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Abstract—Systems are expected to evolve during their service 

life in order to cope with changes of various natures, ranging 
from fluctuations in available resources to additional features 
requested by users. For dependable embedded systems, the 
challenge is even greater, as evolution must not impair 
dependability attributes. Resilient computing implies 
maintaining dependability properties when facing changes. 
Resilience encompasses several aspects, among which 
evolvability, i.e., the capacity of a system to evolve during its 
service life. In this paper, we discuss the evolution of systems with 
respect to their dependability mechanisms, and show how such 
mechanisms can evolve accordingly. From a component-based 
approach that enables to clarify the concepts, the process and the 
techniques to be used to address resilient computing, in 
particular regarding the adaptation of fault tolerance (or safety) 
mechanisms, we show how Adaptive Fault Tolerance (AFT) can 
be implemented with ROS. Beyond implementation, we draw the 
lessons learned from this work and discuss the limits of this 
runtime support to implement such resilient computing features 
in embedded systems. 

I. INTRODUCTION 
Evolution during service life is inevitable in many systems 

today. A system that remains dependable when facing changes 
(new threats, change in failures modes, updates of applications) 
is called resilient. The persistence of dependability when facing 
changes is called resilience [1]. Resilient computing 
encompasses several aspects, among which evolvability, i.e., 
the capacity of a system to evolve during its service life. On the 
other hand, dependability relies on fault-tolerant computing at 
runtime, enabled by fault tolerance mechanisms (FTMs) 
attached to the application. As such, one of the key challenges 
of resilient computing is the capacity to adapt the FTMs 
attached to an application during its operational life. 

One important aspect of a dependable system design is the 
definition of the fault model. This fault model considers both 
hardware and software faults may lead to failure modes that 
impair the correct behavior of the system. In critical systems, 
such failure modes may violate safety properties. The role of 
the safety analysis (e.g. using the FMECA method) is to 
identify the failure mode and then define the safety 
mechanisms to prevent the violation of safety properties. Such 
safety mechanisms rely on basic error detection and recovery 
mechanisms, namely fault tolerance techniques following 
Laprie's terminology. Such safety mechanisms are based on 
Fault Tolerance Design Patterns that can be combined together. 
The safety analysis is often done a priori according to the fault 
model that had been defined.  

During the operational life of the system, several situation 
may occur. New threats may lead to revise the fault model 
(electromagnetic perturbations, obsolescence of HW 
components, software aging, etc.). A revision of the fault 
model has consequences on the fault tolerance mechanisms to 
be used. In other words, the validity of the fault tolerance 
mechanisms of safety mechanisms (whatever you want to call 
them) depends on the representativeness of the fault model. In 
a certain sense, a bad choice of the fault model may lead to pay 
for useless mechanisms in both normal operation and erroneous 
situations. This has an obvious side effect on the performance 
and on the dependability measures (reliability, dependability) 
respectively. This means that a change in the definition of the 
fault model implies a change in the fault tolerance mechanisms. 

Beyond the fault model, there are other sources of changes.  

Resources changes may also impair some safety 
mechanisms that rely on hardware resources. A typical 
example is the lost of processing units, but simply a loss in 
networks bandwidth may invalidate some fault tolerance 
mechanisms from a timing viewpoint. 

Application changes are more and more frequent during the 
operational lifetime. This is obvious for many conventional 
applications (e.g. mobile phones) but it is becoming also 
needed for more critical embedded systems. This is the case for 
long living systems like space or avionics systems, but also in 
the automotive domain, not only for maintenance purposes but 
also of commercial reasons. The evolution of the specification 
during the lifetime of a system is a fact; it follows the evolution 
of the user requirements or needs. The notion of versioning 
(updates) or the loading of additional features (upgrades) may 
lead to change the assumptions on top of which the 
implementation of FT mechanisms rely. Such change implies 
revisiting the FMECA spreadsheets but also the 
implementation of the FT mechanisms. Some FT mechanisms 
rely on strong assumptions regarding the behavior of the 
application, and everybody knows in the dependability 
community the importance of the coverage of such 
assumptions [16]. 

As a conclusion, the safety mechanism must remain 
compliant with all assumptions in terms of fault model, 
resources and application characteristics during the whole 
lifetime of the system. Their efficiency relies on this statement. 

In this paper, we first motivate the issue and then report on 
an approach taking advantage of Component Based Software 
Engineering technologies for tackling this crucial aspect of 
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resilient computing, namely the adaptation of fault tolerance 
mechanisms. We defined a minimal runtime support for 
implementing adaptive fault tolerance. The second part of this 
paper shows how this minimal runtime support can be 
implemented on ROS, presently used in many applications 
(robotics applications, automotive applications like ADAS, or 
military applications). We illustrate the mapping of ideal 
components to ROS components and give implementation 
details of a fault tolerance design pattern that is adaptive at 
runtime. We finally draw the lessons learnt from our first 
experiments, discuss the limits of the exercise, and identify 
some promising directions. 

In Section II we present the problem statement, and then 
summarize our CBSE-based approach for adaptive fault 
tolerance in Section III. A full account of this approach can be 
found in [13]. The mapping of this approach to ROS is 
described in Section IV. The lessons learnt are given in Section 
V before concluding. 

