
HAL Id: hal-01288098
https://hal.science/hal-01288098

Submitted on 14 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engineering Adaptive Fault-Tolerance Mechanisms for
Resilient Computing on ROS

Michaël Lauer, Matthieu Amy, Jean-Charles Fabre, Matthieu Roy, William
Excoffon, Miruna Stoicescu

To cite this version:
Michaël Lauer, Matthieu Amy, Jean-Charles Fabre, Matthieu Roy, William Excoffon, et al.. Engineer-
ing Adaptive Fault-Tolerance Mechanisms for Resilient Computing on ROS. HASE 2016 - IEEE 17th
International Symposium on High Assurance Systems Engineering Symposium, Jan 2016, Orlando,
FL, United States. pp.94-101, �10.1109/HASE.2016.30�. �hal-01288098�

https://hal.science/hal-01288098
https://hal.archives-ouvertes.fr

 1

Engineering Adaptive Fault-Tolerance
Mechanisms for Resilient Computing on ROS

Michael Lauer, Matthieu Amy, Jean-Charles Fabre, Matthieu Roy, William Excoffon, and Miruna Stoicescu1

LAAS-CNRS, Université de Toulouse,
CNRS, INPT, UPS, Toulouse, France

1Presently with ESOC/ESA, Darmstadt, Germany,

on behalf of GMV

Abstract—Systems are expected to evolve during their service

life in order to cope with changes of various natures, ranging
from fluctuations in available resources to additional features
requested by users. For dependable embedded systems, the
challenge is even greater, as evolution must not impair
dependability attributes. Resilient computing implies
maintaining dependability properties when facing changes.
Resilience encompasses several aspects, among which
evolvability, i.e., the capacity of a system to evolve during its
service life. In this paper, we discuss the evolution of systems with
respect to their dependability mechanisms, and show how such
mechanisms can evolve accordingly. From a component-based
approach that enables to clarify the concepts, the process and the
techniques to be used to address resilient computing, in
particular regarding the adaptation of fault tolerance (or safety)
mechanisms, we show how Adaptive Fault Tolerance (AFT) can
be implemented with ROS. Beyond implementation, we draw the
lessons learned from this work and discuss the limits of this
runtime support to implement such resilient computing features
in embedded systems.

I. INTRODUCTION
Evolution during service life is inevitable in many systems

today. A system that remains dependable when facing changes
(new threats, change in failures modes, updates of applications)
is called resilient. The persistence of dependability when facing
changes is called resilience [1]. Resilient computing
encompasses several aspects, among which evolvability, i.e.,
the capacity of a system to evolve during its service life. On the
other hand, dependability relies on fault-tolerant computing at
runtime, enabled by fault tolerance mechanisms (FTMs)
attached to the application. As such, one of the key challenges
of resilient computing is the capacity to adapt the FTMs
attached to an application during its operational life.

One important aspect of a dependable system design is the
definition of the fault model. This fault model considers both
hardware and software faults may lead to failure modes that
impair the correct behavior of the system. In critical systems,
such failure modes may violate safety properties. The role of
the safety analysis (e.g. using the FMECA method) is to
identify the failure mode and then define the safety
mechanisms to prevent the violation of safety properties. Such
safety mechanisms rely on basic error detection and recovery
mechanisms, namely fault tolerance techniques following
Laprie's terminology. Such safety mechanisms are based on
Fault Tolerance Design Patterns that can be combined together.
The safety analysis is often done a priori according to the fault
model that had been defined.

During the operational life of the system, several situation
may occur. New threats may lead to revise the fault model
(electromagnetic perturbations, obsolescence of HW
components, software aging, etc.). A revision of the fault
model has consequences on the fault tolerance mechanisms to
be used. In other words, the validity of the fault tolerance
mechanisms of safety mechanisms (whatever you want to call
them) depends on the representativeness of the fault model. In
a certain sense, a bad choice of the fault model may lead to pay
for useless mechanisms in both normal operation and erroneous
situations. This has an obvious side effect on the performance
and on the dependability measures (reliability, dependability)
respectively. This means that a change in the definition of the
fault model implies a change in the fault tolerance mechanisms.

Beyond the fault model, there are other sources of changes.

Resources changes may also impair some safety
mechanisms that rely on hardware resources. A typical
example is the lost of processing units, but simply a loss in
networks bandwidth may invalidate some fault tolerance
mechanisms from a timing viewpoint.

Application changes are more and more frequent during the
operational lifetime. This is obvious for many conventional
applications (e.g. mobile phones) but it is becoming also
needed for more critical embedded systems. This is the case for
long living systems like space or avionics systems, but also in
the automotive domain, not only for maintenance purposes but
also of commercial reasons. The evolution of the specification
during the lifetime of a system is a fact; it follows the evolution
of the user requirements or needs. The notion of versioning
(updates) or the loading of additional features (upgrades) may
lead to change the assumptions on top of which the
implementation of FT mechanisms rely. Such change implies
revisiting the FMECA spreadsheets but also the
implementation of the FT mechanisms. Some FT mechanisms
rely on strong assumptions regarding the behavior of the
application, and everybody knows in the dependability
community the importance of the coverage of such
assumptions [16].

As a conclusion, the safety mechanism must remain
compliant with all assumptions in terms of fault model,
resources and application characteristics during the whole
lifetime of the system. Their efficiency relies on this statement.

In this paper, we first motivate the issue and then report on
an approach taking advantage of Component Based Software
Engineering technologies for tackling this crucial aspect of

 2

resilient computing, namely the adaptation of fault tolerance
mechanisms. We defined a minimal runtime support for
implementing adaptive fault tolerance. The second part of this
paper shows how this minimal runtime support can be
implemented on ROS, presently used in many applications
(robotics applications, automotive applications like ADAS, or
military applications). We illustrate the mapping of ideal
components to ROS components and give implementation
details of a fault tolerance design pattern that is adaptive at
runtime. We finally draw the lessons learnt from our first
experiments, discuss the limits of the exercise, and identify
some promising directions.

