
HAL Id: hal-01288079
https://hal.science/hal-01288079

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Infinite-State Systems
Stéphane Demri, Denis Poitrenaud

To cite this version:
Stéphane Demri, Denis Poitrenaud. Verification of Infinite-State Systems. Models and Analysis in
Distributed Systems, Wiley, pp.221-269, 2011, 9781848213142. �hal-01288079�

https://hal.science/hal-01288079
https://hal.archives-ouvertes.fr

Chapter 8

Verification of Infinite-State Systems

8.1. Introduction

In this section, we briefly present several methods that are used for the verification
of infinite-state systems. Furthermore, we show how the developments in counter
systems are related to other techniques (exact methods or by approximation).

8.1.1. From finite-state to infinite-state systems

Model-checking is a well-known approach to verifying behavioral properties of
computing systems; which has been very successful in the verification of finite-state
systems, see e.g. [MCM 93, CLA 00b, BER 01]. The assumption that programs are
finite-state is usually too restrictive; which is why, model-checking techniques for
infinite-state systems have flourished over the last 20 years. However, dealing with in-
finity or unboundedness of computational structures has dramatic consequences com-
putationally. The source of infinity of infinite-state systems is not unique and it can be
caused by at least the following factors. Programsmanipulate local or global variables
interpreted in infinite domains such as the set of integers or the set of real numbers.
Similarly, dynamic data structures are considered in programswhich is another source
of infinity. Programs contain procedure/method calls, leading to an unbounded con-
text stack to handle the control. The size of the stack can be arbitrarily large depending
on the number of nested calls, in which recursive calls may induce unbounded control
structures. Similarly, process creation can be the source of infinity (see section 8.3).
Furthermore, the behavior of programs depends on input data values (parameters).

Chapter written by Stéphane DEMRI and Denis POITRENAUD.

221

222 Models and Analysis for Distributed Systems

Similarly, systems may be parameterized by the number of subsystems that are syn-
chronized, etc. Parameterized systems can therefore represent an infinite number of
specific systems, depending on the parameter values. Note, for instance, to verify
a property automatically regardless of the number of processes is a great challenge.
Among the jungle of infinite-state systems, there are many interesting classes that have
been used for modeling computer systems and for undertaking formal verification.
Here are a few of them: Petri nets, see e.g. [REI 98]; timed systems (see Chapter 9);
pushdown systems, see e.g. [FIN 97]; counter systems (see section 8.2) and systems
with lossy channels [ABD 96].

8.1.2. Decision problems for infinite-state systems

Decision problems related to verification for infinite-state systems can be roughly
divided into two categories. Firstly, numerous decision problems are essential for
finite-state and for infinite-state systems such as reachability problems (including
control state repeated reachability problem), model-checking temporal formulae or
checking behavioral equivalences with respect to a finite-state system. Nevertheless,
specific methods or adaptations of existing methods are required in order to deal with
infinity. In this chapter, we shall mainly focus on reachability problems since their
resolution often enables much more complex problems to be solved. Secondly, deci-
sion problems also exist that are more specific to infinite-state systems. This includes
decision problems related to boundedness (for instance, checking whether a counter
in a counter automaton takes a bounded amount of values) and those related to model-
checking temporal formulae in which atomic formulae can state properties about un-
bounded values (a typical example is to replace control states in the temporal language
by constraints on counter values).

8.1.3. Techniques for verifying infinite-state systems

Techniques for the verification of infinite-state systems stem from exact methods in
which potentially infinite sets of configurations are finitely represented symbolically
to semi-algorithms that are designed to behave well in practice (of course these latter
procedures may not terminate). When exact methods provide decision procedures,
this is mainly due to the identification of an underlying finite structure in the veri-
fication problem. For instance, the set of reachable configurations can be effectively
represented symbolically, for instance by a formula in Presburger arithmetic for which
satisfiability is known to be decidable [PRE 29] (see section 8.4). The use of Pres-
burger arithmetic for formal verification has been advocated in [SUZ 80]. Finiteness
can also occur in a more subtle way as in well-structured transition systems [FIN 01]
for which termination is guaranteed thanks to underlying well quasi-orderings, see
also [HEN 05] for a classification of symbolic transition systems. Section 8.4 presents
exact methods to decide reachability problems for subclasses of counter systems by

Verification of Infinite-State Systems 223

taking advantage of decision procedures for Presburger arithmetic. Similarly, sec-
tion 8.3 introduces the class of recursive Petri nets, an extension of Petri nets with
recursion, and it shows how standard proof techniques for Petri nets (that are already
common and often studied class of infinite-state systems) can be extended in pres-
ence of recursion. As there are methods to verify finite systems that can be extended
to infinite-state systems (for instance the automata-based approach), specific methods
for infinite-state systems need to be developed too, for instance those based on well
quasi-orderings.

8.1.4. Automata-based symbolic representations

A major problem for the verification of infinite-state systems consists of comput-
ing the set of configurations reachable from a set of configurations. This requires a
well-suited symbolic representation for such (potentially infinite) sets and techniques
to compute the transitive closure of transition relations. Regular model-checking is
an approach that represents sets of configurations by regular sets of finite words (or
infinite words, or trees) and transducers encode the transition relations of the sys-
tems. Regularity is typically captured by finite-state automata. This automata-based
approach has been developped for several types of systems including systems for in-
tegers and reals [BOI 98], pushdown systems [FIN 97] or systems with lossy chan-
nels [ABD 96] (see also a similar approach by automatic structures in [BLU 00]);
recent developments can be found in [LEG 08]. Regular sets of trees are for instance
considered in [BOU 06b] in order to verify programs with dynamic data structures. In
section 8.4, we shall illustrate how sets of reachable configurations can be represented
by finite-state automata accepting finite words.

8.1.5. Approximations

An important difficulty in the approach with regular model-checking is the state-
explosion problem since the number of states of the built automata (representing sets
of configurations) can be huge. This is partly due to the fact that the automata are con-
structed regardless of the properties to be shown. By contrast, approximationmethods
may over-approximate the exact set of reachable configurations so that in case of ter-
mination, non-reachability can be deduced. The aim is to reduce the verification of
such systems to the verification of finite-state systems with the hope using known
and efficient methods. For instance, predicate abstraction produces Boolean programs
(program variables are Boolean) but the crux of the method relies on the ability to
automatically produce a precise enough abstraction that allows the desired property
to be checked. Indeed, the inacurracy of the abstraction should not induce the pro-
duction of spurious counterexamples. The method CEGAR (counter-example guided
abstraction refinement) [CLA 00a] aims to automatically derive more and more re-
fined abstractions in order to check the desired properties. Many tools successfully
use this methods, including BLAST [HEN 03].

224 Models and Analysis for Distributed Systems

8.1.6. Counter systems

Despite numerous symbolic representations having been proposed to deal with
infinite-state systems (see e.g. timed automata [ALU 94] in Chapter 9), their formal
verification remains a difficult problem. Many general formalisms referring to infinite-
state systems have an undecidable model-checking problem. Sometimes, decidability
can be regained by considering subproblems of the general problem. The class of
counter systems is an example of such a formalism. Counter systems have many ap-
plications in formal verification. Their ubiquity stems from their use as operational
models of numerous infinite-state systems, including for instance broadcast proto-
cols [FIN 02], programs with pointer variables (see [BOU 06a]) and logics for data
words. However, numerous model-checking problems for counter systems, such as
reachability, are known to be undecidable. Many subclasses of counter systems admit
a decidable reachability problem such as reversal-bounded counter automata [IBA 78]
and flat counter automata [BOI 98, COM 98, FIN 02]. These two classes of systems
admit reachability sets effectively definable in Presburger arithmetic (assuming some
additional conditions, unspecified herein). In general, computing the transitive clo-
sures of integer relations is a key step to solve verification problems on counter sys-
tems, see e.g. [BOZ 10].

In this chapter, we consider
– the class of sequential recursive Petri nets in order to illustrate how recursion can

be handled by adapting adequately techniques for Petri nets;
– subclasses of counter systems in order to illustrate the use of Presburger arith-

metic to solve verification problems on such systems.

8.1.7. Structure of the chapter

In section 8.2, we present the class of counter systems that are essentially finite-
state automata equippedwith programvariables (counters) interpreted by non-negative
integers. To do so, we first present Presburger arithmetic, since the update functions
on counters are governed by constraints expressed in Presburger arithmetic. Several
subclasses of counter systems are also introduced, including the vector addition sys-
tems with states that are known to be equivalent to Petri nets. The subsequent sections
are dedicated to subclasses of counter systems in which verification tasks can be done
effectively. In section 8.3, we present the class of recursive Petri nets that extend Petri
nets by adding recursion in a controlled way. Verification techniques for this enriched
computational model are described by emphasizing how the proof techniques for Petri
nets can be indeed extended adequately to this more expressive model. This includes
the resolution of the reachability problem as well as the computation of linear invari-
ants. In section 8.4, we introduce subclasses of counter systems for which reachability
questions can be solved in Presburger arithmetic viewed as a means to symbolically

Verification of Infinite-State Systems 225

represent sets of tuples of natural numbers. Unlike section 8.3, the new feature is not
recursion but rather the possibility to perform zero-tests (and more sophisticated up-
dates that can be expressed in Presburger arithmetic) but at the cost of making further
restrictions, for example on the control graphs. Concluding remarks can be found in
section 8.5.

8.2. Counter systems

In this section, we present Presburger arithmetic, the class of counter systems as
well as remarkable subclasses, including VASS that are known to be equivalent to
Petri nets (models of greater practical appeal).

8.2.1. Presburger arithmetic in a nutshell

Roughly speaking, Presburger arithmetic is the first-order theory of the structure
(N,+) shown decidable in [PRE 29] (which contrasts with Peano arithmetic that also
admits multiplication). This logical formalism is used to define sets of tuples of nat-
ural numbers. Moreover, it will serve several purposes. Firstly, in the definition of
counter systems, Presburger arithmetic is used as a language to define guards and
actions (updates on counter values) on transitions. Secondly, each formula from Pres-
burger arithmetic defines a set of tuples (related to the set of assignments that make
true the formula) and Presburger arithmetic is therefore a means to represent and sym-
bolically manipulate infinite sets of tuples of natural numbers. Thirdly, formulae from
Presburger arithmetic will serve as symbolic representations for semilinear sets (see
section 8.3). This section is dedicated to the basics of Presburger arithmetic and to the
main properties we shall use in the chapter.