II. PROBLEM STATEMENT 
The need for Adaptive Fault Tolerance (AFT) rising from 

the dynamically changing fault tolerance requirements and 
from the inefficiency of allocating a fixed amount of resources 
to FTMs throughout the service life of a system was stated in 
[2]. AFT is gaining more importance with the increasing 
concern for lowering the amount of energy consumed by 
cyber-physical systems and the amount of heat they generate 
[3]. For Dependable systems that cannot be stopped for 
performing off-line adaptation, on-line adaptation of FTMs has 
attracted research efforts for some time now. However, most of 
the solutions [4], [5], [6] tackle adaptation in a preprogrammed 
manner: all FTMs necessary during the service life of the 
system must be known and deployed from the beginning and 
adaptation consists in choosing the appropriate execution 
branch or tuning some parameters, e.g., the number of replicas 
or the interval between state checkpoints. Nevertheless, 
predicting all events and threats that a system may encounter 
throughout its service life and making provisions for them is 
impossible. The use of FTMs in real operational conditions 
may lead to slight updates or unanticipated upgrades, e.g., 
compositions of FTMs that can tolerate a more complex fault 
model than initially considered. 

In both aeronautical and automotive systems, the ability to 
perform remote changes for different purposes is essential: 
maintenance but also updates and upgrades of embedded 
applications. The remote changes should be partial as it is 
unrealistic to reload completely an processing unit from small 
updates. This idea is recently promoted by some car 
manufacturers like Renault, BMW but also TESLA Motors in 
the USA stating in its website "Model S regularly receives 
over-the-air software updates that add new features and 
functionality". It is important to mention that performing 
remote changes will become very important for economic 
reasons, for instance selling options a posteriori since most of 
the evolution in the next future will rely on software for the 
same hardware configuration (sensors and actuators). In 
addition to this, the X-to-X applications (X being cars or 
planes) will imply rapid adaptation of onboard software to 
remain consistent with the network of X.  

We propose an alternative to preprogrammed adaptation 
that we denote agile adaptation of FTMs. The term “agile” is 
inspired from agile software development [7] that emphasizes 
the importance of accommodating change during the lifecycle 
of an application at a reasonable cost, rather than striving to 
anticipate an exhaustive set of requirements. Agile adaptation 
of FTMs enables systematic evolution: according to runtime 
observations of the system and of its environment, new FTMs 
can be designed off-line and integrated on-line in a flexible 
manner, with limited impact on the existing software 
architecture. 

Evolvability has long been a prerogative of the application 
business logic. A rich body of research exists in the field of 
software engineering consisting of concepts, tools, 
methodologies and best practices for designing and developing 
adaptive software [8]. Consequently, our approach for the agile 
adaptation of FTMs leverages advancements in this field such 
as Component-Based Software Engineering (CBSE) 
technologies [9], Service Component Architecture [10] and 
Aspect-Oriented Programming [11].  

The basic idea is the following. Fault Tolerance or Safety 
Mechanisms are developed as a composition of elementary 
mechanisms, e.g. basic design patterns for fault tolerance 
computing. 

Using such concepts and technologies, we design FTMs as 
“Lego”-like brick-based assemblies that can be methodically 
modified off-line or at runtime through fine-grained changes 
affecting a limited number of bricks. This is the basic idea of 
our approach that maximizes reuse and flexibility, contrary to 
monolithic replacements of FTMs found in related work, e.g., 
[4], [5], [6]. 

However, most of software runtime supports used in 
embedded systems today do not rely on CBSE concepts. 
AUTOSAR, for instance, relies on very static system 
engineering concepts and does not provide today much 
flexibility [12]. A new approach is of interest today enabling 
remote updates to be carried out, including for safety 
mechanisms.  

ROS is a middleware for robotics applications (e.g. 
Robonaut 2 from NASA within the ISS) but also used in 
industry, the automotive industry for instance. This middleware 
provides a weak component approach. It is open-source, its 
user community is very large and it is used for critical 
application e.g. at NREC (The National Robotics Engineering 
Center in Pittsburgh) for unmanned military vehicles (e.g. the 
Crusher). 

III. ADAPTIVE FAULT TOLERANCE  

A. Basic concepts for AFT 
Some basic concepts must be discussed to address the 

problem of Adaptive Fault Tolerant computing. Three essential 
concepts must be discussed beforehand: 

• Separation of concerns: this concepts is now well 
known, it implies a clear separation between the 
functional code, i.e. the application, and the non-
functional code, the fault tolerance mechanisms in our 
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case. The connection between the application code and 
the FTM must be clearly defined as specific 
connections. This means that the FTMs can be 
disconnected and replaced by a new one provided the 
connectors remains the same. 

• Componentization: this concepts means that any 
software components can be decomposed into smaller 
components. Each component exhibit interfaces 
(services provided) and receptacles (services required). 
This means that any FTMs can be decomposed into 
smaller pieces, and conversely that an FTM is the 
aggregation of smaller ones. The ability to manipulate 
the binding between components (off-line but also on-
line) is essential for AFT. 