In Section II we present the problem statement, and then
summarize our CBSE-based approach for adaptive fault
tolerance in Section III. A full account of this approach can be
found in [13]. The mapping of this approach to ROS is
described in Section IV. The lessons learnt are given in Section
V before concluding.

II. PROBLEM STATEMENT
The need for Adaptive Fault Tolerance (AFT) rising from

the dynamically changing fault tolerance requirements and
from the inefficiency of allocating a fixed amount of resources
to FTMs throughout the service life of a system was stated in
[2]. AFT is gaining more importance with the increasing
concern for lowering the amount of energy consumed by
cyber-physical systems and the amount of heat they generate
[3]. For Dependable systems that cannot be stopped for
performing off-line adaptation, on-line adaptation of FTMs has
attracted research efforts for some time now. However, most of
the solutions [4], [5], [6] tackle adaptation in a preprogrammed
manner: all FTMs necessary during the service life of the
system must be known and deployed from the beginning and
adaptation consists in choosing the appropriate execution
branch or tuning some parameters, e.g., the number of replicas
or the interval between state checkpoints. Nevertheless,
predicting all events and threats that a system may encounter
throughout its service life and making provisions for them is
impossible. The use of FTMs in real operational conditions
may lead to slight updates or unanticipated upgrades, e.g.,
compositions of FTMs that can tolerate a more complex fault
model than initially considered.

In both aeronautical and automotive systems, the ability to
perform remote changes for different purposes is essential:
maintenance but also updates and upgrades of embedded
applications. The remote changes should be partial as it is
unrealistic to reload completely an processing unit from small
updates. This idea is recently promoted by some car
manufacturers like Renault, BMW but also TESLA Motors in
the USA stating in its website "Model S regularly receives
over-the-air software updates that add new features and
functionality". It is important to mention that performing
remote changes will become very important for economic
reasons, for instance selling options a posteriori since most of
the evolution in the next future will rely on software for the
same hardware configuration (sensors and actuators). In
addition to this, the X-to-X applications (X being cars or
planes) will imply rapid adaptation of onboard software to
remain consistent with the network of X.

We propose an alternative to preprogrammed adaptation
that we denote agile adaptation of FTMs. The term “agile” is
inspired from agile software development [7] that emphasizes
the importance of accommodating change during the lifecycle
of an application at a reasonable cost, rather than striving to
anticipate an exhaustive set of requirements. Agile adaptation
of FTMs enables systematic evolution: according to runtime
observations of the system and of its environment, new FTMs
can be designed off-line and integrated on-line in a flexible
manner, with limited impact on the existing software
architecture.

Evolvability has long been a prerogative of the application
business logic. A rich body of research exists in the field of
software engineering consisting of concepts, tools,
methodologies and best practices for designing and developing
adaptive software [8]. Consequently, our approach for the agile
adaptation of FTMs leverages advancements in this field such
as Component-Based Software Engineering (CBSE)
technologies [9], Service Component Architecture [10] and
Aspect-Oriented Programming [11].

The basic idea is the following. Fault Tolerance or Safety
Mechanisms are developed as a composition of elementary
mechanisms, e.g. basic design patterns for fault tolerance
computing.

Using such concepts and technologies, we design FTMs as
“Lego”-like brick-based assemblies that can be methodically
modified off-line or at runtime through fine-grained changes
affecting a limited number of bricks. This is the basic idea of
our approach that maximizes reuse and flexibility, contrary to
monolithic replacements of FTMs found in related work, e.g.,
[4], [5], [6].

However, most of software runtime supports used in
embedded systems today do not rely on CBSE concepts.
AUTOSAR, for instance, relies on very static system
engineering concepts and does not provide today much
flexibility [12]. A new approach is of interest today enabling
remote updates to be carried out, including for safety
mechanisms.

ROS is a middleware for robotics applications (e.g.
Robonaut 2 from NASA within the ISS) but also used in
industry, the automotive industry for instance. This middleware
provides a weak component approach. It is open-source, its
user community is very large and it is used for critical
application e.g. at NREC (The National Robotics Engineering
Center in Pittsburgh) for unmanned military vehicles (e.g. the
Crusher).

III. ADAPTIVE FAULT TOLERANCE

A. Basic concepts for AFT
Some basic concepts must be discussed to address the

problem of Adaptive Fault Tolerant computing. Three essential
concepts must be discussed beforehand:

• Separation of concerns: this concepts is now well
known, it implies a clear separation between the
functional code, i.e. the application, and the non-
functional code, the fault tolerance mechanisms in our

 3

case. The connection between the application code and
the FTM must be clearly defined as specific
connections. This means that the FTMs can be
disconnected and replaced by a new one provided the
connectors remains the same.

• Componentization: this concepts means that any
software components can be decomposed into smaller
components. Each component exhibit interfaces
(services provided) and receptacles (services required).
This means that any FTMs can be decomposed into
smaller pieces, and conversely that an FTM is the
aggregation of smaller ones. The ability to manipulate
the binding between components (off-line but also on-
line) is essential for AFT.

• Design for adaptation: the adaptation of software
systems imply that (i) the software itself has been
analyzed with adaptation in mind for later evolution
using componentization (although all situations cannot
be anticipated) and (ii) designed to simplify their
adaptation including from a programming viewpoint
(e.g. using object-oriented, aspect-oriented
programming concepts).

Such basic concepts have been established and validated
through various steps of analysis of fault tolerance design
patterns and after several design and implementation loops, as
discussed in [17].

B. Change Model
The choice of an appropriate fault tolerance mechanism

(FTM) for a given application depends on the values of several
parameters. We consider three classes of parameters: 1) fault
tolerance requirements (FT); 2) application characteristics (A);
3) available resources (R).

