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1. Introduction X-ray spectral imaging is raising increasing interest in radiology owing to the new clinically relevant contrasts it can deliver. Similarly to dual-energy X-ray imaging, material decomposition algorithms can be used to recover the individual contribution of a pair of constituent materials, e.g. soft tissue and bone (Alvarez and Macovski, 1976). The most promising capability of spectral imaging is often considered to be K-edge imaging that can quantitatively resolve heavy elements such as iodine, gold, bismuth, or gadolinium [START_REF] Feuerlein | [END_REF]Schlomka et al., 2008;Shikhaliev, 2012;Cassol Brunner et al., 2013). When targeted contrast agents carry a payload with a K-edge element, spectral X-ray spectral imaging allows for molecular imaging. It has been shown that the concentration of the constituents of the human body such as bone, water, fat or concentration in contrast agents, can be recovered [START_REF] Schirra | [END_REF]. Prototypes of such systems are already available for small animal imaging but not yet for clinical imaging since there are still some issues related to detectors, exploitation of data, and inversion schemes (Anderson and Butler, 2014).

X-ray spectral imaging has emerged thanks to the development of a new generation of photon counting detectors (PCD) with energy discrimination capabilities (Taguchi and Iwanczyk, 2013). Spectral detectors can classify X-ray photons into dierent energy bins depending on their energy. Current PCDs oer a limited number of output energy bins, e.g. from 2 to 8, which are dened according to some energy thresholds (Taguchi and Iwanczyk, 2013). Although the imaging capabilities of Xray spectral devices are closely related to the energy discrimination capabilities of the detector (Roessl et al., 2011;Potop et al., 2014), it is still not clear how energy discrimination should be characterized. The energy resolution of a PCD is sometimes understood as the width and/or numbers of the energy bins [START_REF] Feuerlein | [END_REF]Lee et al., 2012). The optimal number of bins and their bounds are object-dependent and their determination is still the subject of active research (Cassol et al., 2015(Cassol et al., , 2016)). Moreover, although detectors are expected to count the photons within given energy bins, some photons may be misclassied due to dierent physical phenomena such as uorescence, share sharing, or photon pile-up (Taguchi and Iwanczyk, 2013). This behavior is illustrated by the response of the detector to monochromatic illuminations. So far, the energy resolution of a PCD has been widely characterized considering the full-width-at-half-maximum (FWHM) of the detector response function (Fredenberg et al., 2010;Taguchi et al., 2011;Wang et al., 2011;[START_REF] Saha | Physics and radiobiology of nuclear medicine[END_REF]Macias-Montero et al., 2015). Equivalently, the standard deviation obtained by tting a Gaussian model [START_REF] Jakubek | [END_REF]Myronakis and Darambara, 2011;Myronakis et al., 2012) or an error function (Xu, Persson, Chen, Karlsson, Danielsson, Svensson and Bornefalk, 2013;Xu, Chen, Persson, Karlsson, Danielsson, Svensson and Bornefalk, 2013) was considered. However, the resulting energy resolution depends on the energy of the monochromatic illumination, typically as the square root of the latter (Fredenberg et al., 2010). Since photon-counting detectors aim at measuring simultaneously photons at dierent energies, the aforementioned criteria do not directly translate into image quality.

The goal of the paper is to provide a single criterion that is able to account for the energy resolution of a PCD over a range of incident energies. We propose a new criterion, which is based on the analysis of the energy response function (ERF) of the detector, and demonstrate that it can be easily computed from the Radon transform of the ERF. Further, it is shown that the criterion is closely related to the quality of the material decompositions obtained from the ERFs corresponding to the same detector operating at dierent uxes.

In section 2, we recall the basis of spectral X-ray imaging and material decomposition. In section 3, we introduce the quality criterion and describe our simulations in a thorax phantom. In section 4, the computation of the quality criterion for dierent ERFs is discussed together with the resulting material decompositions.

Theory

Measured signal

Let us consider an object dened inside the spatial domain Ω and characterized at energy E by its attenuation coecient µ(r, E), r ∈ Ω. The object is imaged by a detector that lies in the plane Σ. The number of photons transmitted through the object and reaching the detector at position u ∈ Σ is given by the line integral

n(u, E) = n 0 (E) exp - L µ(r, E) dr (1) 
where n 0 (E) is X-ray the source spectrum, L is the path of integration that depends on the acquisition geometry. The signal s i output in the energy bin [E i , E i+1 ], i = 1 . . . I, at the pixel location u may be modeled by

s i (u) = [Ei,Ei+1]× d(E, E) n(E, u) dE dE (2)
where d(E, E) is a probability density function that accounts for the probability of a photon reaching the detector at energy E to be detected at energy E. In the following it is referred to as energy response function (ERF).

