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Abstract. Thanks to recent developments in photon counting detectors, X-Ray
spectral imaging has received increasing attention. This technique permits the
quanti�cation of the chemical components in an object. The energy selectivity
of the detector is known to have a strong impact in the material decomposition
capabilities of an imaging device. Although spectral imaging devices are widely
used in conjunction to polychromatic illuminations, detectors are typically
characterized for one or few incident energies. To the best of our knowledge,
no criterion for the overall energy resolution of a photon counting detector is
available yet. In this paper, we propose a criterion for energy selectivity over a
range of incident energies. Our criterion is based on the analysis of the response
of the detector to multiple monochromatic illuminations. In particular, it can be
easily computed from the Radon transform of the energy response function of the
detector. After a simulation study, we show how this criterion is related to the
quality of material decompositions obtained from photon counting measurements.

Keywords: Spectral X-ray imaging, photon counting detectors, energy resolution,
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1. Introduction

X-ray spectral imaging is raising increasing interest in radiology owing to the new
clinically relevant contrasts it can deliver. Similarly to dual-energy X-ray imaging,
material decomposition algorithms can be used to recover the individual contribution
of a pair of constituent materials, e.g. soft tissue and bone (Alvarez and Macovski,
1976). The most promising capability of spectral imaging is often considered to be
K-edge imaging that can quantitatively resolve heavy elements such as iodine, gold,
bismuth, or gadolinium (Feuerlein et al., 2008; Schlomka et al., 2008; Shikhaliev, 2012;
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Cassol Brunner et al., 2013). When targeted contrast agents carry a payload with a
K-edge element, spectral X-ray spectral imaging allows for molecular imaging. It has
been shown that the concentration of the constituents of the human body such as
bone, water, fat or concentration in contrast agents, can be recovered (Schirra et al.,
2014). Prototypes of such systems are already available for small animal imaging
but not yet for clinical imaging since there are still some issues related to detectors,
exploitation of data, and inversion schemes (Anderson and Butler, 2014).

X-ray spectral imaging has emerged thanks to the development of a new
generation of photon counting detectors (PCD) with energy discrimination capabilities
(Taguchi and Iwanczyk, 2013). Spectral detectors can classify X-ray photons into
di�erent energy bins depending on their energy. Current PCDs o�er a limited number
of output energy bins, e.g. from 2 to 8, which are de�ned according to some energy
thresholds (Taguchi and Iwanczyk, 2013). Although the imaging capabilities of X-
ray spectral devices are closely related to the energy discrimination capabilities of
the detector (Roessl et al., 2011; Potop et al., 2014), it is still not clear how energy
discrimination should be characterized. The energy resolution of a PCD is sometimes
understood as the width and/or numbers of the energy bins (Feuerlein et al., 2008; Lee
et al., 2012). The optimal number of bins and their bounds are object-dependent and
their determination is still the subject of active research (Cassol et al., 2015, 2016).
Moreover, although detectors are expected to count the photons within given energy
bins, some photons may be misclassi�ed due to di�erent physical phenomena such
as �uorescence, share sharing, or photon pile-up (Taguchi and Iwanczyk, 2013). This
behavior is illustrated by the response of the detector to monochromatic illuminations.
So far, the energy resolution of a PCD has been widely characterized considering the
full-width-at-half-maximum (FWHM) of the detector response function (Fredenberg
et al., 2010; Taguchi et al., 2011; Wang et al., 2011; Saha, 2012; Macias-Montero et al.,
2015). Equivalently, the standard deviation obtained by �tting a Gaussian model
(Jakubek, 2011; Myronakis and Darambara, 2011; Myronakis et al., 2012) or an error
function (Xu, Persson, Chen, Karlsson, Danielsson, Svensson and Bornefalk, 2013; Xu,
Chen, Persson, Karlsson, Danielsson, Svensson and Bornefalk, 2013) was considered.
However, the resulting energy resolution depends on the energy of the monochromatic
illumination, typically as the square root of the latter (Fredenberg et al., 2010).
Since photon-counting detectors aim at measuring simultaneously photons at di�erent
energies, the aforementioned criteria do not directly translate into image quality.

The goal of the paper is to provide a single criterion that is able to account for
the energy resolution of a PCD over a range of incident energies. We propose a new
criterion, which is based on the analysis of the energy response function (ERF) of the
detector, and demonstrate that it can be easily computed from the Radon transform
of the ERF. Further, it is shown that the criterion is closely related to the quality
of the material decompositions obtained from the ERFs corresponding to the same
detector operating at di�erent �uxes.