We denote (FT, A, R) as change model. At any point in
time, the FTM(s) attached to an application component must be
consistent with the current values of (FT, A, R).

The three classes of parameters enable to discriminate
FTMs. Among fault tolerance requirements FT, we focus, for
the time being, on the fault model that must be tolerated. Our
fault model classification is based on well-known types [14],
e.g., crash faults, value faults, development faults. In this work,
we focus on hardware faults but the approach can be extended
to FTMs that target development faults.

The application characteristics A that we identified as
having an impact on the choice of an FTM are: application
statefulness, state accessibility and determinism. We consider
here that the FTMs are attached to a black-box application.
This means there is no possibility to interfere with its internals,
for tackling non-determinism, for instance, in case an FTM
only works for deterministic applications. Resources R play an
important part and represent the last step in the selection
process. FTMs require resources such as bandwidth, CPU,
battery life/energy. In case more than one solution exists, given
the values of the parameters FT and A, the resource criterion
can invalidate some of the solutions. A cost function can be
associated to each solution, based on R.

Any parameter variation during the service life of the
system may invalidate the initial FTM, thus requiring a
transition towards a new one. Transitions may be triggered by
new threats, resource loss or the introduction of a new
application version that changes the initial application
characteristics. A particularly interesting adaptation trigger is
the fault model change. Incomplete or misunderstood initial
fault tolerance requirements, environmental threats such as
electromagnetic interferences or hardware aging may change
the initial model to a more complex one.

In this work, we consider that a monitoring service provides
accurate information on the resource usage and the error rate in
operation through logs analysis (both at runtime and off-line).
The monitoring service providing the triggers for FTM
adaptation is out of the scope of this paper. Some triggers can
also come from the system manager when an update is done at
the application level.

C. FT Design Patterns and Assumptions
To illustrate our approach, we consider some fault tolerance

design patterns (FTMs) and discuss their underlying
assumptions and resource needs. Any change that invalidates
an assumption or implies an unacceptable resource change calls
for an update of the FTMs.

Duplex protocols tolerate crash faults using passive (e.g.
Primary-Backup Replication denoted PBR), or active
replication strategies (e.g. Leader-Follower Replication
denoted LFR). In this case, each replica is considered as a self-
checking component, the error detection coverage is perfect.
The fault model includes hardware faults or random operating
system faults (no common mode faults). At least 2 independent
processing units are necessary to run this FTM.

 Two design patterns tolerating transient value faults are
briefly discussed here. Time Redundancy (TR) tolerates
transient physical faults or random runtime support faults using
repetition of the computation and voting. This is way to
improve the self-checking nature of a replica, but it introduces
a timing overhead. Assertion&Duplex (A&D) tolerates both
transient and permanent faults. It's a combination of a duplex
strategy with the verification using assertions of safety
properties derived from safety analysis that could be violated
by a value fault or by a random runtime support error.

Assumptions / FTM PBR LFR TR A&D
Fault Model

(FT)
crash ü ü ü

transient ü ü
Application

behaviour (A)
Deterministic ü ü (ü)
State access ü (ü)

Resources (R)

Bandwidth high low nil (TDB)
CPU 2 2 1 2

Fig. 1. Assumptions and fault tolerance design patterns charateristics

The underlying characteristics of the considered FTMs, in
terms of (FT, A, R), are shown in Fig. 1. For instance, PBR and
LFR tolerate the same fault model, but have different A and R.
PBR allows non-determinism of applications because only the
Primary computes client requests while LFR only works for
deterministic applications as both replicas compute all requests.
LFR could tackle non-determinism if the application was not
considered a black box, as in our approach. PBR requires state

 4

access for checkpoints and higher network bandwidth (in
general), while LFR does not require state access but generally
incurs higher CPU costs (and, consequently, higher energy
consumption) as both replicas perform all computations.

During the service life of the system, the values of the
parameters enumerated in Fig. 1 can change. An application
can become non-deterministic because a new version is
installed. The fault model can become more complex, e.g.,
from crash-only it can become crash and value fault due to
hardware aging or physical perturbations. Available resources
can also vary, e.g., bandwidth drop or constraints in energy
consumption. For instance, the PBR→LFR transition is
triggered by a change in application characteristics (e.g.
inability to access application state) or in resources (bandwidth
drop), while the PBR→A&D transition is triggered by a
change in the considered fault model (requiring a safety
mechanism extension). Transitions can occur in both
directions, according to parameter variation.

D. Design for adaptation of FTMs
Our “design for adaptation” aims at producing reusable

elementary components that can be combined to implement a
given FTM or safety mechanism. Any FTM follows the
generic Before-Proceed-After meta-model. Many FTMs can be
mapped and combined using this model, as shown in Fig. 2.

FTM Before Proceed After
PBR (primary)
PBR(backup)

 Compute Checkpointing
 State update

LFR (leader)
LFR (follower)

Forward request Compute Notify
Handle request Compute Handle notification

TR Save/restore state Compute Compare
A&D Compute Assert

Fig. 2. Generic execution scheme for FT design patterns

Composition implies nesting the Before-Proceed-After
meta-model. This approach improves flexibility, reusability,
composability and reduces development time. Updates are
minimized since just few components have to be changed.

E. Runtime support
The software runtime support must provide key features to

manipulate the component graph. Any application or FTM is a
graph of components at runtime. From previous experiments
reported in [17], the following primitive are required.

• Dynamic creation, deletion of components;

• Suspension, activation of components;

• Control over interactions between components for the
creation and the removal of connections (bindings);

Our first implementation was done on a reflective
component-based middleware, FRASCATI [14] providing a
scripting language to manipulate the component graph, FScript
[15]. The proposed approach is reproducible on any other
support that provides these features.