The bounds of the energy bins [E i , E i+1 ] depend on the values chosen for some counter thresholds in the ASIC (Taguchi and Iwanczyk, 2013). In practice, only electronic thresholds (e.g. voltage, current, LSB, or charge) can be set. Therefore, associating the electronic thresholds threshold to energy bounds requires to calibrate the device.

Material decomposition through polynomial calibration

The signals s i (u), i = 1 . . . I, can be exploited to recover chemical composition of the object. The standard approach consists in decomposing the object onto a basis of two materials (Alvarez and Macovski, 1976). In this case, the attenuation of the object is assumed to satisfy

µ(r, E) = ρ 1 (r)τ 1 (E) + ρ 2 (r)τ 2 (E) (3) 
where τ m , m ∈ {1, 2} is the mass attenuation coecient (in cm 2 .g -1 ) of the mth material and ρ m its density in g.cm -3 . Inserting Eq. (3) into Eq. ( 1) :

n(u, E) = n 0 (E) exp [-a 1 (u)τ 1 (E) -a 2 (u)τ 2 (E)] (4) 
where

a m (u) = L ρ m (r) dr, ∀m ∈ {1, 2} (5) 
is the mass of material m projected along L. It has units of g.cm -2 . The material decomposition problem consists in nding the mass vector a = [a 1 , . . . a M ] from the measurement vector s = [s 1 , . . . s I ] for all the pixels of the detector. The solution proposed by Alvarez and Macovski (1976) consists in assuming the following polynomial relationship

a = P(s) ( 6 
)
where P is a second order polynomial. Then, the material decomposition problem is solved by a two-step algorithm.

• Step 1: calibration of P. Measurements from known calibration phantoms are acquired. The polynomial coecients are then tuned to minimize the dierence between the calibration lengths and the lengths modeled by Eq. ( 6). Let P * denote the retained polynomial.

•

Step 2: decomposition. The solution is readily given by

a * = P * (s) (7) 
3. Method

Denition of the quality criterion

The ERF d in Eq. ( 2) is a detector response function that characterizes the detector. It can be obtained experimentally repeating measurements for various incoming monochromatic X-ray beams, which can be achieved at synchrotron sources (Schlomka et al., 2008). It can also be obtained numerically considering Monte-Carlo simulations that take into account the physics of the detectors scintillator (Myronakis and Darambara, 2011;Lee et al., 2012). For a typical ERF (see Fig. 5), a photon incoming at a given energy can be classied in any of the dierent output energy bin. This energy dispersion intrinsically denes the quality of a spectral detector. Three physical phenomena are essentially involved in the detection process. Each translates to one of the three lines that can be observed in the ERFs of Fig. 5. The lower diagonal line, referred to as main ridge in the following, represents the probability to detect photons in the correct energy bin, the upper diagonal line indicates the detection of uorescence photons, and the horizontal line results from charge sharing between adjacent pixels (refer to Taguchi and Iwanczyk 2013 for details).

From the previous observation, we introduce the discrimination ability Q(α) of a detector as the probability of a photon to be classied in the correct energy bin with a precision α (keV). Mathematically,

Q(α) = N (α) N tot (8) 
where N (α) is the number of photons that are detected in the window of width α keV that is centered about the ridge of the detector response and N tot is the total number of detected photons. By denition, the discrimination ability is a normalized quantity ranging from 0 to 1.

Computation of the quality criterion

We propose to compute Q(α) by means of the Radon transform of the detector response. The Radon transform associates to an image its integrals over the dierent lines of the plane. While the Radon transform is extensively used in tomography, it is also used in image analysis to identify lines in images. Since a line in the image domain is mapped to a point in the Radon domain, the Radon transform has been a traditional tool for the identication of lines in images [START_REF] Deans | The radon transform and some of its applications Dover Publications[END_REF]. Here, the Radon transform is used for both identifying the ridge of the detector response and computing the quality criterion itself. We propose the following two-step approach Then, the ridge is mathematically given by the pair of parameters

(θ * , p * ) = arg max (θ,p)∈[0,π)×R R{d}(θ, p) (9) 
where R{•} is the Radon transform of a two-dimensional function along the line L(θ, p) = {(x, y) | p = x cos θ +y sin θ} (Kak and Slaney, 1988, chap. 3). The notations are depicted on Fig. 1.

Computation of the quality criterion in the Radon domain

The quality criterion can now be easily computed in the Radon domain. Indeed, we have

N (α) = p * +∆p(α) p * -∆p(α) Rd(θ * , p)dp (10) 
and

N tot = R Rd(θ * , p)dp. (11) 
where ∆p(α) is the width of the integration window in pixels.