• Design for adaptation: the adaptation of software 
systems imply that (i) the software itself has been 
analyzed with adaptation in mind for later evolution 
using componentization (although all situations cannot 
be anticipated) and (ii) designed to simplify their 
adaptation including from a programming viewpoint 
(e.g. using object-oriented, aspect-oriented 
programming concepts). 

Such basic concepts have been established and validated 
through various steps of analysis of fault tolerance design 
patterns and after several design and implementation loops, as 
discussed in [17]. 

B. Change Model 
The choice of an appropriate fault tolerance mechanism 

(FTM) for a given application depends on the values of several 
parameters. We consider three classes of parameters: 1) fault 
tolerance requirements (FT); 2) application characteristics (A); 
3) available resources (R). 

We denote (FT, A, R) as change model. At any point in 
time, the FTM(s) attached to an application component must be 
consistent with the current values of (FT, A, R). 

The three classes of parameters enable to discriminate 
FTMs. Among fault tolerance requirements FT, we focus, for 
the time being, on the fault model that must be tolerated. Our 
fault model classification is based on well-known types [14], 
e.g., crash faults, value faults, development faults. In this work, 
we focus on hardware faults but the approach can be extended 
to FTMs that target development faults. 

The application characteristics A that we identified as 
having an impact on the choice of an FTM are: application 
statefulness, state accessibility and determinism. We consider 
here that the FTMs are attached to a black-box application. 
This means there is no possibility to interfere with its internals, 
for tackling non-determinism, for instance, in case an FTM 
only works for deterministic applications. Resources R play an 
important part and represent the last step in the selection 
process. FTMs require resources such as bandwidth, CPU, 
battery life/energy. In case more than one solution exists, given 
the values of the parameters FT and A, the resource criterion 
can invalidate some of the solutions. A cost function can be 
associated to each solution, based on R. 

Any parameter variation during the service life of the 
system may invalidate the initial FTM, thus requiring a 
transition towards a new one. Transitions may be triggered by 
new threats, resource loss or the introduction of a new 
application version that changes the initial application 
characteristics. A particularly interesting adaptation trigger is 
the fault model change. Incomplete or misunderstood initial 
fault tolerance requirements, environmental threats such as 
electromagnetic interferences or hardware aging may change 
the initial model to a more complex one.  

In this work, we consider that a monitoring service provides 
accurate information on the resource usage and the error rate in 
operation through logs analysis (both at runtime and off-line). 
The monitoring service providing the triggers for FTM 
adaptation is out of the scope of this paper. Some triggers can 
also come from the system manager when an update is done at 
the application level. 

C. FT Design Patterns and Assumptions 
To illustrate our approach, we consider some fault tolerance 

design patterns (FTMs) and discuss their underlying 
assumptions and resource needs. Any change that invalidates 
an assumption or implies an unacceptable resource change calls 
for an update of the FTMs. 

Duplex protocols tolerate crash faults using passive (e.g. 
Primary-Backup Replication denoted PBR), or active 
replication strategies (e.g. Leader-Follower Replication 
denoted LFR). In this case, each replica is considered as a self-
checking component, the error detection coverage is perfect. 
The fault model includes hardware faults or random operating 
system faults (no common mode faults). At least 2 independent 
processing units are necessary to run this FTM. 

 Two design patterns tolerating transient value faults are 
briefly discussed here. Time Redundancy (TR) tolerates 
transient physical faults or random runtime support faults using 
repetition of the computation and voting. This is way to 
improve the self-checking nature of a replica, but it introduces 
a timing overhead. Assertion&Duplex (A&D) tolerates both 
transient and permanent faults. It's a combination of a duplex 
strategy with the verification using assertions of safety 
properties derived from safety analysis that could be violated 
by a value fault or by a random runtime support error. 

Assumptions / FTM PBR LFR TR A&D 
Fault Model 

(FT) 
crash ü ü  ü 

transient   ü ü 
Application 

behaviour (A) 
Deterministic  ü ü (ü) 
State access ü   (ü) 

Resources (R) 
 

Bandwidth high low nil (TDB) 
# CPU  2 2 1 2 

Fig. 1. Assumptions and fault tolerance design patterns charateristics 

The underlying characteristics of the considered FTMs, in 
terms of (FT, A, R), are shown in Fig. 1. For instance, PBR and 
LFR tolerate the same fault model, but have different A and R. 
PBR allows non-determinism of applications because only the 
Primary computes client requests while LFR only works for 
deterministic applications as both replicas compute all requests. 
LFR could tackle non-determinism if the application was not 
considered a black box, as in our approach. PBR requires state 
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access for checkpoints and higher network bandwidth (in 
general), while LFR does not require state access but generally 
incurs higher CPU costs (and, consequently, higher energy 
consumption) as both replicas perform all computations. 

During the service life of the system, the values of the 
parameters enumerated in Fig. 1 can change. An application 
can become non-deterministic because a new version is 
installed. The fault model can become more complex, e.g., 
from crash-only it can become crash and value fault due to 
hardware aging or physical perturbations. Available resources 
can also vary, e.g., bandwidth drop or constraints in energy 
consumption. For instance, the PBR→LFR transition is 
triggered by a change in application characteristics (e.g. 
inability to access application state) or in resources (bandwidth 
drop), while the PBR→A&D transition is triggered by a 
change in the considered fault model (requiring a safety 
mechanism extension). Transitions can occur in both 
directions, according to parameter variation.  