IV. ADAPTIVE FAULT TOLERANCE ON ROS

A. Introduction to ROS
ROS is described as1: … an open-source, meta-operating

system for your robot. It provides the services you would
expect from an operating system, including hardware
abstraction, low-level device control, implementation of
commonly used functionality, message passing between
processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code
across multiple computers. ROS is a middleware running on
top of a Unix-based operating system (typically Linux). The
main goal of ROS is to allow the design of modular
applications: a ROS application is a collection of programs,
called nodes, interacting only through message passing.
Developing an application involve the assembly of nodes,
which is akin to component-based approaches. Such an
assembly is referred to as the software computation graph.

B. Component model and reconfiguration
Two communication models are available in ROS: a

publisher/subscriber model and a client/server one. The
publisher/subscriber model defines one-way, many-to-many,
asynchronous communications through the concept of topic.
When a node publishes a message on a topic, it is delivered to
every nodes subscribing to this topic. Note that a publisher is
not aware of the nodes subscribing to its topic. The
client/server model defines bidirectional transaction (one
request/one reply) synchronous communications through the
concept of service. A node providing a service is not aware of
the client nodes that may use its service. These high-level
communication models allow adding, replacing or deleting
nodes in a transparent manner, either off-line or on-line.

To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register their services and topics to the ROS master. It is the
only node that has a comprehensive view of the computation
graph. When a node issues a service call, it queries the master
for the address of the node providing the service and then it
sends its request to this address.

In order to be able to add fault-tolerance mechanisms to an
existing ROS application in the most transparent manner, we
need to implement interceptors. An interceptor provides a
means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability.
When a node is launched, it is possible to reconfigure the name
of any services or topics it is using. Thus, requests and replies
between nodes can be rerouted to interceptor nodes.

C. Implementing a componentized FT design pattern
1) Generic Computation Graph: We identified a generic

pattern for the computation graph of a FTM. Figure 3 shows its
application in the context of ROS. Node Client uses a service
provided by Server. The FTM computation graph is inserted

1 http://wiki.ros.org/ROS/Introduction

 5

between the two thanks to the ROS remapping feature. Since
Client and Server must be re-launched for the remapping to
take effect, the insertion is done offline. The FTM nodes,
topics, and services are generic for every FTM discussed in
section II. Implementing a FTM consist in specializing the
before, proceed, and after nodes with its corresponding
behavior (see Fig. 3).

Fig. 3. Generic computation graph for FTM

We illustrate the approach, through a Primary-Backup
Replication (PBR) mechanism added to the Client/Server
application in order to tolerate a crash fault of the Server. Fig. 4
presents the associated architecture. Three machines are
involved: the Client, which is also hosting the ROS, master, the
MASTER site hosting the primary replica and the SLAVE site
hosting the backup replica. For the sake of clarity, the
symmetric topics and services between MASTER and SLAVE are
not represented. Elements of the slave are suffixed with “_S”.

We present the behavior of each node, the topics/services
used through a request/reply exchange between a node Client
and node Server (see Fig. 4).
• Client sends a request to Proxy (service clt2pxy);

• Proxy adds an identifier to the request and transfers it to
Protocol (topics pxy2pro);

• Protocol checks whether it is a duplicate request: if so, it
sends directly the stored reply to Proxy (topics pro2pxy).
Otherwise, it sends the request to Before (service pro2bfr);

• Before transfers the request for processing to Proceed
(topics bfr2prd); no action is associated in the PBR case,
but for other duplex protocol, Before may synchronize with
the other replicas;

• Proceed calls the actual service provided by Server (service
prd2srv) and forwards the result to After (topics prd2aft);

• After gets the last result from Proceed, captures Server state
by calling the state management service provided by the
server (service aft2srv), and builds a checkpoint based on
this information which it sends to node After_S of the other
replica (topics aft2aft_S);

• Protocol gets the result (topics aft2pro) and sends it to
Proxy (topics pro2pxy);

• On the backup replica, After_S transfers the last result to its
protocol node Proto_S (topics aft2pr_S) and sets the state
of its server to match the primary.

In parallel with request processing, the node crash detector
on the MASTER (noted CD) periodically gives a proof of life to
the crash detector (CD_S) on the SLAVE to assert its liveliness
(topics CD2CD_S). If a crash is detected, then the slave crash
detector notifies the recovery node (topics CD_S2rcy). This
node has two purposes: (1) in order to enforce the fail-silent
assumption, it must ensure that every node of the MASTER are
removed; (2) it switches the binding between the Client proxy
and the MASTER protocol to the SLAVE protocol. Thus, the
SLAVE will receive the Client’s requests and will act as the
Primary, changing its operating mode.

Fig. 4. Computation graph of a PBR mechanism

ROS does not provide APIs to dynamically change
bindings between nodes. The node developer must implement
the transition logics. The SLAVE protocol spins waiting for a
notification from recovery (topics rcy2pro_S). This is done
using the ROS API: background threads, within a node, check
for messages independently of the node’s main functionality.
Upon reception of this topic, protocol subscribes to topic
pxy2pro and publishes to topic pro2pxy. After this transition,
the proxy forwards the Client’s requests to the Slave protocol.

2) Impact on the existing application: From the designer
viewpoint, there are two changes required to integrate a FTM
computation graph to its application. First, Client will have to
be remapped offline to call the proxy node’s service instead of
directly the Server. Second, state management services, to get
and set the state of the node, must be integrated to the Server.
Form an object-oriented viewpoint any server inherits from an
abstract class stateManager providing two virtual methods,
getState and setState, overridden during the server
development.
D. Adaptation of FT mechanisms
The previous PBR example validates the implementation of
our design on ROS. However, our main goal is to provide safe
and agile adaptation of FTMs in order to improve the
resilience of the system. We illustrate our approach by
adapting the previous example in response to a change in the
fault tolerance requirement (change in the FT dimension of the
change model). For instance, suppose that we need to adapt
the current mechanism in order to tolerate both crash and

Adaptive Fault-Tolerance: from a Component-Based
Approach to ROS

Michael Shell
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

Email: http://www.michaelshell.org/contact.html

Homer Simpson
Twentieth Century Fox

Springfield, USA
Email: homer@thesimpsons.com

James Kirk
and Montgomery Scott

Starfleet Academy
San Francisco, California 96678-2391

Telephone: (800) 555–1212
Fax: (888) 555–1212

Abstract—The abstract goes here.

