the polymer case with the assumed material characteristics of Tab. 1 (full light gray line). The unexpected phase increase suggests an incorrect knowledge of the wavenumber. Indeed, modulus and phase of the reflection coefficient are related to the imaginary and real parts of the wavenumber, respectively. The wavenumber has then to be carefully corrected in order to fit the measured reflection coefficient with the free end theoretical result, in modulus and phase. The fit made on the characteristics of the polymer material consists in increasing by 2 % the real part of the wavenumber calculated with characteristics of Tab. 1, in order to obtain the theoretical reflection coefficient of a free end (E 1 3.8 GPa). Modulus and phase of R with fitted wavenumber (see Fig. 6, dashed dark gray line) are constant and show that the estimation method relies on a precise knowledge of the wavenumber.

However, it can be noticed that the reflection coefficient for the polymer beam behaves poorly after 7 kHz. This can be expected since the structure cannot be considered anymore as a beam above this frequency and is likely to display a two-dimensional plates behaviour, because the wavelength (λ Polymer f =7kHz 0.026 m) neighbours the width of the cross-section, that is

λ Polymer f =7kHz 1.3b. (17) 
Consequently, the estimation based on one-dimensional wave decomposition does not make sense above 7 kHz for the polymer beams. This issue does not appear with the aluminium beam in which the wavelength is much larger than the beam width in the 0-12 kHz range (λ Aluminium f =12kHz

1.7b 0.034 m).

It is also noted that in the two beams, the wavelength is much larger than the beam thickness, justifying the use of the classical Euler-Bernoulli beam theory.

Small singularities appears on the curves, especially for the aluminium beam. This is due to a drop of coherence at anti-resonances. A more damped structure such as the polymer beam shows less coherence drops and thus, a smoother curve for the reflection coefficient. 

Results on ABH beams

Typical results

Fig. 7 shows the estimated reflection coefficient for the ABH extremity in modulus and phase, in aluminium (full black line) and polymer (dashed dark gray line) beams. Compared to the free end, it is very clear that the modulus of R decreases with increased frequency. Values in modulus can be as small as 0.1. Moreover, oscillations can be observed on the modulus. The phase of the reflection coefficient displays a significant additional roll down with frequency.

Qualitative variations of |R| are similar for the aluminium and polymer cases. The modulus of the reflection coefficient is smaller for the polymer beam, showing that the ABH is more efficient in this material. The phase also rolls down faster in the polymer case below 7 kHz.

Phase of the reflection coefficient and equivalent length of the tapered profile

Special attention is paid to the phase of the reflection coefficient. Instead of estimating the reflection coefficient at x = 0 (see Fig. 6) for the uniform aluminium beam (named R Ref ), it is estimated at distance l ABH (see Fig. profile because it is slowed down. An alternative point of view is to consider a uniform profile of larger length instead of the tapered profile, in which the bending wave speed remains constant. This leads to define a correction length as it can be done in acoustic pipes to take into account acoustic radiation at the open end of the pipe [START_REF] Kinsler | Fundamentals of acoustics[END_REF]. Hence, the correction length ∆l provided by the ABH profile corresponds to the length of uniform cross-section that should be added to l ABH in order obtain the same phase. The reflection coefficient of ABH termination can be written as

R ABH = |R ABH |e jk f (l ABH +∆l) , (18) 
where k f is the wavenumber in the beam of uniform cross-section. The argument of Eq. ( 18) yields

Arg(R ABH ) = 2Re{k f }l ABH (1 + ∆l l ABH ), (19) 
where ∆l/l ABH is the dimensionless correction length.

From the experimental results, the calculated correction length is plotted on Fig. 8 for aluminium and polymer ABH beams. The correction length for the aluminium case is remarkably constant on the 0-9 kHz range. The value close to 0.8 m means that a tapered and covered profile of 0.06 m is equivalent to a uniform profile of 0.11 m (i.e. the length is approximately doubled) from the phase viewpoint. This observation even less conclusive in the polymer case which still yields a quasi-constant correction length close to 1 on the 0-4 kHz range. This correction length phenomenon has been theoretically shown by Mironov [START_REF] Mironov | One-dimensional acoustic waves in retarding structures with propagation velocity tending to zero[END_REF] in the case of a retarding tube termination, constituting the acoustical analogy of the ABH termination for flexural 

Comparison with theoretical results

Three models of the literature are used in this section in order to represent the reflection coefficient of an ABH beam extremity.