D. Design for adaptation of FTMs 
Our “design for adaptation” aims at producing reusable 

elementary components that can be combined to implement a 
given FTM or safety mechanism. Any FTM follows the 
generic Before-Proceed-After meta-model. Many FTMs can be 
mapped and combined using this model, as shown in Fig. 2. 

FTM Before Proceed After 
PBR (primary) 
PBR(backup) 

 Compute Checkpointing 
  State update 

LFR (leader) 
LFR (follower) 

Forward request Compute Notify 
Handle request Compute Handle notification 

TR Save/restore state   Compute Compare 
A&D  Compute Assert 

Fig. 2. Generic execution scheme for FT design patterns 

Composition implies nesting the Before-Proceed-After 
meta-model. This approach improves flexibility, reusability, 
composability and reduces development time. Updates are 
minimized since just few components have to be changed. 

E. Runtime support 
The software runtime support must provide key features to 

manipulate the component graph. Any application or FTM is a 
graph of components at runtime. From previous experiments 
reported in [17], the following primitive are required. 

• Dynamic creation, deletion of components; 

• Suspension, activation of components; 

• Control over interactions between components for the 
creation and the removal of connections (bindings); 

Our first implementation was done on a reflective 
component-based middleware, FRASCATI [14] providing a 
scripting language to manipulate the component graph, FScript 
[15]. The proposed approach is reproducible on any other 
support that provides these features.  

IV. ADAPTIVE FAULT TOLERANCE ON ROS 

A. Introduction to ROS 
ROS is described as1: … an open-source, meta-operating 

system for your robot. It provides the services you would 
expect from an operating system, including hardware 
abstraction, low-level device control, implementation of 
commonly used functionality, message passing between 
processes, and package management. It also provides tools and 
libraries for obtaining, building, writing, and running code 
across multiple computers. ROS is a middleware running on 
top of a Unix-based operating system (typically Linux). The 
main goal of ROS is to allow the design of modular 
applications: a ROS application is a collection of programs, 
called nodes, interacting only through message passing. 
Developing an application involve the assembly of nodes, 
which is akin to component-based approaches. Such an 
assembly is referred to as the software computation graph. 

B. Component model and reconfiguration 
Two communication models are available in ROS: a 

publisher/subscriber model and a client/server one. The 
publisher/subscriber model defines one-way, many-to-many, 
asynchronous communications through the concept of topic. 
When a node publishes a message on a topic, it is delivered to 
every nodes subscribing to this topic. Note that a publisher is 
not aware of the nodes subscribing to its topic. The 
client/server model defines bidirectional transaction (one 
request/one reply) synchronous communications through the 
concept of service. A node providing a service is not aware of 
the client nodes that may use its service. These high-level 
communication models allow adding, replacing or deleting 
nodes in a transparent manner, either off-line or on-line. 

To provide this level of abstraction, each ROS application 
includes a special node called the ROS Master. It provides 
registration and lookup services to the other nodes. All nodes 
register their services and topics to the ROS master. It is the 
only node that has a comprehensive view of the computation 
graph. When a node issues a service call, it queries the master 
for the address of the node providing the service and then it 
sends its request to this address. 

In order to be able to add fault-tolerance mechanisms to an 
existing ROS application in the most transparent manner, we 
need to implement interceptors. An interceptor provides a 
means to insert functionality, such as safety or monitoring 
nodes, into the invocation path between two ROS nodes. To 
this end, a relevant ROS feature is its remapping capability. 
When a node is launched, it is possible to reconfigure the name 
of any services or topics it is using. Thus, requests and replies 
between nodes can be rerouted to interceptor nodes. 

C. Implementing a componentized FT design pattern 
1) Generic Computation Graph: We identified a generic 

pattern for the computation graph of a FTM. Figure 3 shows its 
application in the context of ROS. Node Client uses a service 
provided by Server. The FTM computation graph is inserted 

                                                             
1 http://wiki.ros.org/ROS/Introduction 
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between the two thanks to the ROS remapping feature. Since 
Client and Server must be re-launched for the remapping to 
take effect, the insertion is done offline. The FTM nodes, 
topics, and services are generic for every FTM discussed in 
section II. Implementing a FTM consist in specializing the 
before, proceed, and after nodes with its corresponding 
behavior (see Fig. 3). 

 
Fig. 3. Generic computation graph for FTM 

We illustrate the approach, through a Primary-Backup 
Replication (PBR) mechanism added to the Client/Server 
application in order to tolerate a crash fault of the Server. Fig. 4 
presents the associated architecture. Three machines are 
involved: the Client, which is also hosting the ROS, master, the 
MASTER site hosting the primary replica and the SLAVE site 
hosting the backup replica. For the sake of clarity, the 
symmetric topics and services between MASTER and SLAVE are 
not represented. Elements of the slave are suffixed with “_S”. 