I. ADAPTATIVE FAULT TOLERANCE ON ROS

A. Introduction to ROS

ROS can be viewed as a middleware running on top of
a Unix-based operating system (typically Linux). The main
goal of ROS is to allow the design of modular applications :
a ROS application is a collection of programs, called nodes,
interacting only through message passing. Developing an ap-
plication involve the assembly of nodes, which is akin to
component-based approaches. Such an assembly is referred to
as the computation graph of the application.

B. Component model and reconfiguration

Two communication models are available in ROS: a pub-
lisher/subscriber model and a client/server one. The pub-
lisher/subscriber model defines one-way, many-to-many, asyn-
chronous communications through the concept of topic. When
a node publishes a message on a topic, it is delivered to every
nodes subscribing to this topic. Note that a publisher is not
aware of the subscriber to its topic nor the other publishers.
The client/server model defines bidirectional transaction (one
request/one reply) synchronous communications through the
concept of service. A node providing a service is not aware
of the client nodes that may use its service. These high-level
communication models allows to add, replace or delete nodes
in a transparent manner, either offline or online.

To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register there services and topics to the ROS master. It is the
only node which has a comprehensive view of the computation
graph. When a node issues a service call, it queries the master
for the address of the node providing the service and then it
sends its request to this address.

In order to be able to add fault-tolerance mechanisms to
an existing ROS application in the most transparent manner,
we need to implement interceptors. An interceptor provides
a means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability.
At launch time, it is possible to reconfigure the name of any

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

Proceed

After

Server

FTM

clt2pxy prd2srv

pro2bfr

aft2pro

prd2aft

bfr2prd

pxy2pro

pro2pxy service

topic

Fig. 1. Generic computation graph for FTM

services or topics used by a node. Thus, requests and replies
between nodes can be rerouted easily to interceptor nodes.

C. Implementing a componentized FT design pattern

1) Generic Computation Graph: We identified a generic
pattern for the computation graph of a FTM. Figure 1 shows
its application in the context of ROS. Node Client uses a
service provided by Server. The FTM computation graph is
inserted between the two thanks to the ROS remapping feature.
The FTM nodes, topics, and services are generic for every
FTM discussed in section II. Implementing a FTM consist
in specializing the before, proceed, and after nodes with its
corresponding behavior (see table X).

We illustrate the approach, through a Primary-Backup
Replication (PBR) mechanism added to the Client/Server
application in order to tolerate a crash fault of the Server.
Figure 2 shows the architecture. Three machines are involved
: the CLIENT which is also hosting the ROS master, the
MASTER hosting the primary replica and the SLAVE hosting
the backup replica. For the sake of clarity, the symmetric
topics and services between MASTER and SLAVE are not
represented. Elements of the slave are suffixed with ” S”

We present the behavior of each nodes, the topics/services
used through a request/reply exchange between a node Client
and node Server.

• Client sends a request to Proxy (service clt2pxy);

 6

transient faults. Since PBR mechanism already takes care of
the crash fault, we propose to compose it with a Time
Redundancy (TR) mechanism to add the transient fault-
tolerance capability. With our approach, three steps are
required: (1) designing a stand-alone TR mechanism; (2)
composing the PBR and TR mechanisms; and finally (3)
installing the composite FTM.

1) Design of the TR mechanism:
 Our generic design pattern isolates the specific behavior of a
FTM within the Before, Proceed, and After nodes. Thus we
can fully reuse the Proxy and Protocol nodes, already
developed for PBR mechanism, in the new mechanism. This
decrease significantly the amount of work required. The
computation graph of the stand-alone TR mechanism is given
in Fig. 5. Note that the server offers the same interfaces as
before and thus does not require any adaptation. This aligns
well with our separation of concern objective. We summarize
the behavior of the components specific to the TR mechanism:
• Before receives a new request and retrieve the state of the

Server;
• The request is forwarded to Proceed, which call the

Server’s service. The reply is transferred to After;
• After stores this reply and synchronize with Before;
• Before restores the state of the Server and forward again

the initial request to Proceed which in turn call the
Server. The new reply is transferred to After;

• After compares the two replies. If they are identical one of
them is sent to Protocol, everything is executed a third
time. If two replies among three are identical, then one of
them is return to Protocol, otherwise an exception is
raised

Fig. 5. Computation graph of a TR mechanism

2) Composition of mechanisms:
The generic computation graph for FTM is designed for
composability. With respect to request processing, a Protocol
node and a Proceed node present the same interfaces: a request
as input, a reply as output. Hence, a way to compose
mechanisms is to replace the Proceed node of a mechanism by
a Protocol and its associated Before/Proceed/After nodes, as
shown in Fig. 6. Our approach enables developing a new
mechanism on the foundation of several existing ones. This
improves the development time and the assurance in the
overall system, since all mechanisms have been validated off-
line by test and fault injection techniques. It is worth noting

here that composition of mechanisms is also validated off-line
in accordance with standard development processes
(ISO26262, DO178C) to comply with certification if needed.

Fig. 6. Composition principle of FT mechanisms.

The architecture of the composite FTM made of PBR and TR
is given in Fig. 7.

Fig. 7. Composition of PBR and TR mechanisms.