Basics on tuples of natural numbers

We write N [resp. Z] for the set of natural numbers [resp. integers] and [m,m′]
with m,m′ ∈ Z to denote the set {j ∈ Z : m ≤ j ≤ m′}. Given a dimension n ≥ 1
and a ∈ Z, we write !a to denote the vector with all values equal to a. For !x ∈ Zn, we
write !x(1), . . . , !x(n) for the entries of !x. For !x, !y ∈ Zn, !x $!y

def⇔ for i ∈ [1, n], we
have !x(i) ≤ !y(i). We also write !x ≺ !y when !x $!y and !x '= !y.

Definition

LetVAR = {x, y, z, . . .} be a countably infinite set of variables. Terms are defined
by the grammar t ::= 0 | 1 | x | t+t, where x ∈ VAR and 0 and 1 are distinguished
constants (interpreted by zero and one respectively). For k ≥ 1, we write kx instead
of x + · · · + x (k times). Similarly, for k ≥ 1, we write k instead of 1 + · · · + 1 (k
times). Presburger formulae are defined by the grammar ϕ ::= t ≡k t | t < t |
¬ϕ | ϕ ∧ ϕ | ∃x ϕ | ∀x ϕ, where k ≥ 2. The atomic formula x ≡2 y holds true

226 Models and Analysis for Distributed Systems

whenever the difference between x and y is even (equality modulo 2). As usual, an
occurrence of the variable x in the formula ϕ is free if it does not occur in the scope of
either ∃x or ∀x. Otherwise, the occurrence is bound. For instance, in x1 < x2, all the
occurrences of the variables are free.

A valuation v is a map VAR → N and it can be extended to the set of all terms
as follows: v(0) = 0, v(1) = 1 and v(t + t′) = v(t) + v(t′). The satisfaction rela-
tion for Presburger arithmetic is equipped with a valuation witnessing that Presburger
formulae are interpreted over the structure (N,+).
– v |= t ≡k t′

def⇔ there is n ∈ Z such that kn+ v(t) = v(t′);
– v |= t < t′

def⇔ v(t) < v(t′);
– v |= ¬ϕ

def⇔ v '|= ϕ;
– v |= ϕ ∧ ϕ′ def⇔ v |= ϕ and v |= ϕ′;
– v |= ∃x ϕ

def⇔ there is n ∈ N such that v[x -→ n] |= ϕ where v[x -→ n] is equal
to v except that x is mapped to n;
– v |= ∀x ϕ

def⇔ for every n ∈ N, we have v[x -→ n] |= ϕ.

As usual, the Boolean connectives ∨ (disjunction) and ⇒ (implication) can be
defined from negation and conjunction in the standard way. Equality between two
terms, written t = t′, can be expressed by ¬(t < t′ ∨ t′ < t). Similarly, we write
t ≤ t′ to denote the formula (t = t′)∨ (t < t′). Observe also that t ≡k t′ is equivalent
to ∃ x (t = kx + t′ ∨ t′ = kx + t) (x is a variable that does not occur in t and t′).
We invite the reader to check that 0 and 1 can be removed from the above definitions
without changing the expressive power of the formulae.

In the chapter, we assume that the variables in VAR are linearly ordered by their
indices. So, any valuation restricted to n ≥ 1 variables can be viewed as a tuple in
Nn. Any formula with n ≥ 1 free variables x1, . . . , xn defines a set of n-tuples (n-ary
relation) as follows:

REL(ϕ)
def
= {(v(x1), . . . ,v(xn)) ∈ Nn : v |= ϕ}.

For instance, REL(x1 < x2) = {(n, n′) ∈ N2 : n < n′}. Similarly, the set of
odd natural numbers can be defined by the formula ∃y x = y + y + 1. A set X ⊆
Nn is said to be Presburger-definable iff there is a Presburger formula ϕ such that
X = REL(ϕ). Sets that are Presburger-definable are known to correspond exactly to
semilinear sets [GIN 66].

A formula ϕ is satisfiable (in Presburger arithmetic) whenever there is a valuation
v such that v |= ϕ. Similarly, a formula ϕ is valid (in Presburger arithmetic) when
for all valuations v, we have v |= ϕ. When ϕ has no free variables, satisfiability and
validity are equivalent notions. Two formulae are equivalent (in Presburger arithmetic)
whenever they define the same set of tuples.

Verification of Infinite-State Systems 227

THEOREM 8.1 [PRE 29] (I) The satisfiability problem for Presburger arithmetic is
decidable. (II) Every Presburger formula is equivalent to a Presburger formula with-
out first-order quantification.

Theorem 8.1(II) takes advantage of atomic formulae of the form t ≡k t′ that con-
tain an implicit quantification. Removing atomic formulae of the form t ≡k t′ does not
change the expressive power but the equivalence in theorem 8.1(II) would not hold in
that case. Moreover, in (II) above, the equivalent formula can be effectively built wit-
nessing the quantifier elimination property. In subsequent developments, we mainly
consider quantifier-free Presburger formulae, which does not restrict the expressive
power but may modify complexity issues. It is worth noting that the first-order theory
of (N,×) is decidable too (known as Skolem arithmetic) whereas the first-order the-
ory of (N,×,+) is undecidable (see e.g. [TAR 53]). Observe also that (Z, <,+) is
decidable [PRE 29] as well as the first-order theory of (R,×,+) [TAR 51].

Satisfiability problem for Presburger arithmetic can be solved in triple exponential
time [OPP 78] by analyzing the quantifier elimination procedure described in [COO 72].
Besides, satisfiability problem for Presburger arithmetic is shown 2EXPTIME-hard
in [FIS 74] and in 2EXPSPACE in [FER 79]. An exact complexity charaterization is
provided in [BER 80] (double exponential time on alternating Turing machines with
linear amount of alternations). Due to the wide range of applications for Presburger
arithmetic, computational complexity of numerous fragments has been also charac-
terized, see e.g. [GRÄ 88]. Moreover, its restriction to quantifier-free formulae is
NP-complete [PAP 81] (see also [BOR 76]).

8.2.2. Classes of counter systems

A counter system S is defined below as a finite-state automaton equipped with
counters, i.e. program variables interpreted by non-negative integers. In full general-
ity, the counters are governed by constraints that can be expressed by Presburger for-
mulae (this generality is mainly useful for section 8.4.1). Minsky machines [MIN 67]
form a special class of counter systems and therefore most interesting problems on
counter systems happen to be undecidable since Minsky machines can simulate Tur-
ing machines [MIN 67]. However, we shall study important subclasses of counter
systems for which decidability can be regained for various decision problems.

DEFINITION 8.2 A counter system S = (Q,n, δ) is a structure such that
– Q is a nonempty finite set of control states (a.k.a. locations);
– n ≥ 1 is the dimension of the system, i.e. the number of counters; we assume

that the counters are represented by the variables x1, . . . , xn;

228 Models and Analysis for Distributed Systems

– δ is the transition relation defined as a finite set of triples of the form (q,ϕ, q′),
where q, q′ are control states and ϕ is a Presburger formula whose free variables are
among x1, . . . , xn, x′1, . . . , x′n.

Elements t = (q,ϕ, q′) are called transitions and are often represented by q
ϕ−→ q′.

As usual, by convention, prime variables are intended to be interpreted as the next
values of the unprimed variables. Moreover, observe that a counter system has no
initial control state and no final control state but in the chapter we shall introduce such
control states on demand. It is certainly possible to propose an alternative definition
without control states and to encode them by new counters, for instance. However,
when infinite-state transition systems arise in the modeling of computational pro-
cesses, there is often a natural factoring of each system state into a control component
and a memory component, where the set of control states is typically finite.

Figure 8.1 contains a counter system (augmented with an initial control state). It
is related to the famous Collatz problem. The role of control state q0 is to compute an
arbitrary counter value before reaching the control state q1. At the control state q1, if
the counter value is even, then divide by two the counter value. Otherwise, multiply
by 3 and add 1. It is open whether whenever the system enters in the control state q1,
eventually it reaches the counter value 1.

Figure 8.1. An example of counter system

The class of counter systems is quite general and it very often makes sense to label
the transitions by Presburger formulae that can be decomposed by a guard (constraints
on the current counter values) and an update function (constraints on the way the new
counter values are computed from the previous ones).

A configuration of the counter system S = (Q,n, δ) is defined as a pair (q, !x) ∈
Q × Nn. Given two configurations (q, !x), (q′, !x′) and a transition t = q

ϕ−→ q′, we
write (q, !x) t−→ (q′, !x′) whenever v"x,"x′ |= ϕ and for i ∈ [1, n], v"x,"x′(xi)

def
= !x(i) and

v"x,"x′(x′i)
def
= !x′(i). The operational semantics of counter systems updates configu-

rations, and runs of such systems are essentially sequences of configurations. Every

Verification of Infinite-State Systems 229

counter system S = (Q,n, δ) induces a (possibly infinite) graph made of configura-
tions. Indeed, all the interesting problems on counter systems can be formulated on
its transition system.

DEFINITION 8.3 Given a counter system S = (Q,n, δ), its transition system T (S) =
(S,−→) is a graph such that S = Q×Nn and−→⊆ S×S such that ((q, !x), (q′, !x′)) ∈−→
def⇔ there exists a transition t ∈ δ such that (q, !x) t−→ (q′, !x′). As usual, ∗−→ denotes
the reflexive and transitive closure of the binary relation−→.

Given a counter system S, a run ρ is a non-empty (possibly infinite) sequence ρ =
(q0, !x0), . . . , (qk, !xk), . . . of configurations such that two consecutive configurations
are in the relation−→ from T (S). (q0, !x0) is called the initial configuration of ρ.

Standard decision problems

Below, we enumerate a list of standard decision problems for counter systems.
They are mainly related to reachability questions. The list is certainly not exhaustive
but it contains the main problems related to verification and model-checking.

Reachability problem:
– Input: a counter system S and two configurations (q, !x) and (q′, !x′);
– Question: is there a finite run with initial configuration (q, !x) and final configu-

ration (q′, !x′)?

Control state reachability problem:
– Input: a counter system S, a configuration (q, !x) and a control state qf ;
– Question: is there a finite run with initial configuration (q, !x) and whose final

configuration has control state qf?

Covering problem:
– Input: a counter system S and two configurations (q, !x) and (q′, !x′);
– Question: is there a finite run with initial configuration (q, !x) and whose final

configuration is (q′, !x′′) with !x′ $!x′′?