We present the behavior of each node, the topics/services 
used through a request/reply exchange between a node Client 
and node Server (see Fig. 4). 
• Client sends a request to Proxy (service clt2pxy); 

• Proxy adds an identifier to the request and transfers it to 
Protocol (topics pxy2pro); 

• Protocol checks whether it is a duplicate request: if so, it 
sends directly the stored reply to Proxy (topics pro2pxy). 
Otherwise, it sends the request to Before (service pro2bfr); 

• Before transfers the request for processing to Proceed 
(topics bfr2prd); no action is associated in the PBR case, 
but for other duplex protocol, Before may synchronize with 
the other replicas; 

• Proceed calls the actual service provided by Server (service 
prd2srv) and forwards the result to After (topics prd2aft); 

• After gets the last result from Proceed, captures Server state 
by calling the state management service provided by the 
server (service aft2srv), and builds a checkpoint based on 
this information which it sends to node After_S of the other 
replica (topics aft2aft_S); 

• Protocol gets the result (topics aft2pro) and sends it to 
Proxy (topics pro2pxy); 

• On the backup replica, After_S transfers the last result to its 
protocol node Proto_S (topics aft2pr_S) and sets the state 
of its server to match the primary. 

In parallel with request processing, the node crash detector 
on the MASTER (noted CD) periodically gives a proof of life to 
the crash detector (CD_S) on the SLAVE to assert its liveliness 
(topics CD2CD_S). If a crash is detected, then the slave crash 
detector notifies the recovery node (topics CD_S2rcy). This 
node has two purposes: (1) in order to enforce the fail-silent 
assumption, it must ensure that every node of the MASTER are 
removed; (2) it switches the binding between the Client proxy 
and the MASTER protocol to the SLAVE protocol. Thus, the 
SLAVE will receive the Client’s requests and will act as the 
Primary, changing its operating mode. 

 
Fig. 4. Computation graph of a PBR mechanism 

ROS does not provide APIs to dynamically change 
bindings between nodes. The node developer must implement 
the transition logics. The SLAVE protocol spins waiting for a 
notification from recovery (topics rcy2pro_S). This is done 
using the ROS API: background threads, within a node, check 
for messages independently of the node’s main functionality. 
Upon reception of this topic, protocol subscribes to topic 
pxy2pro and publishes to topic pro2pxy. After this transition, 
the proxy forwards the Client’s requests to the Slave protocol. 

2) Impact on the existing application: From the designer 
viewpoint, there are two changes required to integrate a FTM 
computation graph to its application. First, Client will have to 
be remapped offline to call the proxy node’s service instead of 
directly the Server. Second, state management services, to get 
and set the state of the node, must be integrated to the Server. 
Form an object-oriented viewpoint any server inherits from an 
abstract class stateManager providing two virtual methods, 
getState and setState, overridden during the server 
development. 
D. Adaptation of FT mechanisms 
The previous PBR example validates the implementation of 
our design on ROS. However, our main goal is to provide safe 
and agile adaptation of FTMs in order to improve the 
resilience of the system. We illustrate our approach by 
adapting the previous example in response to a change in the 
fault tolerance requirement (change in the FT dimension of the 
change model). For instance, suppose that we need to adapt 
the current mechanism in order to tolerate both crash and 
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I. ADAPTATIVE FAULT TOLERANCE ON ROS

A. Introduction to ROS

ROS can be viewed as a middleware running on top of
a Unix-based operating system (typically Linux). The main
goal of ROS is to allow the design of modular applications :
a ROS application is a collection of programs, called nodes,
interacting only through message passing. Developing an ap-
plication involve the assembly of nodes, which is akin to
component-based approaches. Such an assembly is referred to
as the computation graph of the application.

B. Component model and reconfiguration

Two communication models are available in ROS: a pub-
lisher/subscriber model and a client/server one. The pub-
lisher/subscriber model defines one-way, many-to-many, asyn-
chronous communications through the concept of topic. When
a node publishes a message on a topic, it is delivered to every
nodes subscribing to this topic. Note that a publisher is not
aware of the subscriber to its topic nor the other publishers.
The client/server model defines bidirectional transaction (one
request/one reply) synchronous communications through the
concept of service. A node providing a service is not aware
of the client nodes that may use its service. These high-level
communication models allows to add, replace or delete nodes
in a transparent manner, either offline or online.

To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register there services and topics to the ROS master. It is the
only node which has a comprehensive view of the computation
graph. When a node issues a service call, it queries the master
for the address of the node providing the service and then it
sends its request to this address.

In order to be able to add fault-tolerance mechanisms to
an existing ROS application in the most transparent manner,
we need to implement interceptors. An interceptor provides
a means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability.
At launch time, it is possible to reconfigure the name of any
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Fig. 1. Generic computation graph for FTM

services or topics used by a node. Thus, requests and replies
between nodes can be rerouted easily to interceptor nodes.

C. Implementing a componentized FT design pattern

1) Generic Computation Graph: We identified a generic
pattern for the computation graph of a FTM. Figure 1 shows
its application in the context of ROS. Node Client uses a
service provided by Server. The FTM computation graph is
inserted between the two thanks to the ROS remapping feature.
The FTM nodes, topics, and services are generic for every
FTM discussed in section II. Implementing a FTM consist
in specializing the before, proceed, and after nodes with its
corresponding behavior (see table X).