3) Installation of the mechanism
Installing an FTM within a ROS application or adapting an
existing FTM does not incur technical difficulties as long as
the system’s nodes (application + FTM) can be stopped and
re-launched. Indeed, using the remapping capability of ROS
implies rewriting some configuration files, which are taken
into account only during the initialization of the nodes. For
system where interruption of service is not an option,
adaptation has to be done at runtime. In the context of ROS,
this requires some additional software development. This may
not be ideal with respect to the availability of the system. As
presented in the following, adaptation at runtime minimizing
the disruption of the service is more demanding.

E. Dynamic Adaptation of FTM
Dynamic adaptation of FTM is required to provide continuity
of service in resilient systems. The question is then: is it
possible to safely adapt a FTM at runtime in the context of
ROS? A set of minimal API required to guarantee the
consistency of the transition between two different FTMs has
been established in previous work [14]:
• Control over components life cycle at runtime (add,

remove, start, stop).
• Control over interactions between components at runtime,

for creating or removing bindings. �

Client

P
r
o
x
y

Before

Proceed

After

Server_M

P
r
o
t
o
c
o
l

CLIENT TR

clt2pxy

/pxy2pro
pro2bfr

bfr2prd

prd2aft

aft2pro
/pro2pxy

/prd2srv_M

MASTER

/getstate_M
/restorestate_M

aft2bfr
clt2pxy

/pxy2pro

Service

Message

Topic local

Topic global

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

Proceed

After

Server

clt2pxy prd2srv

pro2bfr

aft2pro

prd2aft

bfr2prd

pxy2pro

pro2pxy
aft2srv

P
r
o
t
o
_
S

Before_S

Proc_S

After_S

Server_S

prd2srv_S

pro2bfr_S

aft2pro_S

prd2aft_S

bfr2prd_S

aft2srv_S

MASTER

SLAVE

CLIENT

aft2aft_S

Recovery
CD

CD_S

CD_S2rcy

CD2CD_S

rcy2pro_S

Fig. 2. Computation graph of a PBR mechanism

• Proxy adds an identifier to the request and transfer it
to Protocol (topic pxy2pro);

• Protocol checks whether it is a duplicate request: if
so, it sends directly the stored reply to Proxy (topic
pro2pxy), otherwise, it sends the request to Before
(service pro2bfr);

• Before transfer the request for processing to Proceed
(topic bfr2prd); no action in the PBR case, for other
duplex protocol, Before may synchronize with the
other replica;

• Proceed calls the actual service provided by Server
(service prd2srv) and forwards the result to After
(topic prd2aft);

• After gets the last result form Proceed and captures
Server state by calling the state management service
provided by the server (service aft2srv) and builds a
checkpoint based on this information which it sends
to node After S of the other replica (topic aft2aft S);

• Protocol gets the result (topic aft2pro) and sends it to
Proxy (topic pro2pxy);

• on the other replica, After S transfers the last result
to its protocol node proto S (topic aft2pro S) and set
the state of its server to match the primary.

In parallel with request processing, the node crash detector
on the MASTER (noted CD) periodically gives a proof of
life to the crash detector (CD S) on the SLAVE to assert its
liveliness (topic CD2CD S). If a crash is detected, then the
slave crash detector notifies the crash to the recovery node
(topic CD S2rcy). This node has two purposes : (1) in order
to enforce the fail-silent assumption, it must ensure that every
node of the Master are removed; (2) it switches the binding

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

After

FTM1

P
r
o
t
o
c
o
l

Before

After

Proceed

FTM2

Server

Fig. 3. Composition of FTM mechanisms

between the Client proxy and the Master protocol to the Slave
protocol. Thus, the Slave will receive the Client’s requests and
will act as the Primary, changing its operating mode.

Note that ROS does not provide APIs to dynamically
change bindings between nodes. The transition logic must be
implemented by the developper in the nodes. For instance, the
Slave protocol spins waiting for a notification from recovery
(topic rcy2pro S). This is carried out by background threads
within a node independently of its main functionality. We use
some ROS API for this. Upon reception of this topic, protocol
advertise that it is providing service 2 (as defined in figure X).
Further request from the Client will now be forwarded by the
proxy to the Slave protocol becoming now primary.

2) Impact on the existing application: Form the application
designer point of view, there are two main changes required
to integrate a FTM computation graph to its application. First,
Client will have to be remapped to call the proxy nodes
service instead of directly the service of Server. Second, state
management services, to get and set the state of the node, must
be integrated to the Server. Form an Object Oriented viewpoint
any server inherit from an abstract class stateManager provid-
ing two virtual methods, getState and setState. Both methods
are overridden during the server development.

D. Composition of mechanisms

The generic computation graph for FTM is designed for
composability. With respect to request processing a Protocol
node and a Proceed node present the same interfaces: a
request as input, a reply as output. Hence, a way to compose
mechanisms is to replace the proceed node of a mechanism
by a protocol and its associated before/proceed/after nodes.
Figure 3

E. Dynamic Adaptation of FTM

A set of minimal API required for dynamic adaptation of
FTMs have been established in previous research [Miruna]:

• control over components life cycle at runtime (add,
remove, start, stop);

• control over interactions between components at run-
time, for creating or removing bindings.