Discretisation and implementation

Let the input and output energy bins j and i related to the input and output energies by E = j∆E and E = i∆E. Computing the discrete Radon transform of the matrix (d i,j ) with d i,j = d(i∆E, j∆E) in a coordinate system having its origin at the center of the detector response, the equation of the ridge is given by

i = j -j 0 tan θ * - p * sin θ * + i 0 (12)
where (i 0 , j 0 ) are the coordinates of the center of the detector response.

In practice, ∆E is unknown and can hardly be determined a priori. An interesting feature of the proposed approach is that the width of the output energy bin can be recovered using the relationship

∆E = tan θ * ∆E ( 13 
)
The demonstration is provided in Appendix A. Inserting Eq. ( 13) into Eq. ( 12), we obtain the following relationship between output and input energies with units of keV

E = E -E 0 - p * ∆E cos θ * + E 0 (14) 
where (E 0 , E 0 ) are the coordinates of the centre of the detector response matrix expressed in keV. Since the Radon transform is performed on a discretised version of the detector response function, it is important to note that ∆p is expressed in pixel. However, it is related to α with units of keV by

∆p = α ∆E cos θ * ( 15 
)
The demonstration is provided in Appendix B.

Numerical experiments

3.3.1. Phantom We considered the 3D thorax phantom that was segmented from a CT scan [START_REF] Kechichian | Image Processing[END_REF]. The attenuation of the object has been computed considering M = 2 material, namely soft tissues and bones. Each voxel has been associated to the mass attenuation of whether soft tissues or bone, according to the segment it belongs to. Mass attenuations were taken from ICRU report 44 (ICRU, 1989). Then, the material density in each voxel was estimated from the CT images. As given in Eq. ( 5), projected masses for each material are nally computed integrating densities along lines chosen perpendicular to the coronal plane. The resulting projected masses are illustrated on Fig. 2.

Synthetic data

The source spectrum n 0 (E) was simulated by the SpekCalc program (Poludniowski, 2007;Poludniowski et al., 2009) setting the anode angle to 12 • and inherent ltration to 1.2 mm Al. Dierent tube potentials were considered, resulting in a peak energy E max ranging from 70 keV to 120keV. The resulting spectra are depicted on Fig. 3. Dierent detector responses were simulated at increasing Xray photon ux, considering photons with energy ranging from 10 to 140 keV [START_REF] Gorecki | International Commission on Radiation Units and Measurements (ICRU)[END_REF]. Measurements were corrupted by Poisson noise assuming 10 7 X-ray photons reached each pixel of the detector, which corresponds for a pixel of 1.7mm 2 to a dose before patient of 396 µGy. We considered dual-energy measurements, i.e. I = 2 energy-dependent images were computed. Low-energy measurements are obtained summing up photons in the energy bin [E 1 , E 2 ] and high-energy measurements in the energy bin [E 2 , E 3 ], with E 1 = 10 keV and E 3 = E max . Determining the best value for E 2 is a multi-parameter problem that typically depends on the images to be decomposed, i.e. the phantom itself. Here, material decompositions have been performed for E 2 in the range [10, E max ] keV and the CNR of the decomposed bone image is used to determined the best E 2 that we denote E * 2 . The material decomposition was performed by means of polynomial calibration, as described in section 2.2, imposing the recovery of M = 2 materials, namely soft tissues and bone.

Figure of merit

To evaluate the quality of the decomposed images, the contrast-to-noise (CNR) ratio was considered. This performance metric is based on the denition of two regions in the image, namely the region of interest (ROI) Σ roi and background region (BR) Σ back . The CNR is dened by

CNR = |µ roi -µ back | (σ 2 roi + σ 2 back ) 1 2 (16) 
where µ roi (resp. µ back ) indicated the mean value of the recovered masses in the ROI (resp. BR) and σ roi (resp. σ back ) the standard deviation of the recovered masses in the ROI (resp. BR).

In practice, the ROI includes all the bone pixels and the BR consists of the surrounding pixels. The BR is easily obtained by subtracting the ROI to dilated version of ROI. The size of the structuring element for the dilation is chosen in order 16). The regions are indicated in white.

to get a number of pixels in the BR that is as close as possible to the number of pixels in the ROI. Both ROI and BR are depicted on Fig. 4.

Results and discussion

Computation of Q α

The detector response function of the same detector has been simulated at increasing ux ranging from 0.5 to 150 µGy.s -1 . The detector response at the 4 lowest uxes is displayed on Fig. 5. It can be observed that the higher the ux, the more photons are spread over high energies. This is a well known issue in spectral X-ray imaging known as photon pile-up. If two photons hit the detector in a short period of time, the detector may be unable to treat the two events independently, which results in the detection of whether one photon with an overestimated energy or two photons with erroneous energies.