In section 2, we recall the basis of spectral X-ray imaging and material
decomposition. In section 3, we introduce the quality criterion and describe our
simulations in a thorax phantom. In section 4, the computation of the quality criterion
for di�erent ERFs is discussed together with the resulting material decompositions.
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2. Theory

2.1. Measured signal

Let us consider an object de�ned inside the spatial domain Ω and characterized at
energy E by its attenuation coe�cient µ(r, E), r ∈ Ω. The object is imaged by a
detector that lies in the plane Σ. The number of photons transmitted through the
object and reaching the detector at position u ∈ Σ is given by the line integral

n(u, E) = n0(E) exp

(
−
∫
L
µ(r, E) dr

)
(1)

where n0(E) is X-ray the source spectrum, L is the path of integration that depends on
the acquisition geometry. The signal si output in the energy bin [Ei, Ei+1], i = 1 . . . I,
at the pixel location u may be modeled by

si(u) =

∫∫
[Ei,Ei+1]×<

d(E , E)n(E,u) dE dE (2)

where d(E , E) is a probability density function that accounts for the probability of a
photon reaching the detector at energy E to be detected at energy E . In the following
it is referred to as energy response function (ERF).

The bounds of the energy bins [Ei, Ei+1] depend on the values chosen for some
counter thresholds in the ASIC (Taguchi and Iwanczyk, 2013). In practice, only
electronic thresholds (e.g. voltage, current, LSB, or charge) can be set. Therefore,
associating the electronic thresholds threshold to energy bounds requires to calibrate
the device.

2.2. Material decomposition through polynomial calibration

The signals si(u), i = 1 . . . I, can be exploited to recover chemical composition of the
object. The standard approach consists in decomposing the object onto a basis of two
materials (Alvarez and Macovski, 1976). In this case, the attenuation of the object is
assumed to satisfy

µ(r, E) = ρ1(r)τ1(E) + ρ2(r)τ2(E) (3)

where τm, m ∈ {1, 2} is the mass attenuation coe�cient (in cm2.g−1) of the mth
material and ρm its density in g.cm−3. Inserting Eq. (3) into Eq. (1) :

n(u, E) = n0(E) exp [−a1(u)τ1(E)− a2(u)τ2(E)] (4)

where

am(u) =

∫
L
ρm(r) dr, ∀m ∈ {1, 2} (5)

is the mass of material m projected along L. It has units of g.cm−2.
The material decomposition problem consists in �nding the mass vector a =

[a1, . . . aM ]> from the measurement vector s = [s1, . . . sI ]
> for all the pixels of the

detector. The solution proposed by Alvarez and Macovski (1976) consists in assuming
the following polynomial relationship

a = P(s) (6)
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where P is a second order polynomial. Then, the material decomposition problem is
solved by a two-step algorithm.

• Step 1: calibration of P. Measurements from known calibration phantoms are
acquired. The polynomial coe�cients are then tuned to minimize the di�erence
between the calibration lengths and the lengths modeled by Eq. (6). Let P∗
denote the retained polynomial.

• Step 2: decomposition. The solution is readily given by

a∗ = P∗(s) (7)

3. Method

3.1. De�nition of the quality criterion

The ERF d in Eq. (2) is a detector response function that characterizes the
detector. It can be obtained experimentally repeating measurements for various
incoming monochromatic X-ray beams, which can be achieved at synchrotron sources
(Schlomka et al., 2008). It can also be obtained numerically considering Monte-Carlo
simulations that take into account the physics of the detectors scintillator (Myronakis
and Darambara, 2011; Lee et al., 2012). For a typical ERF (see Fig. 5), a photon
incoming at a given energy can be classi�ed in any of the di�erent output energy bin.
This energy dispersion intrinsically de�nes the quality of a spectral detector. Three
physical phenomena are essentially involved in the detection process. Each translates
to one of the three lines that can be observed in the ERFs of Fig. 5. The lower
diagonal line, referred to as main ridge in the following, represents the probability
to detect photons in the correct energy bin, the upper diagonal line indicates the
detection of �uorescence photons, and the horizontal line results from charge sharing
between adjacent pixels (refer to Taguchi and Iwanczyk 2013 for details).