Furthermore, to ensure consistency before, during and after
reconfiguration, several issues must be carefully considered:

• components must be stopped in a quiescent state, i.e.
when all internal processing has finished;

Client

Recovery

P
r
o
x
y

Before

After

P
r
o
t
o
c
o
l

CLIENT

MASTER

Before

After

P
r
o
t
o
c
o
l

BACK-UP

CD_M

CD_S

clt2pxy

/pxy2pro
pro2bfr

/bfr2prd_S

aft2pro/pro2pxy

/cd2rec

recovery

TR

Before

Proceed

After

Server_M

R
a
c
k

pro2bfr

bfr2prd

prd2aft

aft2pro

/getstate_M
/restorestate_M

/prd2srv_M

aft2bfr

PRIMARY

TR

Before

Proceed

After

Server_M

R
a
c
k

pro2bfr

bfr2prd

prd2aft

aft2pro

/getstate_S
/restorestate_S

/prd2srv_S

aft2bfr

SLAVE

/prd2aft_S

/bfr2prd_M

/prd2aft_M

pro2bfr

aft2pro

/aft2aft

/getstate_M

/restorestate_S

clt2pxy

/pxy2pro

Service

Message

Topic local

Topic global

 7

Furthermore, ensuring consistency before, during and after
reconfiguration, requires that no requests or replies are lost:
• Components are stopped in a quiescent state, i.e. when all

internal processing has finished
• Incoming requests on stopped components must be

buffered
With the exception of add and remove, ROS does not provide
these APIs. However, these APIs can be emulated with
dedicated logics in some nodes. For instance, we are using
some binding control in the Primary to Backup switch
described in our example. Controlling node lifecycle is more
complex but can be done in the same manner and these
principles can be applied in the context of dynamic adaptation,
i.e. add new nodes at runtime and binding them in the
computation graph.

The protocol node plays a central part to provide proper
consistency during a transition. Indeed, our design pattern for
FTM is such that only stateless nodes, namely before, proceed
and after, need to change in order to switch from one FTM to
the next. Thus, protocol does not need to be changed during a
transition and it can be used to buffer messages and detect
when the changing nodes are in quiescent state. To do this,
protocol is extended to deal with three new messages. The
first one is used to signal protocol that a transition is about to
happen and it has to start storing incoming requests. The
second one is published by protocol and confirms that the
FTM is in a safe state and transition can be safely executed. In
particular, the safe state is reached when protocol has received
the replies of all pending requests. The third message is used
to signal protocol that the transition has been executed and it
can resume normal operation and release the requests stored
during the transition.

Note that the described transition technique requires that an
FTM is already in place in the system, meaning that the Client
and the Server are already configured to use our proxy nodes.
Installing an FTM in an application without interruption is not
possible with ROS since control over binding at runtime is
only possible with dedicated code within the nodes.

V. LESSONS LEARNT
ROS is a candidate for embedded applications in

automotive systems. As already said in introduction, it is
currently investigated by Renault for implementing ADAS and
also used by NREC and BMW for embedded applications.

In this paper, we analyze the use of ROS for embedded
applications through a different angle. We consider critical
applications that need to be modified during the lifetime of the
system. This may be due to many events such as versioning,
configuration changes, new threats and/or evolution of the fault
model due to hardware aging or environment changes.

The question key is: to what extent safety mechanisms
attached to critical applications can be adapted with ROS?

As far as adaptation is concerned, ideally, several
requirements must be considered. A first requirement is

separation of concerns, at design time but also at runtime. The
second requirement relates to the capability to update, compose
basic building blocks to realize/customize a safety mechanism:
the key concept here is componentization thanks to CBSE
approaches. The third requirement relates to the runtime
support (OS and/or middleware) that should enable component
mapping to tasks at runtime. The fourth relates to the dynamic
binding between components at runtime to manipulate
dynamically connections. Last but not least, a fifth requirement
relates to the control over components corresponding to
functions like activate, suspend, etc.

A. Concepts for adaptation
The 5 concepts mentioned above will be used here as a set

of criteria to judge ROS with respect to the objective expressed
in the above question. The first 3 criteria concern off-line
adaptation: (i) separation of concern, (ii) componentization,
(iii) component mapping to tasks. The last 2 criteria relates to
the dynamic adaptation of the software on-line: (iv) dynamic
binding and (v) control over components.

The design for adaptation issues addressed in section III.A
is out of the scope of this analysis since it relates to the
development process for software adaptation and not to the
runtime support. Based on former work [17], safety
mechanisms or FTMs can be developed as a collection of
building blocks, i.e. elementary FT design patterns. Such FT
building blocks can then be composed together to realize a new
safety mechanism during the system lifetime. From a runtime
viewpoint, such building blocks are aggregated with our
framework before-proceed-after.

1) Off-line adaptation
Separation of concern can be achieved with ROS, since an

application is implemented as a collection of nodes, some
implementing functional aspects other fault tolerance aspects.
We have shown that for a given application server, a
replication protocol can be implemented as a set of nodes. The
composition of different mechanisms has been shown as well.
The connection between mechanisms relies on the notion of
topic and promotes the publish-subscribe interaction model. As
far as dependability is concerned, the separation of concern is
not always possible for all dependability mechanisms, some
being either intrinsically embedded into the code (CRC,
defensive programming, exception handling…) and/or
application dependent. ROS cannot be criticized from this
viewpoint; it provides separation of concern for coarse grain
FT mechanisms (e.g. replication strategies). More fine grain
control over code execution requires more reflective features at
the OS/interpreter level.

Componentization has two facets, namely at design time
and at runtime. At design time, the solution resides on the use
of CBSE techniques during the development process. At
runtime it is related to the runtime model provided by ROS.
Again the notion of node is essential. Our componentization
finally corresponds at runtime to before, proceed and after
components. In our experiments these components are simple,
their mapping to task at this level is clearly possible as shown.

Mapping to tasks become then a natural consequence of the
ROS runtime model. Any component in the design can be

 8

mapped to a node, which is a task in practice. This is has been
illustrated in the experiments carried out and reported in this
paper. The mapping of components to nodes has also a major
benefit; it provides an error confinement area for the
components (single or composite). A ROS node corresponds to
a Unix process, so it is associated to a protected memory space.
Time and Space Partitioning (TSP) is a very attractive concept
as far as dependability is concerned (see. ARINC 653 for
avionics real-time systems), but this is not provided by ROS.
Indeed, a middleware cannot provide this kind of facility that
belongs to operating system kernels.