Boundedness problem:
– Input: a counter system S and a configuration (q, !x);
– Question: is the set {(q′, !x′) ∈ Q× Nn : (q, !x)

∗−→ (q′, !x′)} finite?

Termination problem:
– Input: a counter system S and a configuration (q, !x);

230 Models and Analysis for Distributed Systems

– Question: is there an infinite run with initial configuration (q, !x)?

Control state repeated reachability problem:
– Input: a counter system S, a configuration (q, !x) and a control state qf ;
– Question: is there an infinite run with initial configuration (q, !x) such that the

control state qf is repeated infinitely often?

Most standard verification problems on counter systems reduce to one of the above
mentioned decision problems. For instance, model-checking over linear-time tempo-
ral logic (LTL) in which atomic formulae are restricted to control states amounts to
questions on control state repeated reachability problem. Hence, designing algorithms
for such decision problems can be helpful for instance to verify computer systems such
as programs with pointers [BOU 06a], broadcast protocols [ESP 99], or replicated
finite-state programs [KAI 10] (Boolean programs with a finite set of configurations
but can be executed by an unknown number of threads), to quote but a few.

In the forthcoming subsections, we introduce several subclasses of counter systems
by restricting the general definition provided above. Additional requirements can be
of distinct nature: restriction on syntactic ressources (number of counters, Presburger
formulae etc.), restriction on the control graph (e.g. flatness), and semantical restric-
tions (reversal-boundedness, etc.)

Succinct counter automata

In the chapter, we adopt the convention that a counter automaton is a counter sys-
tem in which the instructions are either zero-tests, increments, or decrements, possibly
encoded succinctly. A succinct counter automaton is a counter system (Q,n, δ) in

which the transitions are of the form either q inc("b)−−→ q′ with!b ∈ Zn or q zero("b′)−−−−→ q′ with
!b′ ∈ {0, 1}n where:
– inc(!b) is a shortcut for

∧

i∈[1,n] x
′
i = xi +!b(i);

– zero(!b′) is a shortcut for
∧

i∈[1,n] s.t. "b′(i)=1 xi = 0 ∧
∧

i∈[1,n] x
′
i = xi (as usual,

empty conjunction is understood as 3).

In succinct counter automaton, each transition either performs zero-tests on a subset
of counters or updates counters by adding a vector in Zn. All the counters are tested
or updated simultaneously.

Standard counter automata

A standard counter automaton is a counter system (Q,n, δ) in which the transi-
tions are of the form either q inc(i)−−→ q′ or q dec(i)−−−→ q′ or q zero(i)−−−→ q′ (i ∈ [1, n]) where
– inc(i) is a shortcut for (x′i = xi + 1) ∧ (

∧

j $=i x
′
j = xj) (also written xi++);

Verification of Infinite-State Systems 231

– dec(i) is a shortcut for (x′i = xi − 1) ∧ (
∧

j $=i x
′
j = xj) (also written xi- -);

– zero(i) is a shortcut for (xi = 0) ∧ (
∧

j x
′
j = xj) (also written xi = 0?).

By contrast to succinct counter automata, transitions in standard counter automata
can perform a simple operation at once (otherwise, a succession of transitions is
needed). Indeed, standard counter automata and succinct counter automata are very
similar but when it comes to complexity issues, exponential blow-up may occur when
passing from one model to another. In the sequel, unless otherwise stated, by a counter
automaton we mean a standard one. It is easy to check that Minsky machines (with
two counters) form a subclass of standard counter automata.

8.2.2.1. Vector addition systems with states
A vector addition system with states (VASS) [KAR 69] is a succinct counter au-

tomaton without zero-tests, i.e. all the transitions are of the form q
inc("b)−−→ q′ with

!b ∈ Zn. In the sequel, a VASS is represented by a tuple V = (Q,n, δ) where Q
is the finite set of control states and δ is a finite subset of Q × Zn × Q. Standard
counter automata can be naturally viewed as VASS augmented with zero-tests by sim-
ulating transitions of the form q

"b−→ q′ by sequences of increments and decrements.
Additionally, VASS are known to be equivalent to Petri nets that are models of greater
practical appeal. Figure 8.2 presents an example of VASS. One can show that for all
!x ∈ N4, the set {!y ∈ N4 : (q0, !x)

∗−→ (q0, !y)} is finite. Moreover, for !x ∈ N2,
{k ∈ N : k ≤ !x(1) × !x(2)} = {!y(4) : (q0, !y0)

∗−→ (q0, !y), !y0(1) = !x(1), !y0(2) =
!x(2), !y0(3) = !y0(4) = 0}.

Figure 8.2. A VASS weakly computing multiplication

THEOREM 8.4 (see e.g. [MAY 84, KOS 82]) The reachability problem for VASS is
decidable.

The exact complexity of the reachability problem is open: we know it is EX-
PSPACE-hard [LIP 76] and no primitive recursive upper bound exists. By contrast,

232 Models and Analysis for Distributed Systems

the covering problem and boundedness problems seem easier since they are EX-
PSPACE-complete [LIP 76, RAC 78]. Observe also that the covering problem can
express the thread-state reachability problem for replicated finite-state programs, see
e.g. [KAI 10]. Similarly, the boundedness problem for asynchronous programs has
been considered in [GAN 09].

8.2.2.2. Relationships with Petri nets

In this section, we briefly recall how Petri nets (see e.g. [REI 98]) are related to
VASS . First, let us recall that a Petri net N is a structure (P, T,W−,W+,mI) such
that P is a finite set of places, T is a finite set of transitions, W− : (P × T) → N
and W+ : (P × T) → N are weight functions. A marking m is a map of the form
P → N: for each place, we specify a number of tokens (possibly none). In the
Petri net N , mI : P → N is the initial marking (initial distribution of tokens). We
assume that the reader is familiar with the semantics of this model (otherwise see
e.g. [PET 81, REI 98]). We just recall below a few definitions. A transition t ∈ T is
m-enabled, writtenm t−→, whenever for all places p ∈ P , m(p) ≥ W−(p, t). An m-
enabled transition t may fire and produce the markingm′, written m t−→ m′, with for
all places p ∈ P ,m′(p) = m(p)−W−(p, t)+W+(p, t). A markingm′ is reachable
from m whenever there is a sequence of the form m0

t0−→ m1
t1−→ · · · tk−1−−→ mk with

m0 = m andmk = m′ (also writtenm
t0···tk−1−−−−→ m′).

Here are standard problems for Petri nets.

Reachability problem for Petri nets:
– Input: a Petri net (P, T,W−,W+,mI) and a markingm;
– Question: ism reachable frommI?

Covering problem for Petri nets:
– Input: a Petri net (P, T,W−,W+,mI) and a markingm;
– Question: is there a markingm′ reachable frommI such that for all p ∈ P , we

havem′(p) ≥ m(p)?

Boundedness problem for Petri nets:
– Input: a Petri net (P, T,W−,W+,mI);
– Question: is the set of markings reachable frommI infinite?

Petri nets and VASS are known to be equivalent models as far as the reachabil-
ity problem, the covering problem, and the boundedness problem are concerned, see
e.g. [REU 90]. By way of example, let us show how to simulate a VASS using a Petri
net. Let V be a VASS (Q,n, δ) and (qI , !xI) be a configuration. We can build a Petri
net NV that simulates V , by using a standard translation from VASS to Petri nets.

Verification of Infinite-State Systems 233

For every control state q in V , we introduce a place pq in NV and for i ∈ [1, n], we
introduce a place pi. An initial marking mI contains one token in the place pqI and
for i ∈ [1, n], mI(pi) = !xI(i). From this marking, we only obtain markings where
a unique token belongs to a place of the form pq (q ∈ Q) which means that a unique

control state is active for every marking. For every transition in V , say t = q
"b−→ q′,

we consider a transition t in NV that consumes a token in pq, produces a token in
pq′ and produces [respectively consumes] !b(i) tokens in the place pi when !b(i) ≥ 0

[respectively when!b(i) < 0].

In the rest of this chapter, we shall consider two types of extensions of Petri nets,
namely recursive Petri nets in section 8.3; which adds recursion to Petri nets and sub-
classes of counter systems in which zero-tests are allowed in section 8.4 (presented as
extensions of VASS with zero-tests or with more complex Presburger-definable update
functions). Methods to handle verification problems for such extensions will be of a
different nature. As far as recursive Petri nets are concerned, extensions of techniques
for standard Petri nets are considered. In contrast, in section 8.4, the decidability
of verification problems is established by reduction into the satisfiability problem for
Presburger arithmetic.

8.3. Recursive Petri nets

The recursive Petri net formalism (RPN) has been introduced to model dynamic
systems for which the creation of processes (or threads) is required [El 95, El 96]. In
this formalism, a process is characterized by a Petri net in which particular transitions
(called abstract) allow the creation of processes and sets of markings from which the
process is allowed to terminate. More precisely, termination of a process is possible
when the current marking belongs to a given semilinear set, i.e. to a set defined by a
Presburger formula. All the processes share the same control structure (i.e. the same
RPN) but the initial marking of each process depends on the abstract transition which
has created it. In consequence, the state of a process is completely characterized
by a marking (a distribution of tokens over places) of the RPN and by the abstract
transition that has created the process. Parallelism, which is a fundamental feature
of Petri nets, is allowed between a process and its father. Termination of a process
induces the update of the current marking of the father process (mainly by adding
tokens to places). In this way, the relationships between processes and their fathers
is encoded in the global state of the RPN. Hence, the global state of a recursive Petri
net can be viewed as a finite tree whose nodes are markings (in the usual sense for
Petri nets) and each edge is labeled by the abstract transition that has created the child
process.

It has been shown in different papers [HAD 99, HAD 00, HAD 01] that RPN form
a strict extension of Petri nets in terms of expressive power. It has also been shown

234 Models and Analysis for Distributed Systems

that the reachability problem remains decidable for RPN. It is important to note that
this property is essential for the design of verification tools. However, in [HAD],
the authors have established that the verification of linear-time temporal formulae is
an undecidable problem whereas it is decidable for the standard class of Petri nets
(limited to event-based formulae).

In this section, we focus on a particular subclass of RPN called sequential re-
cursive Petri nets (SRPN) [HAD 01]. In such a net, a father process creating a child
process is blocked until the child process terminates. Consequently, parallelism is only
allowed within the unique active process, if any. The global state of a sequential recur-
sive Petri net can be viewed as a finite stack of processes, the topmost process being
the active one. Moreover, each process can be represented by a marking (in the usual
sense for Petri nets) and by the abstract transition that has created it (if any), the father
process being just below on the stack. This formalism is less expressive than RPN
but it is a strict extension of Petri nets. Moreover, the verification of (event-based)
linear-time temporal formulae remains a decidable problem for SRPN.