From the previous observation, we introduce the discrimination ability Q(α) of a
detector as the probability of a photon to be classi�ed in the correct energy bin with
a precision α (keV). Mathematically,

Q(α) =
N(α)

Ntot
(8)

where N(α) is the number of photons that are detected in the window of width α keV
that is centered about the ridge of the detector response and Ntot is the total number
of detected photons. By de�nition, the discrimination ability is a normalized quantity
ranging from 0 to 1.

3.2. Computation of the quality criterion

We propose to compute Q(α) by means of the Radon transform of the detector
response. The Radon transform associates to an image its integrals over the di�erent
lines of the plane. While the Radon transform is extensively used in tomography, it
is also used in image analysis to identify lines in images. Since a line in the image
domain is mapped to a point in the Radon domain, the Radon transform has been
a traditional tool for the identi�cation of lines in images (Deans, 2007). Here, the
Radon transform is used for both identifying the ridge of the detector response and
computing the quality criterion itself. We propose the following two-step approach
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Figure 1. Figure of principle and notations for the computation of the Qα

criterion

3.2.1. Extraction of the main ridge We assume that the largest coe�cient in the
Radon transform of the detector response maps to the main ridge of the detector
response. Then, the ridge is mathematically given by the pair of parameters

(θ∗, p∗) = arg max
(θ,p)∈[0,π)×R

R{d}(θ, p) (9)

where R{·} is the Radon transform of a two-dimensional function along the line
L(θ, p) = {(x, y) | p = x cos θ+y sin θ} (Kak and Slaney, 1988, chap. 3). The notations
are depicted on Fig. 1.

3.2.2. Computation of the quality criterion in the Radon domain The quality
criterion can now be easily computed in the Radon domain. Indeed, we have

N(α) =

∫ p∗+∆p(α)

p∗−∆p(α)

Rd(θ∗, p)dp (10)

and

Ntot =

∫
R

Rd(θ∗, p)dp. (11)

where ∆p(α) is the width of the integration window in pixels.

3.2.3. Discretisation and implementation Let the input and output energy bins j and
i related to the input and output energies by E = j∆E and E = i∆E . Computing the
discrete Radon transform of the matrix (di,j) with di,j = d(i∆E , j∆E) in a coordinate
system having its origin at the center of the detector response, the equation of the
ridge is given by

i =
j − j0
tan θ∗

− p∗

sin θ∗
+ i0 (12)

where (i0, j0) are the coordinates of the center of the detector response.
In practice, ∆E is unknown and can hardly be determined a priori. An interesting

feature of the proposed approach is that the width of the output energy bin can be
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Figure 2. Numerical phantom. Mass attenuation of the projected mass of soft
tissue (left) and bone (right) in units of g.cm2

recovered using the relationship

∆E = tan θ∗∆E (13)

The demonstration is provided in Appendix A. Inserting Eq. (13) into Eq. (12), we
obtain the following relationship between output and input energies with units of keV

E = E − E0 −
p∗∆E

cos θ∗
+ E0 (14)

where (E0, E0) are the coordinates of the centre of the detector response matrix
expressed in keV.

Since the Radon transform is performed on a discretised version of the detector
response function, it is important to note that ∆p is expressed in pixel. However, it
is related to α with units of keV by

∆p =
α

∆E
cos θ∗ (15)

The demonstration is provided in Appendix B.

3.3. Numerical experiments

3.3.1. Phantom We considered the 3D thorax phantom that was segmented from a
CT scan (Kechichian et al., 2013). The attenuation of the object has been computed
considering M = 2 material, namely soft tissues and bones. Each voxel has been
associated to the mass attenuation of whether soft tissues or bone, according to the
segment it belongs to. Mass attenuations were taken from ICRU report 44 (ICRU,
1989). Then, the material density in each voxel was estimated from the CT images. As
given in Eq. (5), projected masses for each material are �nally computed integrating
densities along lines chosen perpendicular to the coronal plane. The resulting projected
masses are illustrated on Fig. 2.