Wave model based on geometrical acoustics assumptions

The model proposed by Krylov et al. [START_REF] Krylov | Acoustic 'black holes' for flexural waves as effective vibration dampers[END_REF][START_REF] Krylov | New type of vibration dampers utilising the effect of acoustic 'black holes[END_REF] is the first to consider the use of a damping layer in the ABH framework. Considering geometrical acoustics assumptions, the reflection coefficient of the truncated wedge is calculated using the expression

|R(0, ω)| = exp - 0 -l ABH Im(k(x, ω))dx , (20) 
where k(x, ω) is the flexural wavenumber and l ABH the length of truncated profile (see Fig. 2). The reflection coefficient is evaluated at x=0. Note that [START_REF] Krylov | Acoustic 'black holes' for flexural waves as effective vibration dampers[END_REF][START_REF] Krylov | New type of vibration dampers utilising the effect of acoustic 'black holes[END_REF] give only an information about the modulus of the reflection coefficient.

In the proposed approach, attenuating waves are not taken into account. In [START_REF] Krylov | New type of vibration dampers utilising the effect of acoustic 'black holes[END_REF], the author proposes two ways to take the damping layer into account in the expression of the wavenumber, depending on the relative thickness of the layer. We are interested here in the expression of the wavenumber k when the layer is relatively thick compared to the plate (see Eq. [START_REF] Aklouche | Modle de la diffusion des ondes de flexion par un trou noir acoustique bi-dimensionnel[END_REF][START_REF] Lin | A brief survey of transfer matrix techniques with special reference to the analysis of aircraft panels[END_REF] in [START_REF] Krylov | New type of vibration dampers utilising the effect of acoustic 'black holes[END_REF]):

k = 12 1/4 k 1/2 p (1 + ρ 2 h 2 ) 1/4 h 1/2 [1 + e 2 h 2 (3 + 6h 2 + 4h 2 2 )] 1/4
. 1 + j 1 4

η 1 + η 2 e 2 h 2 (3 + 6h 2 + 4h 2 2 ) 1 + e 2 h 2 (3 + 6h 2 + 4h 2 2 ) , (21) 
where h is the thickness of the plate alone, η 1 and η 2 are the loss factors of the plate and the layer, e 2 the ratio of the Young moduli of the layer and the 315 beam, h 2 the ratio of the thicknesses of the layer and the beam, ρ 2 is the ratio of the mass density of the layer and the beam and

k p = ω ρ 1 (1 -ν 2 )/E 1 is
the wavenumber of a plate wave and ω is the circular frequency.

The reflection coefficient of Fig. 9 (dash-dotted line) is plotted using this

Inhomogeneous wave model under plane wave assumption

The ABH extremity can be considered as an heterogeneity in a structural waveguide constituted by the beam. Several techniques exist in the literature to describe the vibratory field and compute a reflection coefficient: transfer matrix method, scattering matrix method, impedance matrix method, etc. [START_REF] Lin | A brief survey of transfer matrix techniques with special reference to the analysis of aircraft panels[END_REF][START_REF] Norris | Reflection and transmission of structural waves at an inter-35 face between doubly curved shells[END_REF][START_REF] Felix | Multimodal analysis of acoustic propagation in three-dimensional bends[END_REF]. If one considers the attenuating waves, impedance matrix method is the most efficient one. Georgiev et al. [START_REF] Georgiev | Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[END_REF] propose a model that takes into account the attenuating part of the wave field to compute the reflection coefficient of an ABH beam extremity using an impedance matrix technique. Following the Euler-Bernoulli assumptions, the cross-section remains undeformed during the vibration. All points of the cross-section are thus in phase, which is the main feature of a plane wave. No transverse variations of the vibration field are considered. In [START_REF] Georgiev | Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[END_REF], the state vector X describing the kinematics and the efforts along the beam respects the state

equation ∂X ∂x = HX, ( 22 
)
where H is a matrix describing the governing equations of the Euler-Bernoulli model. Such formulation allows to develop the non linear Riccati equation for the impedance Z along the beam

∂Z ∂x = -ZH 1 -jωZH 2 Z + H 3 jω + H 4 Z, (23) 
where H 1 to H 4 are the four submatrices of H. A relation between the impedance matrix and a reflection matrix at a given point is then used.

The damping layer effect is taken into account using equivalent material properties, according to [START_REF] Ross | Damping of plate flexural vibrations by means of viscoelastic laminae[END_REF]; the equivalent complex bending stiffness EI * (x) of the beam covered with a layer is expressed (see Eq. (B1) in [START_REF] Georgiev | Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[END_REF])

EI * = E 1 I 1 (1 + jη 1 ) + e 2 h 3 2 (1 + jη 2 ) + 3(1 + h 2 ) 2 e 2 h 2 (1 -η 1 η 2 + j(η 1 + η 2 )) 1 + e 2 h 2 (1 + jη 2 ) , (24) 
where E 1 I 1 is the bending stiffness of the beam alone, η 1 and η 2 are the loss factors of the plate and the layer, e 2 the ratio of the Young moduli of the layer and the beam and h 2 the ratio of the thicknesses of the layer and the beam. Note that Eq. ( 24) yields a wavenumber similar to Eq. ( 21).