8.3.1. Definitions

Similar to an ordinary Petri net, a SRPN has places and transitions. The transitions
are split into two categories: elementary transitions and abstract transitions.

The semantics of such a net may be informally explained as follows. In an ordinary
net, a process plays the token game by firing a transition and by updating the current
marking (its internal state). In an SRPN, there is a stack of processes (each one with
its current marking) where the only active process is on top of the stack. A step of an
SRPN is thus a step of this process. The enabling rule of the transitions is specified by
the backward incidence matrix.

When a process fires an elementary transition, it consumes the tokens specified by
the backward incidence matrix and produces tokens defined by the forward incidence
matrix (as in ordinary Petri nets).

When a process fires an abstract transition, it consumes the tokens specified by the
backward incidence matrix and creates a new process (called its son) put on top of the
stack which consequently becomes the active process. Such a process begins its token
game with an initial marking that depends on the abstract transition.

Termination of an active process is possible when the current marking belongs to
a given set of markings that is effectively semilinear. Herein, effective semilinearity
is guaranteed by using Presburger formulae whose free variables refer to places of
the net (see section 8.2.1). So, a family of effective representations of semilinear sets
of final markings is defined in order to describe the termination of processes. This

Verification of Infinite-State Systems 235

family is indexed by a finite set whose items are called termination indices. When
a process reaches a final marking, it may terminate its token game (i.e. it is popped
out of the stack). Then, it produces in the token game of its father (the new top of
the stack) and for the abstract transition which created it, the tokens specified by the
forward incidence matrix. Unlike ordinary Petri nets, this matrix depends also on the
termination index of the semilinear set which the final marking belongs to. Such a
firing is called a cut step (or equivalently a return step). When a cut step occurs in a
stack reduced to a single process, this results to the empty stack.

The next definitions are helpful to define what are the configurations (global states)
of an SRPN. Below, such configurations are called extended markings.

DEFINITION 8.5 (SRPN) An SRPN is defined by a tuple N =
〈P, T, I,W−,W+, Init,Υ〉 where:

– P = {p1, . . . , pα} is a finite set of places;
– T is a finite set of transitions such that P ∩ T = ∅;
– A transition of T can be either elementary or abstract. The sets of elementary

and abstract transitions are respectively denoted by Tel and Tab;
– I is a finite set of indices;
– W− is the pre function defined from P × T to N;
– W+ is the post function defined from P × [Tel ∪ (Tab × I)] to N;
– Init is a labeling function Tab → (P → N) which associates an ordinary

marking called the starting marking of t with each abstract transition;
– Υ =(ϕi)i∈I is a family of Presburger formulae with free variables among x1,

. . . , xα. Each formula ϕi defines the set of ordinary markings {m : P → N | v |=
ϕi, for 1 ≤ j ≤ α, v(xj) = m(pj)}. By abuse of notation, we say that a markingm
belongs to REL(ϕi) to mean that it belongs to the above set. For instance, ’x1 = x2’
would be interpreted as a symbolic way to represent the set of markings such that the
number of tokens in the place p1 is equal to the number of tokens in the place p2.

In the chapter, we distinguish two kinds of markings. As usual for Petri nets, an
ordinary marking is a map fromP toN. By contrast, an extended marking corresponds
to a global state of the SRPN that can be viewed as a finite stack of ordinary markings
augmented with abstract transitions. When no confusion is possible, we simply use
the term “marking”.

DEFINITION 8.6 (Extended marking) An extended marking em for a SRPN
N = 〈P, T, I,W−,W+, Init,Υ〉 is either the empty stack ⊥ or a sequence
(md, td), . . . , (m2, t2),m1 for some d ≥ 1 such that

– d is the depth of em and {1, . . . , d} is the set of levels;

236 Models and Analysis for Distributed Systems

– m1, . . . ,md are ordinary markings;
– t2, . . . , td are abstract transitions. The intention is that a process (mi, ti) has

been created by the abstract transition ti and its current marking is mi. Whenever
d ≥ 2, the active process is (md, td). When d = 1, the active process ism1.

Obviously, an extended marking different from⊥ can be viewed as a tree reduced
to a single path where nodes are indexed by levels and labeled by ordinary markings
and edges are labeled by abstract transitions. The root of this tree corresponds to
the bottom of the stack and the single leaf to its top (for instance, see Figure 8.6).
A marked SRPN (N, em0) is an SRPN N together with an initial extended marking
em0. According to the presentation, the size of the stack corresponding to an extended
marking em is d and the ordinary markings associated with the processes of the stack
arem1, . . . ,md. Since the effect of cut steps depends on the abstract transition which
created a process, the transitions t2, . . . , td are stored in the extended marking.

Given a SRPN, we can define its corresponding reachability graph whose nodes
are made of extended markings and edges are labelled by actions. Three types of
actions can be distinguished:

1) firing an elementary transition t ∈ T \ Tab, corresponding to an internal step;
2) firing an abstract transition t ∈ Tab, corresponding to a gosub step;
3) terminating the active process with the current marking in REL(ϕi) for some

i ∈ I and possibly returning to the father process, corresponding to a return step (also
called cut step).

An elementary step corresponds to performing a single action. Hence, the seman-
tics of a SRPN, completely determined by its corresponding reachability graph, is
based on the notions of enabled actions and firing of steps.

DEFINITION 8.7 Let em = (md, td), . . . , (m2, t2),m1 be an extended marking (dif-
ferent from ⊥) for the SRPNN .

1) A transition t ∈ T is enabled in em, denoted by em t−→ iff for all p ∈ P , we
havemd(p) ≥W−(p, t);

2) Return step τi with i ∈ I is enabled in em, denoted by em
τi−→, iff md ∈

REL(ϕi).

DEFINITION 8.8 Let em = (md, td), . . . , (m2, t2),m1 and em′ =
(m′

d′ , t′d′), . . . , (m′
2, t

′
2),m

′
1 be two extended markings for the SRPNN .

– For t ∈ T \ Tab, em
t−→ em′ iff

1) t is enabled in em,

Verification of Infinite-State Systems 237

2) d = d′ and, em and em′ differ at most on their active process,
3) td = t′d and for all p ∈ P ,m′

d(p) = m′
d(p)−W−(p, t) +W+(p, t);

– For t ∈ Tab, em
t−→ em′ iff

1) t is enabled in em,
2) d′ = d+ 1,
3) (m′

d′ , t′d′) = (Init(t), t),
4) for all p ∈ P ,m′

d(p) = md(p)−W−(p, t),
5) td, (md−1, td−1), . . . , (m2, t2),m1 = t′d, (m

′
d−1, t

′
d−1), . . . , (m

′
2, t

′
2),m

′
1;

– For i ∈ I , em τi−→ em′ iff
1) τi is enabled in em,
2) d′ = d− 1,
3) if d′ ≥ 1, then for all p ∈ P ,m′

d′(p) = md′(p) +W+(p, td, i),
4) We have the equality below:

td′ , (md′−1, td′−1), . . . , (m2, t2),m1 = t′d′ , (m′
d′−1, t

′
d′−1), . . . , (m

′
2, t

′
2),m

′
1.

A firing sequence σ is a sequence of the form em1
a1−→ em2

a2−→ em3 · · ·
an−1−−→ emn

such that for every i ∈ [1, n− 1], emi
ai−→ emi+1 is a single step. In the sequel, for the

sake of simplicity, σ will be often denoted by σ = a1 . . . an−1. When multiple SRPNs
are involved, we denote by em1

σ−→N emn a firing sequence σ in an SRPN N . In a
marked SRPN (N, em0), an extended marking em is reachable iff there exists a firing
sequence em0

σ−→N em. The reachability graph of (N, em0) is defined as follows:
the nodes are the reachable extended markings and the edges are labeled by actions.

8.3.2. Expressive power

This section illustrates both the syntax and the semantics of SRPN with the help
of relevant examples. Furthermore, we simultaneously demonstrate the expressive
power of the model and its suitability with respect to standard discrete event system
patterns [CAS 99].

Modeling of interrupts and exceptions. SRPNs are illustrated by integrating an inter-
rupt mechanism step by step in an existing net. Then, the treatment of exceptions is
added. The SRPN modeling the abstraction of the original system is given in Fig-
ure 8.3. This net can be understood as a standard Petri net and it can realize a unique
behavior where the transition tcorrect is systematically fired. It is important to note
that any Petri net can be interpreted as a SRPN without abstract transitions and ex-
tended markings are reduced to ordinary markings.

When an (software or hardware) interrupt is handled, the context of the system
must be saved and the control given to the interrupt handler. If different levels of

238 Models and Analysis for Distributed Systems

tcorrect

prun

Figure 8.3. An abstraction of a system

ptreated

pup

tcorrect

Υ0 = {m | m(ptreated) = 1}

ttreat

prun

pup + pint

tint

pint

〈0〉

Figure 8.4. Integration of an interrupt mechanism

interrupts have to be taken into account, an interrupt can mask some others. Moreover,
when the handler returns, the execution context must be restored.

The SRPN presented in Figure 8.4 adds an interrupt mechanism to the net from
Figure 8.3. Contrary to ordinary nets, SRPNs are often disconnected since each con-
nected component may be activated by the firing of different abstract transitions. As
the initial extended marking is reduced to a single node, we have directly described
the ordinary marking associated with this node by putting tokens in places. We will
follow the same convention in the sequel. The new elements are:
– the transition tint: this transition is an abstract one (represented by a double line

rectangle) and represents the trigger point of the interrupt. Here, we consider that
the interrupt can always occur and in consequence, the unique input place (pint) of
the abstract transition is initially marked. The firing of tint creates a new process
on top of the stack and freezes the execution of the father process until the child
process terminates. The child process starts its execution with the marking pup + pint
(indicated in the frame near the abstract transition). Because, pint will be still marked,
a new interrupt may occur during its execution. The firing of tint consumes also a
token from its input place pint but produces no token. This step is delayed until the
end of the new process and depends on its type (index) of termination;

Verification of Infinite-State Systems 239

– the set Υ0: In this example, a unique set characterizes the final markings from
which a return step is possible. Υ0 represents the set of markings where the interrupt
has been treated (the place ptreated is marked). The index 0 associated with this set is
used to indicate the type of termination (here, there is a unique type);
– the valuation 〈0〉 labels the arc linking the transition tint to the place pint: when

a process terminates (its current marking should belong to Υ0), the marking of the
father process is modified depending on the index of the semilinear sets used for ter-
mination of the active child process. Then, the post-condition of an abstract transition
is conditioned by the index associated to the termination set. In this example, the firing
of a cut step will always produce a token in the place pint.