The discrimination ability Q has been computed for all the 6 ERFs. The main ridge recovered by our method is superimposed on the ERFs displayed one Fig. 5 together with the energy window for a precision α of 10 keV. There are two main diculties in extracting the main ridge. First, the horizontal line due to charge sharing may correspond to large coecients in the Radon domain. The main ridge being expected to be at angles lower than 90 • , the computation of the Radon transform was restricted to θ ∈ [5, 85] • . Second, the Radon transform may show local maxima close in value to the global one, in particular for ERFs simulated at high ux. This is a numerical problem that is mainly due to the sampling of the discrete Radon transform. It can be alleviated by smoothing the Radon transform along p with a moving average lter. The length of the lter is chosen to be β ∆E cos θ, which is equivalent to recovering a ridge of width β. In this work we chose β = 1 keV. The matlab code we developed is provided as supplementary material. It can be observed on Fig. 5 that the main ridge was successfully recovered in all cases with our method. The output bin width ∆E is provided in Table 1. The higher the ux, the larger ∆E, which is consistent with the energy spreading eect of photon pile-up.

Fig. 6 plots the discrimination ability Q as a function of the integration window ux µGy.s -1 0.5 1. Some metrics for a detector response simulated at dierent uxes α. As expected, Q is monotonically increasing with α in the range [0, 1]. It is observed that the higher the ux, the lower the discrimination ability whatever the integration window. Hence, the Q criterion is found to be a good metric metrics for the energy spreading due to the photon pile-up that can be visually observed on Fig. 5. Finally, we compute the integration window that corresponds to a discrimination ability of 50%. It is reported in Table 1 where it is denoted α 0.5 . It increases from about 13 keV to 27 keV increasing the ux by a factor 300. We suggest α 0.5 as an indicator of the spectral resolution of a detector.

Relation between the discrimination ability and the material decomposition quality

In order to verify that Q(α) can be used as a metric of the performance of a spectral detector, we performed material decomposition from the same simulated data set considering the six previous detector responses. The estimated decompositions of bone and soft tissue are illustrated on Fig. 7 showing qualitatively the degradation of the results with the ux. The corresponding CNR are provided in Table 1. As expected, it is observed that the higher the ux, the lower the CNR of the material decomposition. The decomposed images obtained from data measured at 0.5, 1.5 and 5 µGy.s -1 were very similar (compare the CNRs for instance) and were not all displayed. Note that the reported CNRs have been obtained from the dual-energy data set corresponding to the best energy binning. The optimum energy threshold is provided in Table 1 in both bin numbers (see i *

2 ) and keV units (see E * 2 ). Interestingly, it can be noted that the threshold expressed in keV is almost constant whatever the ERF, which shows the interest of the energy calibration feature of our method.

Conclusion

We introduced a criterion that accounts for the energy selectivity of X-ray spectral detectors. It was shown that this criterion correlates well with the material decomposition capabilities of a detector. Our approach to compute the discrimination ability is two-step. The rst step consists in calibrating the energy response function of the detector, which proved useful for xing the thresholds of our multi-energy acquisitions.

Here, the computation of the discrimination ability was used to assess the impact of photon pile-up for a given detector architecture. However, we believe that this criterion could be also be of interest in the comparison of detector architectures, e.g. sandwich vs monolayer. 
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 1 Figure 1. Figure of principle and notations for the computation of the Qα criterion
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 2 Figure 2. Numerical phantom. Mass attenuation of the projected mass of soft tissue (left) and bone (right) in units of g.cm 2
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 3 Figure 3. Source spectra used for all the simulations.
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 4 Figure 4. (a) Region of interest (ROI) and (b) background region (BR) used for the computation of the CNR as dened by Eq. (16). The regions are indicated in white.
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 5 Figure 5. Energy response function (ERF) of the same detector operating at increasing ux (from top left to bottom right). Incoming photons with energy ranging from 10 to 140 keV are considered. The main ridge recovered by our method is indicated by the full line, the integration window for α = 10 keV by the dotted line.
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 6 Figure 6. Evolution of the Q criterion as function of the precision α for dierent detector responses simulated at increasing ux (from top to bottom).

Figure 8 .

 8 Figure 8. CNR for DRM at various uxes. CNR is plotted against the energy bin index (left) and the output energy obtained thanks to Eq. (13) (right).
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Appendix A. Width of the output energy bin

The main ridge L(θ * , p * ) is used to 'calibrate' the output energy step ∆E, i.e. ∆E is chosen such that an increase of the input energy is mapped to the same increase of Appendix B. Length of the integration window We start projecting the integration window ∆p onto the input energy bin axis (refer to Fig. 1