The Ricatti equation ( 23) is solved numerically using a fourth-order Runge-Kutta scheme. As it is seen on Fig. 9 (dashed line), this model provides a result that differs from the model of [START_REF] Krylov | New type of vibration dampers utilising the effect of acoustic 'black holes[END_REF] for the reflection coefficient. The geometrical model result is monotonously decreasing, without any oscillations. However, using the same parameters the same order of magnitude is obtained on the reflection coefficient. It can be assumed that the oscillations come from reflections throughout the ABH profile, suggesting that the sufficient smoothness condition [START_REF] Mironov | Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[END_REF] is not applicable in the studied frequency range for this ABH geometry. This subject has been studied by Feurtado et al. [START_REF] Feurtado | A normalized wave number 525 variation parameter for acoustic black hole design[END_REF] who conclude that the sufficient smoothness condition is not verified at frequencies lower than 10 kHz for ABHs with dimensions on the order of several centimeters. An information of phase is given by [START_REF] Georgiev | Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[END_REF], while it is absent in the expression given by [START_REF] Krylov | New type of vibration dampers utilising the effect of acoustic 'black holes[END_REF]. The phase rolls down and can give a hint about the travel time of a wave in the tapered region of the beam, as said in Sec. 3.2.2.

Inhomogeneous plate model

In a previous work [START_REF] Denis | Modal overlap factor of a beam with an acoustic black hole termination[END_REF], the authors consider that the decreasing thickness in the ABH profile makes the beam locally behave like a plate even at low frequencies and investigate two-dimensional behaviour. A plate model with varying thickness along x is used, in which the displacement W (x, y) due to an harmonic excitation at x f of amplitude F and angular frequency ω satisfies the following equation of motion:

∇ 2 (D(x)∇ 2 W (x, y)) -(1 -ν) ∂ 2 D(x) ∂x 2 ∂ 2 W (x, y) ∂y 2 - ρ(x)h(x)ω 2 W (x, y) = F δ(x -x f ), (25) 
where ρ(x) is the mass density, h(x) is the thickness, D(x) is the local complex bending stiffness and ν the Poisson coefficient. The damping layer effect is taken into account in the same way than in Sec. 4.2 and allows to define the equivalent bending stiffness for the plate covered with damping layer. The problem is completely defined by using free boundary conditions on every edge of the plate.

This model is numerically solved from a finite difference scheme. This method uses a spatial mesh that is adapted to the thickness variation, in order to reduce the numerical dispersion. Thus a transformed grid is defined on which the wavelength remains constant spatially. Finally, the discretized problem leads to the matrix problem

(K -ω 2 M)W = F, (26) 
where K and M are respectively the complex stiffness matrix and the mass matrix of the structure, F is the force vector and W is the displacement field.

Using this numerical model, frequency responses are simulated and can be post-processed as described in Sec. 2. The result for the reflection coefficient is plotted on Fig. 9 (full line).

On Fig. 9, plane wave and plate models yield the same results when fed with the same parameters of Tab. 1. Actually, the phase of the reflection coefficient is slightly different; it can be attributed to a small numerical dispersion in the finite difference scheme of the plate model, leading to a difference between theoretical and actual wave speed in the structure. Considering that [START_REF] Denis | Modal overlap factor of a beam with an acoustic black hole termination[END_REF] provides a two-dimensional model and [START_REF] Georgiev | Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[END_REF] a beam model, it can be concluded that no two-dimensional effect is acting in this case: the trapped transverse modes described in [START_REF] Denis | Modal overlap factor of a beam with an acoustic black hole termination[END_REF] thus do not seem to play any role.

Comparisons and discussion

The result of the model of [START_REF] Georgiev | Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[END_REF] for the estimated parameters and the experimental results in the aluminium case are plotted on Fig. 10. The modulus of R is of the same order of magnitude up to 4000 Hz and displays oscillations in the two cases, although it is more irregular in the experimental case.

Above 4000 Hz, the experimental reflection coefficient is slightly smaller in modulus. The phases are very similar in their order of magnitude.