The initial extended marking of the SRPN of Figure 8.4 is composed of a unique
process in which only the places prun and pint both contain a unique token. It is
clear that this net can reach an infinite number of configurations. Indeed, taking into
account an interrupt does not mask those that can occur during its handling (the place
pint is marked in the starting marking of tint). We can remark that this infinite state
space can occur whatever the boundedness of the places (all the places may contain at
most a unique token).

The integration of a mechanism for exceptions is illustrated in Figure 8.5. In this
example, an exception can occur (the firing of the abstract transition tex) only if the
main process runs (witnessed by the presence of a token on the place prun). Its treat-
ment can recover the error (place precover) or leads to a fatal situation (place pfatal).
The two termination sets Υ1 and Υ2 allow to distinguish both cases and the output
arcs of the abstract transition tex are labeled consecutively.

Modularity is a natural feature of SRPNs. Indeed, if the system does not include
the interrupt mechanism, the designer simply deletes the corresponding elements in
the figure.

Figure 8.6 presents a subgraph of the reachability graph of the SRPN. The right
part of the figure illustrates the interrupts and the left the exceptions. Interrupt cannot
occur during the treatment of exception. On the contrary, if an exception leads to
a fatal situation and when this error has been transmitted to the main process, the
behavior of this last process will be limited to the treatment of interrupts (the unique
enabled transition – not represented in the figure – from the state where the main
process reaches the marking pstop + pint, is tint).

The example of Figure 8.5 shows the ability of SRPN to implicitly keep the con-
text of suspended processes. This kind of formalization in terms of Petri net requires
an explicit representation of each context. By using this feature, it has been shown
in [HAD 00] that SRPN include the family of algebraic languages. On the other hand,
it has been also shown that the language of palindromes (a well-known algebraic lan-
guage) cannot be recognized by a (labeled) Petri net [JAN 79]. Thus, the family of

240 Models and Analysis for Distributed Systems

pint

tint

〈0〉

pup + pint

Υ0 = {m | m(ptreated) = 1}
Υ2 = {m | m(pfatal) = 1}

ptreated

pup

ttreattfatal

tex

〈2〉pex

pstop tcorrect

prun

〈1〉

trecover

precover pfatal

pex

Υ1 = {m | m(precover) = 1}

Figure 8.5. An exception mechanism

languages recognized by SRPNs strictly includes the family of languages recognized
by ordinary Petri nets.

Modeling of fault tolerance. In order to analyse fault-tolerant systems, the engineer
may start by a nominal system and then introduces the faulty behavior as well as
repairing mechanisms. We limit ourselves to an abstract view for such a system since
this pattern can be simply generalized. This abstraction is given in the right part of
Figure 8.7. The nominal system infinitely executes instructions (elementary transition
tcount). The marking of place pcount represents the number of instruction executions.

The complete SRPN is obtained by adding the left part of Figure 8.7. Its behavior
can be described as follows. There are only two reachable extended markings reduced
to a single node: the initial global state (emstart) where a token in pstart indicates
that the system is ready to start and the repairing state (emrepair) where a token in the
place prepair indicates that the system is being repaired. Starting from the initial state,
the abstract transition tstart is fired and the execution of instructions is “played” by the
new process. If this process terminates, meaning that a crash occurs, the repairing state

Verification of Infinite-State Systems 241

tcorrect

pup + pint

prun

pex

prun

ptreated + pint

tint

prun

pup

ptreated + pint

tex

pint

pfatal

tex

pint

tint

tint

tfatal

pup

tint

pup + pint

tint

prun

τ2

ttreat

ttreat

tint

prun + pintpstop + pint

τ1

τ2

tex tint

tint

Figure 8.6. Subgraph of the reachability graph of the SRPN of Figure 8.5

pfault

pinit + pfault

pcount

tcount

pinit

prepair

trepair

pstart

tstart

Υ0 = {m | m(pfault) > 0}

Figure 8.7. A fault-tolerant system

is reached. The place pfault represents the possibility of a crash. As pfault is always
marked in the correct system and from the very definition of Υ0, the occurrence of a
fault is always possible. We assume that no crash occurs during the repairing stage.
With additional places and by modifying Υ0, we could model more complex fault
occurrences (e.g. conditioned by software execution).

242 Models and Analysis for Distributed Systems

em0 em1 emi emi+1

tcounttcount

τ0τ0τ0τ0

emrepair

emstart

trepair

tstart

Figure 8.8. (Infinite) reachability graph of the SRPN of the figure 8.7

The reachable extended markings either consist of a single node or an initial node
and its son. However, the number of reachable markings in this latter node is infinite
(the place pcount is unbounded). In other words, the repairing state can be reached
from an infinite number of extended marking which means that the transition system
associated with an SRPN may have some states with an infinite in-degree. This situ-
ation cannot occur with standard Petri nets or with process algebras. In particular, in
a reachability graph obtained from a Petri net, for each marking/node, its in-degree
is bounded by the number of transitions. Moreover allowing unobservable transitions
does not solve the problem. Indeed, it has been proven that the transition system
shown in Figure 8.8 cannot be generated by a standard Petri net with unobservable
transitions.

Otherwise stated, the modeling of crash for a nominal system with an infinite num-
ber of states is impossible with Petri nets. In the restricted case where the nominal
system has a finite number of reachable configurations, theoretically it is possible to
model it with a standard Petri net. However, the modeling of a crash requires a number
of transitions proportional to the number of reachable configurations, which leads to
an intricate net. The SRPN designed herein does not depend on this number and leads
to a quite compact representation.

8.3.3. Verification

A distinguished feature of Petri nets is the decidability of the reachability problem,
even though the best known decision procedure does not lead to a primitive recursive
complexity, see e.g. [REU 90]. Many safety properties (specifying that nothing bad
will happen) can be reduced to instances of the reachability problem. Then, a decision

Verification of Infinite-State Systems 243

procedure for the reachability problem can be viewed as a building block in larger
verification tools.

It is possible to decide whether a Petri net is bounded. Because, the reachability
graph of a bounded net is finite (by definition), the methods presented in Chapter 7
can be applied. Moreover, the membership problem with a language specified by a
labeled Petri net is also a decidable problem. This allows verification that an expected
behavior can be effectively realized by the system. Finally, the verification of a tem-
poral property is possible but limited to the event-based linear-time temporal formula
(an LTL formula can express the firing of transitions but not constraints on reached
markings). The work in [ESP 94] gives a large synthesis of the decidability results
concerning Petri nets.

These problems remain decidable for SRPN. Hence, even if it is a strict extension
of Petri nets, the verification of numerous behavioral properties is still possible. In
this section, we limit ourselves to the study of the reachability problem.

Another important feature of Petri net concerns the structural verification tech-
nique presented in Chapter 7. We present an algorithm for the computation of linear
invariants of SRPN.

Behavioral verification. Given a marked SRPN, the reachability problem consists
of checking whether an extended marking can be reached from the initial extended
marking (through a sequence of successive firings). The decision procedure, infor-
mally presented below, is inspired from a more complex one that is dedicated to the
larger class of RPNs. The idea consists of reducing an instance of the problem to
several instances of the reachability problem for ordinary Petri nets.

The decision procedure can be divided into different stages:
– the first one is independent of the initial and final extended markings. It consists

of determining whether a process created by a given abstract transition can reach a
marking belonging to a termination set (those termination sets are specified by Υ
in a SRPN). Such an abstract transition is said to be closable with respect to this
termination set. This verification should be done for each abstract transition and for
each termination set; thus it should be done at most card(Tab)× card(I) times;
– the second stage aims to predict the behavior of processes composing the ini-

tial extended marking and, hence, the nature of the processes composing the extended
marking to be reached. Indeed, a process of the initial extended marking can either
be terminated during the firing sequence or can persist modifying its marking. The
processes of the final extended marking, which do not correspond to processes of the
initial extended marking, must be created by the firing sequence. Even if each pre-
diction must satisfy some constraints (e.g. if a child process must be created by the
firing sequence, its child processes must be created as well), many different predic-
tions are generally possible. Figure 8.9 presents such a prediction. The two processes

244 Models and Analysis for Distributed Systems

terminated
process

created
process

m0

t0

m1

t1

m2

m′
0

t′0

m′
1

t′1

m′
2

σ

transformed process

transformed process

Figure 8.9. A coherent prediction of the behavior of processes

of the initial extended marking labeled by the markings m0 and m1 must evolve to
the respective markingsm′

0 andm′
1. On the contrary, the process labeled bym2 must

terminate during the sequence and, consequently, its child processes must also ter-
minate. Finally, it is expected that the process labeled m′

2 in the reached extended
marking will be created by the sequence. It is clear that the number of distinct and
coherent predictions is bounded by the number of processes composing the initial and
final extended markings.

All the steps of the decision procedure are based on the same principle: the con-
struction of an ordinary Petri net and a reachability problem equivalent to the elemen-
tary problem to be decided. We now focus on the determination of closable abstract
transitions.

Note that it is decidable to determine whether a marking from a semilinear set can
be reached in a Petri net equipped with an initial marking (even if the semilinear set is
infinite).

An abstract transition is said closable in a termination set if a process (created
by this abstract transition) can realize a return step from this termination set. This
amounts to checking an instance of the reachability problem and, when an abstract
transition is closable, it induces a corresponding firing sequence. When an abstract
transition is fired in a given process, the execution of this process is suspended until
the child process created by the abstract transition terminates. Consequently, in the
associated firing sequence, the firing corresponding to the root level can only involve
some closable abstract transitions.

Verification of Infinite-State Systems 245

This leads to an iterative computation of the set F ⊆ Tab × I of closable abstract
transitions. F0 is the subset of F where the associated firing sequence contains no
firing of abstract transitions. When new elements are added to F , this indicates that
these transitions can be used.