We illustrate the approach, through a Primary-Backup
Replication (PBR) mechanism added to the Client/Server
application in order to tolerate a crash fault of the Server.
Figure 2 shows the architecture. Three machines are involved
: the CLIENT which is also hosting the ROS master, the
MASTER hosting the primary replica and the SLAVE hosting
the backup replica. For the sake of clarity, the symmetric
topics and services between MASTER and SLAVE are not
represented. Elements of the slave are suffixed with ” S”

We present the behavior of each nodes, the topics/services
used through a request/reply exchange between a node Client
and node Server.

• Client sends a request to Proxy (service clt2pxy);
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transient faults. Since PBR mechanism already takes care of 
the crash fault, we propose to compose it with a Time 
Redundancy (TR) mechanism to add the transient fault-
tolerance capability. With our approach, three steps are 
required: (1) designing a stand-alone TR mechanism; (2) 
composing the PBR and TR mechanisms; and finally (3) 
installing the composite FTM. 
 

1) Design of the TR mechanism: 
 Our generic design pattern isolates the specific behavior of a 
FTM within the Before, Proceed, and After nodes. Thus we 
can fully reuse the Proxy and Protocol nodes, already 
developed for PBR mechanism, in the new mechanism. This 
decrease significantly the amount of work required. The 
computation graph of the stand-alone TR mechanism is given 
in Fig. 5. Note that the server offers the same interfaces as 
before and thus does not require any adaptation. This aligns 
well with our separation of concern objective. We summarize 
the behavior of the components specific to the TR mechanism: 
• Before receives a new request and retrieve the state of the 

Server; 
• The request is forwarded to Proceed, which call the 

Server’s service. The reply is transferred to After; 
• After stores this reply and synchronize with Before;  
• Before restores the state of the Server and forward again 

the initial request to Proceed which in turn call the 
Server. The new reply is transferred to After; 

• After compares the two replies. If they are identical one of 
them is sent to Protocol, everything is executed a third 
time. If two replies among three are identical, then one of 
them is return to Protocol, otherwise an exception is 
raised 

 

Fig. 5. Computation graph of a TR mechanism 

2) Composition of mechanisms:  
The generic computation graph for FTM is designed for 
composability. With respect to request processing, a Protocol 
node and a Proceed node present the same interfaces: a request 
as input, a reply as output. Hence, a way to compose 
mechanisms is to replace the Proceed node of a mechanism by 
a Protocol and its associated Before/Proceed/After nodes, as 
shown in Fig. 6. Our approach enables developing a new 
mechanism on the foundation of several existing ones. This 
improves the development time and the assurance in the 
overall system, since all mechanisms have been validated off-
line by test and fault injection techniques. It is worth noting 

here that composition of mechanisms is also validated off-line 
in accordance with standard development processes 
(ISO26262, DO178C) to comply with certification if needed. 

 
Fig. 6. Composition principle of FT mechanisms. 

The architecture of the composite FTM made of PBR and TR 
is given in Fig. 7. 

 
Fig. 7. Composition of PBR and TR mechanisms. 

3) Installation of the mechanism 
Installing an FTM within a ROS application or adapting an 
existing FTM does not incur technical difficulties as long as 
the system’s nodes (application + FTM) can be stopped and 
re-launched. Indeed, using the remapping capability of ROS 
implies rewriting some configuration files, which are taken 
into account only during the initialization of the nodes. For 
system where interruption of service is not an option, 
adaptation has to be done at runtime. In the context of ROS, 
this requires some additional software development. This may 
not be ideal with respect to the availability of the system. As 
presented in the following, adaptation at runtime minimizing 
the disruption of the service is more demanding. 

E. Dynamic Adaptation of FTM 
Dynamic adaptation of FTM is required to provide continuity 
of service in resilient systems. The question is then: is it 
possible to safely adapt a FTM at runtime in the context of 
ROS? A set of minimal API required to guarantee the 
consistency of the transition between two different FTMs has 
been established in previous work [14]: 
• Control over components life cycle at runtime (add, 

remove, start, stop). 
• Control over interactions between components at runtime, 

for creating or removing bindings. �  
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Fig. 2. Computation graph of a PBR mechanism

• Proxy adds an identifier to the request and transfer it
to Protocol (topic pxy2pro);

• Protocol checks whether it is a duplicate request: if
so, it sends directly the stored reply to Proxy (topic
pro2pxy), otherwise, it sends the request to Before
(service pro2bfr);

• Before transfer the request for processing to Proceed
(topic bfr2prd); no action in the PBR case, for other
duplex protocol, Before may synchronize with the
other replica;

• Proceed calls the actual service provided by Server
(service prd2srv) and forwards the result to After
(topic prd2aft);

• After gets the last result form Proceed and captures
Server state by calling the state management service
provided by the server (service aft2srv) and builds a
checkpoint based on this information which it sends
to node After S of the other replica (topic aft2aft S);

• Protocol gets the result (topic aft2pro) and sends it to
Proxy (topic pro2pxy);

• on the other replica, After S transfers the last result
to its protocol node proto S (topic aft2pro S) and set
the state of its server to match the primary.