2) On-line adaptation
Dynamic binding between components at runtime is

essential to manipulate an application composed as a set of
nodes. Fine-grain updates or composition of mechanisms
implies modifications in the component graph, i.e. the graph of
nodes at runtime that has been designed off-line. This is
something difficult with ROS, although the publish-subscribe
model could provide such facility. Topics correspond to pre-
defined communication channels between nodes that cannot be
manipulated and changed on-line.

Control over components is also an important aspect of
dynamic adaptation. New components must be created while
others must be removed. More importantly component must be
suspended in quiescent state before being removed or updated.
The consistency of the whole graph of nodes representing the
application depends on the state of components. The quiescent
state is defined as a state in which all requests processed by the
node are terminated and that all incoming requests are
buffered. In this state, a component can be removed or updated.
ROS does not provide this kind of facility that can be found in
reflective component based middleware like FraSCAti [14].

B. Practical aspects
From a practical standpoint, ROS is easy to use. Tutorial

can be found and, as an open source middleware, the
community is present and very reactive. The use of ROS is
simple, as it is a library that can be used in C/C++ programs.

The development of application as a set of nodes and topics
as communication channels is easy. Some functionalities are
however only available in some languages (e.g. Python) and
the documentation is sometime weak. The inter-node
communication is fine but static. It could be extended with the
notion of dynamic topics.

The centralized and essential role of the ROS Master is an
issue but this could be alleviated using conventional fault
tolerance techniques to address such single point of failure.

VI. CONCLUSION
The adaptation of embedded application required an

adequate runtime support. Beyond design for adaptation issues
that relate more to the development process, the runtime
support must fulfill 5 requirements: (i) separation of concern,
(ii) componentization, (iii) component mapping to tasks. The
last 2 criteria relate to the dynamic adaptation of the software
on-line: (iv) dynamic binding and (v) control over components.

ROS enables the 3 first requirements to be satisfied, but
fails to provide the last two. Adaptation can be easily done off-
line using a CBSE design approach. On-line adaptation is far
more difficult as shown by our experiments.

As a runtime support for Resilient Computing, ROS in its
current version is not a good candidate. ROS is a development
platform to test concepts for adaptive fault tolerance off-line.
The mapping of component to ROS is roughly simple. ROS is
well suited for agile development processes. However, its
capabilities for dynamic dependability are limited. Anyway,
the insights gained with this work will help us to develop a
suitable runtime support for Adaptive Fault Tolerance.

REFERENCES
[1] J.-C. Laprie. From Dependability to Resilience. In 38th IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),
2008.

[2] K. H. K. Kim and T. F. Lawrence. Adaptive Fault Tolerance: Issues and
Approaches. In Proceedings of the Second IEEE Workshop on Future
Trends of Distributed Computing Systems. IEEE, 1990, pp. 38–46.

[3] C. Krishna and I. Koren. Adaptive Fault-Tolerance for Cyber-Physical
Systems. In IEEE International Conference on Computing, Networking
and Communications (ICNC), 2013, pp. 310–314.

[4] J. Fraga, F. Siqueira, and F. Favarim. An Adaptive Fault-Tolerant
Component Model. In 9th Workshop on Object-Oriented Real-Time
Dependable Systems. IEEE, 2003, pp. 179–186.

[5] L. C. Lung, F. Favarim, G. T. Santos, and M. Correia. An Infrastructure
for Adaptive Fault Tolerance on FT-CORBA. In 9th International
Symposium on Object and Component- Oriented Real-Time Distributed
Computing. IEEE, 2006.

[6] O. Marin, P. Sens, J.-P. Briot, and Z. Guessoum. Towards Adaptive
Fault-Tolerance for Distributed Multi-Agent Systems. In 4th European
Research Seminar on Advances in Distributed Systems, 2001, pp. 195–
201.

[7] J. Highsmithand and A. Cockburn. Agile Software Development: The
Business of Innovation. In Computer, vol. 34, no. 9, pp. 120–127, 2001.

[8] P. McKinley, S. Sadjadi, E. Kasten, and B. H. C. Cheng. Composing
Adaptive Software. In Computer, vol. 37, no. 7, pp. 56–64, 2004.

[9] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. In Addison-Wesley Longman Publishing Co., Inc., 2nd
ed. Boston, MA, USA: 2002.

[10] J. Marino and M. Rowley. Understanding SCA (Service Component
Architecture). Addison-Wesley Professional, 2009.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. ECOOP’97
Object-Oriented Programming, pp. 220– 242, 1997.

[12] H. Martorell, J.-C. Fabre, M. Lauer, M. Roy and R. Valentin. Partial
Updates of AUTOSAR Embedded Applications — To What Extent?. In
European Dependable Computing Conference (EDCC), 2015, Paris,
France.

[13] M. Stoicescu, J.-C. Fabre, M. Roy. From Design for Adaptation to
Component-Based Resilient Computing. In PRDC 2012: 1-10

[14] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B.
Stefani. A Component-Based Middleware Platform for Reconfigurable
Service-Oriented Architectures. In SP&E, 2011.

[15] M. Leger, T. Ledoux, and T. Coupaye. Reliable Dynamic
Reconfigurations in a Reflective Component Model. In 13th
International Conf. on Component-Based Software Engineering, 2010.

[16] D. Powell. Failure Mode Assumption and Assumpion Coverage. In
Proc. of the IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-22),
Boston (USA), 1992, pp.386-395. (revised in the book Predictably
Dependable Computing Systems, ISBN 3-540-59334, 1995.)

[17] M. Stoicescu. Architecting Resilient Computing Systems: A
Component-based Approach. In PhD thesis, National Polytechnic
Institute of Toulouse (INP), 2013. www.theses.fr/en/2013INPT0120.