The elements of F0 are determined by testing if the ordinary net obtained by sup-
pressing all the abstract transitions can reach a marking from a termination set from
the initial marking of a given abstract transition (specified by Init in a SRPN). In
order to compute the set F1, the abstract transitions belonging to F0 are now simu-
lated by ordinary transitions having the same pre-conditions and post-conditions (for
a given termination set). The aim of these transitions is to simulate the creation of
child processes that are able to terminate (in this termination set).

Assuming that Fi is defined, Fi+1 is defined as the set of closable abstract tran-
sitions, excluding those from Fi, such that we consider the SRPN in which the ab-
stract transitions belonging to Fi are now simulated by ordinary transitions having the
same pre-conditions and post-conditions. Observe that there is J ≤ (card(Tab) ×
card(I)) + 1 such that FJ = ∅ and whenever Fi is empty, this implies that for all
j > i, we have that Fj is empty too. Knowing that the set of abstract transitions is
finite as well as the number of final marking sets demonstrate the termination of the
decision procedure. Hence, F def

=
⋃

i Fi.

We are now in position to describe the procedure for the decision of the reachability
problem. Let src be the initial extended marking and dest be the destination extended
marking. If src =⊥ (the empty state) then it is sufficient to test if dest =⊥. Assume
that src '=⊥ and dest =⊥. This problem is similar to decide whether an abstract
transition is closable except that the initial state is not necessarily composed by a
unique process. Hence, the child processes must also be successively closed. This
leads to a set of termination problems.

Finally, when src '=⊥ and dest '=⊥, the principle consists of testing the possible
predictions one by one. The main difference comes from the fact that some processes
of dest can be predicted as created. Here again, the decision can be reduced to in-
stances of the reachability problem in an ordinary Petri net. By way of example, let us
consider the two extended markings below:

em1 = (md+d1, td+d1), . . . , (md+1, td+1), (md, td), . . . , (m2, t2),m1

em2 = (m′
d+d2

, t′d+d2
), . . . , (m′

d+1, t
′
d+1), (md, td), . . . , (m2, t2),m1

with d1, d2 ≥ 1 and d ≥ 2 (they share a common bottom of the stack). Assuming
that these extended markings are defined with respect to the SRPN N , let N− be the
standard Petri net obtained from N by deleting the non-closable abstract transitions,
and each closable abstract transition in F is replaced by an ordinary transition having
the same pre-condition and post-condition. We can show that em2 is reachable from
em1 in N iff there exists i1, . . . , id1 ∈ I such that:

246 Models and Analysis for Distributed Systems

1) there exists a markingm in REL(ϕid1
) such thatmd+d1

∗−→ m in N−;
2) for j ∈ [1, d1 − 1], there exists a marking m in REL(ϕij) such that

md+j +W+(·, td+j+1, ij+1)
∗−→ m in N−. As usual, md+j + W+(·, td+j+1, ij+1)

denotes the marking m′ such that for every place p ∈ P , m′(p) = md+j(p) +
W+(p, td+j+1, ij+1). A similar notation is used below;

3) Init(t′d+d2
)

∗−→ m′
d+d2

in N−;
4) For j ∈ [1, d2 − 1], Init(t′d+j)

∗−→ m′
d+j +W−(·, t′d+j+1).

Predictions (indeed non-determinism) are witnessed by the sequence of termination
indices i1, . . . , id1 . Moreover, observe that (3) and (4) are instances of the reachability
problem for Petri nets whereas (1) and (2) are instances of the reachability problem
into a semilinear set, this latter problem being easily reducible to plain reachability.

Structural verification. Among the structural method presented in Chapter 7, we fo-
cus on the computation of linear invariants that we adapt to SRPN. The computation
shown here is an adaptation of the one dedicated to RPN.

The incidence matrixW of a SRPN is defined as follow. Rows are indexed by the
places and by the abstract transitions. The intended meaning of a variable indexed by
a place is its number of tokens while the interpretation of a variable indexed by an
abstract transition is the current number of processes created by its firing.

The columns of the matrix are indexed by the transitions and by the pairs (t, i)
where t is an abstract transition and i ∈ I is an index corresponding to a termination
set. A column indexed by a transition represents its firing while a pair (t, i) indi-
cates the firing of a cut step related to the termination set REL(ϕi) in a child process
initiated by the abstract transition t.

The incidence matrix is defined by:
– for all p ∈ P , for all t ∈ Tel and for all t′ ∈ Tab,

W (p, t) = W+(p, t)−W−(p, t) andW (t′, t) = 0;
– for all p ∈ P , for all t, t′ ∈ Tab with t′ '= t,

W (p, t) = −W−(p, t) andW (t, t) = 1 andW (t′, t) = 0;
– for all p ∈ P , for all t, t′ ∈ Tab, for all i ∈ I with t′ '= t,

W (p, (t, i)) = W+(p, t, i) andW (t, (t, i)) = −1 andW (t′, (t, i)) = 0.

Figure 8.10 illustrates the definition of the matrixW . The matrix is divided into
six blocks depending on the type of rows and columns. Let us look at some items of
the row indexed by place p: the elementary transition tel consumes one token from p
and produces 4 tokens for it, thus the corresponding value in the matrix is 3; firing the
abstract transition tab consumes 2 tokens thus the corresponding item is −2 and the
cut step associated with tab and index 0 (resp. 1) produces 1 token (resp. 4 tokens)

Verification of Infinite-State Systems 247

t′ab
〈0〉

t′el

p′
I = {0, 1}

tel tabp 〈0〉+ 4.〈1〉

1

4

2

(a) A SRPN (only relevant elements are represented)

t e
l

t′ e
l

t a
b

t′ a
b

(t
a
b
,0
)

(t
a
b
,1
)

(t
′ a
b
,0
)

(t
′ a
b
,1
)

p 3 1 -2 -1 1 4 0 0
}

P
p′ 0 -1 0 0 0 0 1 0
tab 0 0 1 0 -1 -1 0 0

}

Tabt′ab 0 0 0 1 0 0 -1 -1
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Tel Tab Tab × I

(b) Its incidence matrixW

Figure 8.10. A SRPN and its incidence matrix

thus the corresponding item is 1 (resp. 4). Let us have a look at the row indexed by
the abstract transition tab: firing tab creates one more process initiated by tab, thus
the corresponding item is 1 while firing any of the two cut steps corresponding to tab
terminates one such process yielding an item−1.

Given a process pr in an extended marking em, we denote by fire(pr)em the
vector, indexed on Tab, such that for any abstract transition t, fire(pr)em(t) is equal
to one if a child process initiated by t has been created by pr and is not already
terminated and equal to zero otherwise. We are now in position to justify the choice
ofW as incidence matrix.

Let em′ be an extended marking of an SRPN; which is reachable from a given
state em via a firing sequence σ. Assume the existence of a process pr in both em
and em′ (and then in all the extended markings visited by σ). We note m(pr)em the
marking of the process pr in the state em. Let x be a solution of x ·W = 0, then:

x · (m(pr)em
′

, f ire(pr)em
′

) = x · (m(pr)em, f ire(pr)em)

248 Models and Analysis for Distributed Systems

As for ordinary Petri nets, when em is the initial state of the SRPN, this equation
is called a linear invariant. In order to obtain linear invariants, we can compute a
generative family of solutions {x1, . . . , xn} of this equation. For a process pr of
the initial extended marking em0, we obtain a superset of the reachable “states” of
this process by the set of equations: for i ∈ [1, n], xi · (m(pr)em, f ire(pr)em) =
xi · (m(pr)em0 , f ire(pr)em0).

The same overestimation can be done for the reachable ordinary marking space
of a process pr dynamically created by the firing of an abstract transition t: for all
i ∈ [1, n], xi·(m(pr)em, f ire(pr)em) = xi ·(Init(t),!0) (where Init(t) corresponds
to the starting marking associated with t).

The fact that depending on the initial marking Init(t) some transitions are dead
may lead to additional sources of overestimation. Since this last factor often happens
in practical cases, we describe now an iterative method that tackles this problem. In
fact, the method is also applicable to Petri nets but it is of limited interest in this case
since usually the transitions of a Petri net are not dead.

Algorithm 4 simultaneously computes a set of linear invariants fulfilled by mark-
ings reachable fromm, an ordinary marking, and a superset of the transitions enabled
at least once from m. More precisely, it initialises Tlive as the empty set. Then it
computes the positive invariants for the recursive Petri net whose transitions are re-
duced to Tlive. In the algorithm 4, the function Invariant returns a generative family
of invariants (see [COL 90] for efficient computation of such families). For each tran-
sition that does not belong to Tlive, it builds a linear problem with the invariants and
the firing conditions of this transition. If this problem admits a solution, it is possibly
enabled and so, it adds it to Tlive. This process is iterated until Tlive is saturated.

Finally, we describe how the linear invariants can be used to obtain information
about the structure of the reachable extendedmarkings. We build a graph whose nodes
are the abstract transitions. There is an edge from t to t′ if starting from the marking
Init(t) a process may fire t′. In order to determine such an edge, we compute the
invariants associated with Init(t) by a call to structReach. If t′ belongs to the set
returned by this call then an edge is added. This graph is a skeleton for the dynamic
structure of the extended markings. For instance, if it is acyclic, then any reachable
extended marking has a bounded depth.

8.3.4. Related work

We have seen that Petri nets can be extended while preserving the decidability sta-
tus of numerous problems (reachability problems, etc.). However, it is important to
note that minor extensions can lead to undecidability results. For instance, the reach-
ability problem is undecidable for Petri nets with two inhibitor arcs (a computational

Verification of Infinite-State Systems 249

input : an ordinary markingm
output: a set of invariants and a set of transitions
Tlive = ∅;1

New = ∅;2
In = ∅;3

repeat4

New = ∅;5
In = Invariant(N,m, Tlive);6

foreach t ∈ T \ Tlive do7

Build a linear problem Pb in NP with In andW−(−, t);8
if Pb has a solution then9

New = New ∪ {t};10
end11

end12

Tlive = Tlive ∪New ;13

until (New == ∅) ;14
return 〈In, Tlive〉;15

Algorithm 4: structReach

model similar to Minsky machines) while it becomes decidable with one inhibitor arc
(or a particular nested structure of inhibitor arcs). The self-modifying nets introduced
by R. Valk have (like Petri nets with inhibitor arcs) the power of Turing machines
and thus many properties including reachability are undecidable [VAL 78a, VAL 78b].
Moreover, these extensions do not offer a practical way to model the dynamic creation
of objects.