In parallel with request processing, the node crash detector
on the MASTER (noted CD) periodically gives a proof of
life to the crash detector (CD S) on the SLAVE to assert its
liveliness (topic CD2CD S). If a crash is detected, then the
slave crash detector notifies the crash to the recovery node
(topic CD S2rcy). This node has two purposes : (1) in order
to enforce the fail-silent assumption, it must ensure that every
node of the Master are removed; (2) it switches the binding

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

After

FTM1

P
r
o
t
o
c
o
l

Before

After

Proceed

FTM2

Server

Fig. 3. Composition of FTM mechanisms

between the Client proxy and the Master protocol to the Slave
protocol. Thus, the Slave will receive the Client’s requests and
will act as the Primary, changing its operating mode.

Note that ROS does not provide APIs to dynamically
change bindings between nodes. The transition logic must be
implemented by the developper in the nodes. For instance, the
Slave protocol spins waiting for a notification from recovery
(topic rcy2pro S). This is carried out by background threads
within a node independently of its main functionality. We use
some ROS API for this. Upon reception of this topic, protocol
advertise that it is providing service 2 (as defined in figure X).
Further request from the Client will now be forwarded by the
proxy to the Slave protocol becoming now primary.

2) Impact on the existing application: Form the application
designer point of view, there are two main changes required
to integrate a FTM computation graph to its application. First,
Client will have to be remapped to call the proxy nodes
service instead of directly the service of Server. Second, state
management services, to get and set the state of the node, must
be integrated to the Server. Form an Object Oriented viewpoint
any server inherit from an abstract class stateManager provid-
ing two virtual methods, getState and setState. Both methods
are overridden during the server development.

D. Composition of mechanisms

The generic computation graph for FTM is designed for
composability. With respect to request processing a Protocol
node and a Proceed node present the same interfaces: a
request as input, a reply as output. Hence, a way to compose
mechanisms is to replace the proceed node of a mechanism
by a protocol and its associated before/proceed/after nodes.
Figure 3

E. Dynamic Adaptation of FTM

A set of minimal API required for dynamic adaptation of
FTMs have been established in previous research [Miruna]:

• control over components life cycle at runtime (add,
remove, start, stop);

• control over interactions between components at run-
time, for creating or removing bindings.

Furthermore, to ensure consistency before, during and after
reconfiguration, several issues must be carefully considered:

• components must be stopped in a quiescent state, i.e.
when all internal processing has finished;
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Furthermore, ensuring consistency before, during and after 
reconfiguration, requires that no requests or replies are lost: 
• Components are stopped in a quiescent state, i.e. when all 

internal processing has finished 
• Incoming requests on stopped components must be 

buffered 
With the exception of add and remove, ROS does not provide 
these APIs. However, these APIs can be emulated with 
dedicated logics in some nodes. For instance, we are using 
some binding control in the Primary to Backup switch 
described in our example. Controlling node lifecycle is more 
complex but can be done in the same manner and these 
principles can be applied in the context of dynamic adaptation, 
i.e. add new nodes at runtime and binding them in the 
computation graph. 
 
The protocol node plays a central part to provide proper 
consistency during a transition. Indeed, our design pattern for 
FTM is such that only stateless nodes, namely before, proceed 
and after, need to change in order to switch from one FTM to 
the next. Thus, protocol does not need to be changed during a 
transition and it can be used to buffer messages and detect 
when the changing nodes are in quiescent state. To do this, 
protocol is extended to deal with three new messages. The 
first one is used to signal protocol that a transition is about to 
happen and it has to start storing incoming requests. The 
second one is published by protocol and confirms that the 
FTM is in a safe state and transition can be safely executed. In 
particular, the safe state is reached when protocol has received 
the replies of all pending requests. The third message is used 
to signal protocol that the transition has been executed and it 
can resume normal operation and release the requests stored 
during the transition.  
 
Note that the described transition technique requires that an 
FTM is already in place in the system, meaning that the Client 
and the Server are already configured to use our proxy nodes. 
Installing an FTM in an application without interruption is not 
possible with ROS since control over binding at runtime is 
only possible with dedicated code within the nodes.  

V. LESSONS LEARNT  
ROS is a candidate for embedded applications in 

automotive systems. As already said in introduction, it is 
currently investigated by Renault for implementing ADAS and 
also used by NREC and BMW for embedded applications.  

In this paper, we analyze the use of ROS for embedded 
applications through a different angle. We consider critical 
applications that need to be modified during the lifetime of the 
system. This may be due to many events such as versioning, 
configuration changes, new threats and/or evolution of the fault 
model due to hardware aging or environment changes.  

The question key is: to what extent safety mechanisms 
attached to critical applications can be adapted with ROS? 

As far as adaptation is concerned, ideally, several 
requirements must be considered. A first requirement is 

separation of concerns, at design time but also at runtime. The 
second requirement relates to the capability to update, compose 
basic building blocks to realize/customize a safety mechanism: 
the key concept here is componentization thanks to CBSE 
approaches. The third requirement relates to the runtime 
support (OS and/or middleware) that should enable component 
mapping to tasks at runtime. The fourth relates to the dynamic 
binding between components at runtime to manipulate 
dynamically connections. Last but not least, a fifth requirement 
relates to the control over components corresponding to 
functions like activate, suspend, etc. 