3.3.2. Synthetic data The source spectrum n0(E) was simulated by the SpekCalc
program (Poludniowski, 2007; Poludniowski et al., 2009) setting the anode angle to
12◦ and inherent �ltration to 1.2 mm Al. Di�erent tube potentials were considered,
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Figure 3. Source spectra used for all the simulations.

resulting in a peak energy Emax ranging from 70 keV to 120keV. The resulting spectra
are depicted on Fig. 3. Di�erent detector responses were simulated at increasing X-
ray photon �ux, considering photons with energy ranging from 10 to 140 keV (Gorecki
et al., 2013). Measurements were corrupted by Poisson noise assuming 107 X-ray
photons reached each pixel of the detector, which corresponds for a pixel of 1.7mm2 to
a dose before patient of 396 µGy. We considered dual-energy measurements, i.e. I = 2
energy-dependent images were computed. Low-energy measurements are obtained
summing up photons in the energy bin [E1, E2] and high-energy measurements in the
energy bin [E2, E3], with E1 = 10 keV and E3 = Emax. Determining the best value for E2
is a multi-parameter problem that typically depends on the images to be decomposed,
i.e. the phantom itself. Here, material decompositions have been performed for E2
in the range [10, Emax] keV and the CNR of the decomposed bone image is used to
determined the best E2 that we denote E∗2 . The material decomposition was performed
by means of polynomial calibration, as described in section 2.2, imposing the recovery
of M = 2 materials, namely soft tissues and bone.

3.4. Figure of merit

To evaluate the quality of the decomposed images, the contrast-to-noise (CNR) ratio
was considered. This performance metric is based on the de�nition of two regions
in the image, namely the region of interest (ROI) Σroi and background region (BR)
Σback. The CNR is de�ned by

CNR =
|µroi − µback|

(σ2
roi + σ2

back)
1
2

(16)

where µroi (resp. µback) indicated the mean value of the recovered masses in the ROI
(resp. BR) and σroi (resp. σback) the standard deviation of the recovered masses in
the ROI (resp. BR).

In practice, the ROI includes all the bone pixels and the BR consists of the
surrounding pixels. The BR is easily obtained by subtracting the ROI to dilated
version of ROI. The size of the structuring element for the dilation is chosen in order
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Figure 4. (a) Region of interest (ROI) and (b) background region (BR) used for
the computation of the CNR as de�ned by Eq. (16). The regions are indicated
in white.

to get a number of pixels in the BR that is as close as possible to the number of pixels
in the ROI. Both ROI and BR are depicted on Fig. 4.

4. Results and discussion

4.1. Computation of Qα

The detector response function of the same detector has been simulated at increasing
�ux ranging from 0.5 to 150 µGy.s−1. The detector response at the 4 lowest �uxes is
displayed on Fig. 5. It can be observed that the higher the �ux, the more photons
are spread over high energies. This is a well known issue in spectral X-ray imaging
known as photon pile-up. If two photons hit the detector in a short period of time,
the detector may be unable to treat the two events independently, which results in the
detection of whether one photon with an overestimated energy or two photons with
erroneous energies.

The discrimination ability Q has been computed for all the 6 ERFs. The main
ridge recovered by our method is superimposed on the ERFs displayed one Fig. 5
together with the energy window for a precision α of 10 keV. There are two main
di�culties in extracting the main ridge. First, the horizontal line due to charge sharing
may correspond to large coe�cients in the Radon domain. The main ridge being
expected to be at angles lower than 90◦, the computation of the Radon transform was
restricted to θ ∈ [5, 85]◦. Second, the Radon transform may show local maxima close
in value to the global one, in particular for ERFs simulated at high �ux. This is a
numerical problem that is mainly due to the sampling of the discrete Radon transform.
It can be alleviated by smoothing the Radon transform along p with a moving average
�lter. The length of the �lter is chosen to be β

∆E cos θ, which is equivalent to recovering
a ridge of width β. In this work we chose β = 1 keV. The matlab code we developed
is provided as supplementary material. It can be observed on Fig. 5 that the main
ridge was successfully recovered in all cases with our method.



A Radon-based criterion for photon counting energy resolution 9

Figure 5. Energy response function (ERF) of the same detector operating at
increasing �ux (from top left to bottom right). Incoming photons with energy
ranging from 10 to 140 keV are considered. The main ridge recovered by our
method is indicated by the full line, the integration window for α = 10 keV by
the dotted line.

Figure 6. Evolution of the Q criterion as function of the precision α for di�erent
detector responses simulated at increasing �ux (from top to bottom).

The output bin width ∆E is provided in Table 1. The higher the �ux, the larger
∆E , which is consistent with the energy spreading e�ect of photon pile-up.