In order to tackle this problem, A. Kiehn introduced a model called net sys-
tems [KIE 89] that are Petri nets with special transitions whose firing starts a new
token game of one of these nets. A call to a Petri net, triggered by such a firing, may
return if this net reaches a final marking. All the nets are required to be safe and the
constraints associated with the final marking ensure that a net may not return if it has
pending calls. It is straightforward to simulate a net system by an RPN. Moreover, as
the class of languages recognized by Petri nets is not included in the class of languages
recognized by net systems, the class of languages recognized by net systems is strictly
included in the family of RPN languages.

Process algebra nets (PANs), introduced by R. Mayr [MAY 97], are a model of
process algebra including the sequential composition operator as well as the parallel
operator. The left term of any rule of a PAN may use only the parallel composition of
variables whereas the right side is a general term. This model includes Petri nets and
context-free grammars. In [HAD 00], the authors demonstrate that RPNs also include
PANs. However, it is not known whether the inclusion of the PAN languages by the

250 Models and Analysis for Distributed Systems

RPN languages is strict. Moreover, PANs as well as process rewrite systems (a more
expressive model) cannot represent a transition system with an infinite in-degree.

A verification technique, which is not treated in this section, concerns the equiv-
alence relations between two nets. This approach is essential when the design is
realized by successive refinements. In [HAD 07], it has been shown that checking
bisimulation between an SRPN (satisfying some additional constraints) and a finite
automaton is a decidable problem.

8.4. Presburger arithmetic as symbolic representation

In section 8.3, we have seen how verification problems for SRPNs can be solved by
using techniques for standard Petri nets, at the cost of adequately adapting standard
methods. Typically, an instance of the reachability problem for SRPNs (involving
extended markings) is transformed into a finite number of instances of the reachability
problem for Petri nets. By contrast, in this section, we consider other extensions of
VASS by allowing for instance zero-tests, but in a controlled manner. In this section,
decidability of the reachability problem is obtained by reduction into instances of the
satisfiability problem for Presburger arithmetic. More precisely, in this section, we
consider subclasses of counter systems for which the reachability sets of the form
{!x ∈ Nn : (q0, !x0)

∗−→ (q, !x)} are effectively Presburger-definable ((q0, !x0) and q
are fixed). By decidability of Presburger arithmetic, this allows us to solve problems
restricted to such counter systems such as the reachability problem, the control state
reachability problem, the boundedness problem, or the covering problem. Indeed,
suppose that given (q0, !x0) and q, we can effectively build a Presburger formula ϕq

such that REL(ϕq) = {!x ∈ Nn : (q0, !x0)
∗−→ (q, !x)}. We can then easily show the

properties below:
1) {!x ∈ Nn : (q0, !x0)

∗−→ (q, !x)} is infinite iff the formula below is satisfiable:

¬ ∃ y ∀x1, . . . , xn ϕq(x1, . . . , xn)⇒ (x1 ≤ y ∧ · · · ∧ xn ≤ y);

2) (q0, !x0)
∗−→ (q,!z) iff the formula below is satisfiable:

ϕq(x1, . . . , xn) ∧ x1 = !z(1) ∧ · · · ∧ xn = !z(n),

where any constant k > 0 is encoded by the term
k times

︷ ︸︸ ︷

1 + · · ·+ 1;
3) control state q can be reached from (q0, !x0) iff the Presburger formula

ϕq(x1, . . . , xn) is satisfiable.

Below, we consider the class of reversal-boundedcounter automata and the class of
admissible counter systems. However, other types of counter systems with Presburger-
definable reachability sets exist, see numerous examples in [PAR 66, ARA 77, HOP 79,

Verification of Infinite-State Systems 251

ESP 97, COM 98, FIN 00, LER 03] (see also the generalizations presented in [LER 05,
BOZ 10]). Besides, let us briefly recall below why reachability sets for VASS (suc-
cinct counter automata without zero-tests) may not be semilinear, witnessing the fact
that semilinearity is not always guaranteed even for harmless VASS. In Figure 8.11,
we present a slight variant of the VASS described in Figure 8.2 by adding two com-
ponents to store counter values just before entering in the control state q0 for the first
time. We can show that

{(!x(1), !x(2), !x(6)) : (q0,!0)
∗−→ (q1, !x)} = {(n1, n2, n3) ∈ N3 : n3 ≤ n1 × n2}

Now, suppose that there is a Presburger formula ϕ(x1, . . . , x6) such that REL(ϕ) =

{!x : (q0,!0)
∗−→ (q1, !x)}. We can build from it a Preburger formula χ(x) such that

REL(χ(x)) = {n2 : n ≥ 0}(= Y):

∃ x1, . . . , x5 ϕ(x1, . . . , x5, x)∧x1 = x2∧(∀ x′(x′ > x)⇒ ¬∃ x3, x4, x5 ϕ(x1, . . . , x5, x
′))

Since Y is infinite, there are b ≥ 0 and p1, . . . , pm > 0 (m ≥ 1) such that (Z =
){b +

∑m
i=1 nipi : n1, . . . , nm ∈ N} ⊆ Y . Let N ∈ N be such that N2 ∈ Z and

(2N + 1) > p1. The valueN always exists since Z is infinite. Since Z is a linear set,
we also have (N2 + p1) ∈ Z . However (N + 1)2 − N2 = (2N + 1) > p1. Hence
N2 < N2 + p1 < (N + 1)2, which leads to a contradiction.

By contrast, the reachability sets for VASS of dimension 2 can be shown to be
effectively Presburger-definable [HOP 79].

Figure 8.11. A VASS weakly computing multiplication (bis)

252 Models and Analysis for Distributed Systems

8.4.1. Presburger-definable reachability sets

Reversal-bounded counter automata
A reversal for a counter occurs in a run when there is an alternation from non-

increasingmode to non-decreasingmode and vice versa. Figure 8.12 presents schemat-
ically the behavior of a counter with five reversals.

Figure 8.12. Five reversals in a row

A counter automaton is reversal-boundedwhenever there is r ≥ 0 such that for any
run from a given initial configuration, every counter makes no more than r reversals.
This class of counter automata has been introduced and studied in [IBA 78]. A for-
mal definition will follow, but before going any further, it is worth pointing out a few
peculiarities of this subclass. Indeed, reversal-boundedness is defined for initialized
counter automata (a counter automaton augmented with an initial configuration) and
the bound r depends on the initial configuration. Secondly, this class is not defined
from the class of counter automata by imposing syntactic restrictions but rather se-
mantically. Its very definition is motivated by technical and theoretical considerations
rather than by constraints from case studies.

Let S = (Q,n, δ) be a standard counter automaton. Let us define the auxiliary
(succinct) counter automaton Srb = (Q′, 2n, δ′) such that Q′ = Q × {DEC, INC}n

and (q, !mode)
ϕ′

−→ (q′, !mode
′
) ∈ δ′

def⇔ there is q ϕ−→ q′ ∈ δ such that if ϕ does not
deal with the jth component, then !mode(j) = !mode

′
(j) and for every i ∈ [1, n], one

of the conditions below is satisfied:
– ϕ = zero(i), !mode(i) = !mode

′
(i), ϕ′ = ϕ ∧

∧

j∈[1,n] x
′
n+j = xn+j ;

– ϕ = dec(i), !mode(i) = !mode
′
(i) = DEC and ϕ′ = ϕ∧

∧

j∈[1,n] x
′
n+j = xn+j ;

– ϕ = dec(i), !mode(i) = INC, !mode
′
(i) = DEC and

ϕ′ = ϕ ∧ (x′n+i = xn+i + 1) ∧
∧

j∈[1,n]\{i}

x′n+j = xn+j ;

– ϕ = inc(i), !mode(i) = !mode
′
(i) = INC and ϕ′ = ϕ ∧

∧

j∈[1,n] x
′
n+j = xn+j ;

Verification of Infinite-State Systems 253

– ϕ = inc(i), !mode(i) = DEC, !mode
′
(i) = INC and

ϕ′ = ϕ ∧ (x′n+i = xn+i + 1) ∧
∧

j∈[1,n]\{i}

x′n+j = xn+j .

Essentially, the n new components in Srb count the number of reversals for each com-
ponent from S. Moreover, the above construction could be easily adapted so that to
control S by imposing that each counter does not perform more than r reversals, for
some fixed bound r. Observe that Srb is succinct because two counters may be updated
in one step. Initialized counter automaton (S, (q, !x)) is reversal-bounded [IBA 78]
def⇔ for every i ∈ [n+1, 2n], {!y(i) : ∃ run (qrb, !xrb)

∗−→ (q′, !y) in Srb} is finite with
qrb = (q, !INC), !xrb restricted to the n first components is !x and !xrb restricted to the
n last components is !0. When r ≥ max({!y(i) : run (qrb, !xrb)

∗−→ (q′, !y) in Srb} :
i ∈ [n+ 1, 2n]) S is said to be r-reversal-bounded from (q, !x).

A counter automaton S is uniformly reversal-bounded iff there is r ≥ 0 such
that for every initial configuration, the initialized counter automaton is r-reversal-
bounded. We can check that the counter automaton in Figure 8.13 is not uniformly
reversal-bounded.

Figure 8.13 contains a counter automaton S such that any initialized counter au-
tomaton of the form (S, (q1, !x)) with !x ∈ N2 is reversal-bounded. Let !x ∈ N2 and ϕ
be the Presburger formula

ϕ = (x1 ≥ 2 ∧ x2 ≥ 1 + !x(2) ∧ (x2 − !x(2)) + 1 ≥ x1)∨

(x2 ≥ 2 ∧ x1 ≥ 1 + !x(1) ∧ (x1 − !x(1)) + 1 ≥ x2)

We can show that REL(ϕ) is precisely equal to the reachability set {!y ∈ N2 :

(q1, !x)
∗−→ (q9, !y)}.

Reversal-boundedness for counter automata is very appealing because reachability
sets are Presburger-definable as stated below.

THEOREM 8.9 [IBA 78] Let r ≥ 0 and (S, (q, !x)) be an initialized counter au-
tomaton that is r-reversal-bounded. For each control state q′, the set {!y ∈ Nn :

∃ run (q, !x)
∗−→ (q′, !y)} is effectively Presburger-definable.

This means that we can compute a Presburger formula that characterizes the reach-
able configurationswhose control state is q′. The original proof for reversal-boundedness
can be found in [IBA 78].

As a consequence of theorem 8.9, we get:

254 Models and Analysis for Distributed Systems

Figure 8.13. A counter automaton that bounds the numbers of reversals

COROLLARY 8.10 The reachability problem for reversal-bounded counter automata
is decidable.