The tapered extremities are usually far from perfect and may present irregularities [START_REF] Bowyer | Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile[END_REF]. Available models do not take into account these imperfections. They may allow the excitation of two-dimensional modes described in [START_REF] Denis | Modal overlap factor of a beam with an acoustic black hole termination[END_REF] by an incident wave and thus cause energy transfer and enhancement the estimation method is validated using comparisons with the theoretical result for a free end, for two different materials. It is observed that the reflection coefficient of the ABH termination decreases with increased frequency and presents oscillations. The phase of the reflection coefficient rolls down, indicating a relatively important travel time in the tapered extremity. It allows to define a correction length for the tapered termination that appears to be quasi-constant with respect to frequency. More detailed study could be done to investigate in depth the links between geometry, material and correction length. A review of the existing models is made in Sec. 4; a comparison of the models between them shows that a beam model and plate model yield the same result but that a geometrical acoustics approach is not adapted to the studied geometry, which may not have a sufficient smoothness. A comparison between the model and the experiment shows a good agreement even if the experimental result is less regular than the result given by the model. It can be concluded that the estimation method proves to be usable and that the available models are satisfying to describe the overall behaviour of R. Besides, modelling the imperfections at the extremity may improve the adequacy to the experiment.

Figure 1 :

 1 Figure 1: (a) Scheme of the experiment. (b) Photo of the experimental setup.

Figure 2 :

 2 Figure 2: Scheme of the ABH profile at beam extremity for (a) aluminium and (b) polymer cases.
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 213 Measurement conditionsTransfer mobility measurements are performed at 21 abscissas 5 mm apart from each other. In the case of the aluminium ABH beam, the closest abscissa is located 0.1 m way from the tapered region. Let A 0 be the point on the neutral axis of the beam at absissa x i (see Fig.4a). Let A l and A r be two

Figure 3 :

 3 Figure 3: Complex variations of (a) the real part and (b) the imaginary part of the Young modulus E of the polymer material.

Figure 4 :

 4 Figure 4: (a) Left, neutral axis and right measurement points A l , A 0 and A r at abscissa x i . (b) Transfer mobility measurement Y (A i , E) (full gray line) , Y (A r , E) (dashed gray line) and Y (A 0 , E) (thick full black line) on the uniform aluminium beam (dB, ref. 1 m.s -1 .N -1 ). Force is applied at x f = 0.58 m, velocity is measured at x i = 0.3 m. (c) Transfer mobility measurement Y (A 0 , E) for uniform (gray line) and ABH (black line) beams made of aluminium (dB, ref. 1 m.s -1 .N -1 ). Force is applied at x f = 0.58 m, velocity is measured at x i = 0.3 m.

Figure 5 :

 5 Figure 5: Scheme of the beam showing the excitation point x f , the N + 1 measurement points x 0 to x N , the attenuating and propagating waves and the boundary condition at x=0.

Figure 6 :

 6 Figure 6: Estimated reflection coefficient R for the free end of uniform beams made of aluminium (full black line), polymer with fitted wavenumber (dashed dark gray line) and polymer with non-fitted wavenumber (full light gray line), in (a) modulus and (b) phase.
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 2 from the edge and plotted on Fig. 7 (full light gray line). It is compared with the phase the reflection coefficient of the aluminium ABH termination (named R ABH ). The phase discrepancies between R Ref and R ABH are studied in order to investigate the role of the ABH thickness profile. The phase of R ABH decreases more than the phase of R Ref , for the same actual termination length. It means that an incident wave spends more time in the tapered

Figure 7 :

 7 Figure 7: Estimated reflection coefficient R for the termination of the aluminium (full black line) and polymer (dashed gray line) ABH beams and reflection coefficient for the reference beam estimated at distance l ABH of the free boundary condition (full light gray line), in (a) modulus and (b) phase.

Figure 8 :

 8 Figure 8: Measured dimensionless correction length ∆l/l ABH due to ABH termination for aluminium (full black line) and polymer (dashed gray line) ABH beams.

Figure 9 :

 9 Figure 9: Reflection coefficient calculated with geometrical model (dash-dotted line), beam waveguide model (dashed line) and plate model (full line) in (a) modulus and (b) phase.

model for an ABH termination with parameters mentioned in Tab. 1. On this figure, R is clearly monotonously decreasing.
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of the ABH effect. Such a phenomenon can contribute to the differences between model and experiment. 

Conclusions
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This paper is dedicated to the experimental measurement of the reflection coefficient of an Acoustic Black Hole termination. In Sec. 2, an experimental method for estimating the reflection coefficient of a beam extremity is presented and applied to beams with Acoustic Black Hole termination. In Sec. [START_REF] Vemula | Attenuation of waves in plates and bars using a graded impedance interface at edges[END_REF]