Fig. 6 plots the discrimination ability Q as a function of the integration window
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�ux µGy.s−1 0.5 1.5 5 15 50 150

∆E keV 3.27 3.38 2.61 2.61 1.96 0.85
Q(10 keV) % 41.0 40.2 37.8 33.1 26.3 25.0
α0.5 keV 13.2 11.7 18.4 20.4 23.8 27.4

i∗2 - 15 16 16 18 22 50
E∗2 keV 50.3 50.0 52.4 54.4 51.0 51.7
CNR - 1.21 1.21 1.20 1.16 1.02 0.57

Table 1. Some metrics for a detector response simulated at di�erent �uxes

α. As expected, Q is monotonically increasing with α in the range [0, 1]. It is observed
that the higher the �ux, the lower the discrimination ability whatever the integration
window. Hence, the Q criterion is found to be a good metric metrics for the energy
spreading due to the photon pile-up that can be visually observed on Fig. 5.

Finally, we compute the integration window that corresponds to a discrimination
ability of 50%. It is reported in Table 1 where it is denoted α0.5. It increases from
about 13 keV to 27 keV increasing the �ux by a factor 300. We suggest α0.5 as an
indicator of the spectral resolution of a detector.

4.2. Relation between the discrimination ability and the material decomposition
quality

In order to verify that Q(α) can be used as a metric of the performance of a spectral
detector, we performed material decomposition from the same simulated data set
considering the six previous detector responses. The estimated decompositions of
bone and soft tissue are illustrated on Fig. 7 showing qualitatively the degradation
of the results with the �ux. The corresponding CNR are provided in Table 1. As
expected, it is observed that the higher the �ux, the lower the CNR of the material
decomposition. The decomposed images obtained from data measured at 0.5, 1.5
and 5 µGy.s−1 were very similar (compare the CNRs for instance) and were not all
displayed. Note that the reported CNRs have been obtained from the dual-energy
data set corresponding to the best energy binning. The optimum energy threshold is
provided in Table 1 in both bin numbers (see i∗2) and keV units (see E∗2 ). Interestingly,
it can be noted that the threshold expressed in keV is almost constant whatever the
ERF, which shows the interest of the energy calibration feature of our method.

5. Conclusion

We introduced a criterion that accounts for the energy selectivity of X-ray spectral
detectors. It was shown that this criterion correlates well with the material
decomposition capabilities of a detector. Our approach to compute the discrimination
ability is two-step. The �rst step consists in calibrating the energy response function
of the detector, which proved useful for �xing the thresholds of our multi-energy
acquisitions.

Here, the computation of the discrimination ability was used to assess the impact
of photon pile-up for a given detector architecture. However, we believe that this
criterion could be also be of interest in the comparison of detector architectures, e.g.
sandwich vs monolayer.
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Figure 7. Material decomposition results for detector response simulated at
increasing �ux (from top to bottom). The recovered mass of soft tissue is displayed
on the left, the recovered mass of bone on the right
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Appendix A. Width of the output energy bin

The main ridge L(θ∗, p∗) is used to 'calibrate' the output energy step ∆E , i.e. ∆E is
chosen such that an increase of the input energy is mapped to the same increase of
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Figure 8. CNR for DRM at various �uxes. CNR is plotted against the energy
bin index (left) and the output energy obtained thanks to Eq. (13) (right).

the output energy. Mathematically, we chose

∆i∆E = ∆j∆E, ∀(i, j) ∈ L(θ∗, p∗) (A.1)

where ∆j (resp. ∆i) denotes an increase of the number of input (resp. output) energy
bins. Any pair of indices (i, j) belonging to the main ridge satisfying Eq. (12), we
have

∆j = ∆i tan θ∗, (A.2)

Inserting Eq. (A.2) into Eq. (A.1) leads to

∆E = ∆E tan θ∗. (A.3)

Appendix B. Length of the integration window

We start projecting the integration window ∆p onto the input energy bin axis (refer
to Fig. 1). We have

∆p = ∆j cos θ∗ (B.1)

where ∆j is the corresponding number of input bins. Note that ∆j has no unit. The
corresponding width in keV is ∆j∆E. By de�nition of α, we impose

α = ∆j∆E (B.2)

Plugging the previous equation into Eq. (B.1), we �nally obtain

∆p =
α

∆E
cos θ∗ (B.3)
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