A. Concepts for adaptation 
The 5 concepts mentioned above will be used here as a set 

of criteria to judge ROS with respect to the objective expressed 
in the above question. The first 3 criteria concern off-line 
adaptation: (i) separation of concern, (ii) componentization, 
(iii) component mapping to tasks. The last 2 criteria relates to 
the dynamic adaptation of the software on-line: (iv) dynamic 
binding and (v) control over components. 

The design for adaptation issues addressed in section III.A 
is out of the scope of this analysis since it relates to the 
development process for software adaptation and not to the 
runtime support. Based on former work [17], safety 
mechanisms or FTMs can be developed as a collection of 
building blocks, i.e. elementary FT design patterns. Such FT 
building blocks can then be composed together to realize a new 
safety mechanism during the system lifetime. From a runtime 
viewpoint, such building blocks are aggregated with our 
framework before-proceed-after.  

1) Off-line adaptation 
Separation of concern can be achieved with ROS, since an 

application is implemented as a collection of nodes, some 
implementing functional aspects other fault tolerance aspects. 
We have shown that for a given application server, a 
replication protocol can be implemented as a set of nodes. The 
composition of different mechanisms has been shown as well. 
The connection between mechanisms relies on the notion of 
topic and promotes the publish-subscribe interaction model. As 
far as dependability is concerned, the separation of concern is 
not always possible for all dependability mechanisms, some 
being either intrinsically embedded into the code (CRC, 
defensive programming, exception handling…) and/or 
application dependent. ROS cannot be criticized from this 
viewpoint; it provides separation of concern for coarse grain 
FT mechanisms (e.g. replication strategies). More fine grain 
control over code execution requires more reflective features at 
the OS/interpreter level. 

Componentization has two facets, namely at design time 
and at runtime. At design time, the solution resides on the use 
of CBSE techniques during the development process. At 
runtime it is related to the runtime model provided by ROS. 
Again the notion of node is essential. Our componentization 
finally corresponds at runtime to before, proceed and after 
components. In our experiments these components are simple, 
their mapping to task at this level is clearly possible as shown. 

Mapping to tasks become then a natural consequence of the 
ROS runtime model. Any component in the design can be 
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mapped to a node, which is a task in practice. This is has been 
illustrated in the experiments carried out and reported in this 
paper. The mapping of components to nodes has also a major 
benefit; it provides an error confinement area for the 
components (single or composite). A ROS node corresponds to 
a Unix process, so it is associated to a protected memory space. 
Time and Space Partitioning (TSP) is a very attractive concept 
as far as dependability is concerned (see. ARINC 653 for 
avionics real-time systems), but this is not provided by ROS. 
Indeed, a middleware cannot provide this kind of facility that 
belongs to operating system kernels. 

2) On-line adaptation 
Dynamic binding between components at runtime is 

essential to manipulate an application composed as a set of 
nodes. Fine-grain updates or composition of mechanisms 
implies modifications in the component graph, i.e. the graph of 
nodes at runtime that has been designed off-line. This is 
something difficult with ROS, although the publish-subscribe 
model could provide such facility. Topics correspond to pre-
defined communication channels between nodes that cannot be 
manipulated and changed on-line. 

Control over components is also an important aspect of 
dynamic adaptation. New components must be created while 
others must be removed. More importantly component must be 
suspended in quiescent state before being removed or updated. 
The consistency of the whole graph of nodes representing the 
application depends on the state of components. The quiescent 
state is defined as a state in which all requests processed by the 
node are terminated and that all incoming requests are 
buffered. In this state, a component can be removed or updated. 
ROS does not provide this kind of facility that can be found in 
reflective component based middleware like FraSCAti [14]. 

B. Practical aspects 
From a practical standpoint, ROS is easy to use. Tutorial 

can be found and, as an open source middleware, the 
community is present and very reactive. The use of ROS is 
simple, as it is a library that can be used in C/C++ programs.  

The development of application as a set of nodes and topics 
as communication channels is easy. Some functionalities are 
however only available in some languages (e.g. Python) and 
the documentation is sometime weak. The inter-node 
communication is fine but static. It could be extended with the 
notion of dynamic topics. 

The centralized and essential role of the ROS Master is an 
issue but this could be alleviated using conventional fault 
tolerance techniques to address such single point of failure. 

VI. CONCLUSION 
The adaptation of embedded application required an 

adequate runtime support. Beyond design for adaptation issues 
that relate more to the development process, the runtime 
support must fulfill 5 requirements: (i) separation of concern, 
(ii) componentization, (iii) component mapping to tasks. The 
last 2 criteria relate to the dynamic adaptation of the software 
on-line: (iv) dynamic binding and (v) control over components. 

ROS enables the 3 first requirements to be satisfied, but 
fails to provide the last two. Adaptation can be easily done off-
line using a CBSE design approach. On-line adaptation is far 
more difficult as shown by our experiments.  

As a runtime support for Resilient Computing, ROS in its 
current version is not a good candidate. ROS is a development 
platform to test concepts for adaptive fault tolerance off-line. 
The mapping of component to ROS is roughly simple. ROS is 
well suited for agile development processes. However, its 
capabilities for dynamic dependability are limited. Anyway, 
the insights gained with this work will help us to develop a 
suitable runtime support for Adaptive Fault Tolerance. 
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