Moreover, the control state repeated reachability problem for reversal-bounded
counter automata is decidable too by reduction into the reachability problem, see
e.g. [DAN 01].

Let us consider another problem that can be shown decidable even though it takes
as input a standard counter automaton without any further restriction.

Reachability problem with bounded number of reversals:
– Input: a counter automaton S, a bound r ∈ N, an initial configuration (q0, !x0)

and a final configuration (q, !x);
– Question: is there a finite run of S with initial configuration (q0, !x0) and final

configuration (q, !x) such that each counter has at most r reversals?

Observe that when (S, (q0, !x0)) is r′-reversal-bounded for some r′ ≤ r, we get an
instance of the reachability problem with initial configuration (q0, !x0).

COROLLARY 8.11 The reachability problem with bounded number of reversals is
decidable.

By using [GUR 81], the problem can be solved in non-deterministic exponential
time.

Verification of Infinite-State Systems 255

Affine counter systems with finite monoids

We shall define the class of affine counter systems that slightly generalizes the class
of succinct counter automata (roughly speaking, a counter value can be multiplied by
a factor different from 1). To do so, we start by proposing a few definitions.

A binary relation of dimension n is a relationR ⊆ N2n. R is Presburger-definable
def⇔ there is a Presburger formula ϕ(x1, . . . , xn, x′1, . . . , x

′
n) with 2n free variables

such that R = REL(ϕ). A partial function f from Nn to Nn is affine def⇔ there
exist a matrix A ∈ Zn×n and !b ∈ Zn such that for every !a ∈ dom(f), we have
f(!a) = A!a+!b. f is Presburger-definable def⇔ the graph of f is a Presburger-definable
relation.

A counter system S = (Q,n, δ) is affine when for every transition q ϕ−→ q′ ∈ δ,
REL(ϕ) is affine. In the sequel, each formula ϕ labeling a transition in an affine
counter system is encoded by a triple (A,!b,ψ) such that

1) A ∈ Zn×n,!b ∈ Zn;
2) ψ has free variables x1, . . . , xn;
3) REL(ϕ) = {(!x, !x′) ∈ N2n : !x′ = A!x+!b and !x ∈ REL(ψ)}.

The formula ψ can be viewed as the guard of the transition and the pair (A,!b) as
the (deterministic) update function. Such a triple (A,!b,ψ) is called an affine update
and we also write REL((A,!b,ψ)) to denote REL(ϕ). Furthermore, succinct counter
automata are affine counter systems in which the matrices are equal to the identity ma-
trix. Moreover, in succinct counter automata the guards are reduced to the truth con-
stant or to a zero-test. This class of counter systems has been introduced in [FIN 02].

Lemma 8.12 roughly states that the composition of affine updates is still an affine
update, which shall be helpful to show that the accessibility relation for admissible
counter systems is Presburger-definable.

LEMMA 8.12 Let (A1, !b1,ψ1) and (A2, !b2,ψ2) be two affine updates. There exists
an affine update (A,!b,ψ) such that

REL((A,"b,ψ)) =

{("x, "x′) ∈ N2n : ∃"y ∈ Nn ("x, "y) ∈ REL((A1, "b1,ψ1)) and ("y, "x′) ∈ REL((A2, "b2,ψ2))}

In the forthcoming class of admissible counter systems, we shall assume that the
control graph is flat. A counter system is flat whenever every control state belongs to
at most one simple cycle, i.e. with no repeated vertex, in the control graph. Moreover,

256 Models and Analysis for Distributed Systems

Figure 8.14. A flat control graph

we require that there is at most one transition between two control states. An example
of flat control graph can be found in Figure 8.14.

Hence, it becomes essential to symbolically represent the effect of loops on counter
values. This sounds a necessary condition to establish that a reachability relation
is Presburger-definable. We already know by Lemma 8.12 that transitions in affine
counter systems are closed under bounded compositions.

Let R be a binary relation of dimension n. The reflexive and transitive closure of
R, written R∗, is a subset of N2n such that (!y, !y′) ∈ R∗ iff there are !x1, . . . !xk ∈ Nn

such that !x1 = !y, !xk = !y′ and for i ∈ [1, k − 1], we have (!xi, !xi+1) ∈ R. If R is
Presburger-definable, then this does not imply thatR∗ is Presburger-definable too. For
instance, if R = {(k, 2k) ∈ N2 : k ∈ N} then R∗ = {(k, 2k′

k) ∈ N2 : k, k′ ∈ N}
is not Presburger-definable. By contrast, if S = {(k, k + 1) ∈ N2 : k ∈ N} then
S∗ = {(k, k′) ∈ N2 : k < k′, k, k′ ∈ N} is Presburger definable. Counter sys-
tems of dimension n induce naturally one-step binary relations of dimension n that
are Presburger-definable; the question of deciding whether their reflexive and transi-
tive closure of is Presburger-definable would directly answer whether the reachability
relations in such systems are Presburger-definable or not.

Indeed, consider the following loop with q1 = qk:

q1
ϕ1(x1,...,x

′
n)−−−−−−−→ q2

ϕ2(x1,...,x
′
n)−−−−−−−→ · · · ϕk−1(x1,...,x

′
n)−−−−−−−−→ qk−1

ϕk(x1,...,x
′
n)−−−−−−−→ qk.

The effect of the loop can be represented by the Presburger formula below:

ψ(!x, !x′)
def
= ∃ !y1, . . . , !yk ϕ1(!x, !y1) ∧ ϕ2(!y1, !y2) ∧ · · · ∧ ϕk(!yk, !x′)

The effect of visiting the loop a finite (but unbounded) number of times amounts to
represent symbolically the reflexive and transitive closure of REL(ψ(!x, !x′)). The best
we can hope for is that REL(ψ(!x, !x′))∗ is Presburger-definable.

Verification of Infinite-State Systems 257

Given A ∈ Zn×n, we write A∗ to denote the monoid generated from A with
A∗ = {Ai : i ∈ N}. The identity element is naturally the identity matrix A0 = I .
Given a matrix A ∈ Zn×n, checking whether the monoid generated by A is finite, is
decidable [MAN 77].

A loop in an affine counter system has the finite monoid property def⇔ its corre-
sponding affine update (A,!b,ψ), possibly obtained by composition of several affine
updates, satisfies that A∗ is finite. Let us introduce below the class of admissible
counter systems.

DEFINITION 8.13 A counter system S is admissible if S is an affine counter system,
its control graph is flat, and each loop has the finite monoid property.

THEOREM 8.14 [BOI 98, FIN 02] Let S be an admissible counter system and q, q′ ∈
Q. We can compute a Presburger formula ϕ such that for every valuation v, we have
v |= ϕ iff (q, (v(x1), . . . ,v(xn)))

∗−→ (q′, (v(x′1), . . . ,v(x
′
n))).

As a corollary, the reachability problem for admissible counter systems is decid-
able. This result can be pushed a bit further by showing that model-checking over
an extension of the temporal logic CTL& with arithmetical constraints for admissi-
ble counter systems is decidable too [DEM 06]. Indeed, theorem 8.14 states that the
reachability relation is indeed Presburger-definable.

If we give up the assumption on the finite monoid property, the reachability prob-
lem is undecidable for flat affine counter systems [COR 02]. However, theorem 8.14
still holds true if we relax the notion of admissibility a bit for instance by allowing that
between two control states for which no transition belongs to a cycle, more than one
transitions are allowed. Giving up the flatness condition in admissible counter systems
also leads to undecidable reachability problems since this new class would capture the
class of counter automata.

As observed in [COM 98, FIN 02, LER 03], flatness is very often essential to get
effective Presburger-definable reachability sets (but of course this is not a necessary
condition, see e.g. [PAR 66, HOP 79, ESP 97]). However, flat counter systems are
seldom natural in real-life applications. Therefore, a relaxed version of flatness has
been considered in [LER 05, DEM 06] so that an initialized counter system (S, (q, !x))
is flattable whenever there is a partial unfolding of (S, (q, !x)) that is flat and has the
same reachability set as (S, (q, !x)). In that way, reachability questions on (S, (q, !x))
can still be decided even in the absence of flatness but in general properties on finite
traces are not preserved. For the sake of completeness, let us provide below basic
definitions about flattable counter systems.

258 Models and Analysis for Distributed Systems

Let L be a finite union of bounded languages of the form

u1(v1)
∗u2(v2)

∗ · · · (vk)∗uk+1,

where ui ∈ Σ∗, vi ∈ Σ+, Σ = δ is the set of transitions from S such that in the
expression u1(v1)∗u2(v2)∗ · · · (vk)∗uk+1, two consecutive transitions share an inter-
mediate control state. So, (S, (q, !x)) is initially flattable [LER 05] if there is some
language L of the above form such that the configurations reachable from (q, !x) are
those reachable by firing the sequences of transitions from L (not every such sequence
leads to a run, partly because counter values should be non-negative). So, there is
some language L of the above form such that

{(q′, !x′) : (q, !x)
∗−→ (q′, !x′)} = {(q′, !x′) : (q, !x)

u−→ (q′, !x′), u ∈ L}

For instance, the initialized counter system (S, (q1,!0)) in Figure 8.15 is initially flat-
table (see e.g. further explanations about the phone controller in [COM 00]). Indeed,
whenever the control state q1 is visited, the counters are reset. So, by deleting the tran-
sition from q1 to q6, we obtain a flat counter system without modifying the reachability
set from (q1,!0).

Figure 8.15. Phone controller

Similarly, S is uniformly flattable [LER 05] iff there is some language L of the
above form such that the reachability relation ∗−→ is equal to {((q, !x), (q′, !x′)) : (q, !x)

u−→
(q′, !x′), u ∈ L}, which means that reachability can be restricted to sequences of tran-
sitions from a bounded language. Surprisingly, standard classes of counter automata
contain already flattable counter systems, see many examples in [LER 05].

Verification of Infinite-State Systems 259

THEOREM 8.15 [LER 05] Uniformly reversal-bounded counter automata are uni-
formly flattable, reversal-bounded initialized counter automata are initially flattable,
and the finite unions of bounded languages can be effectively computed.

This provides an alternative proof for the effective semilinearity of the reachabil-
ity relation. Indeed, an initialized counter automaton and a finite union of bounded
languages can be simulated by an admissible counter system.

8.4.2. Automata-based approach for Presburger arithmetic

In the previous sections, we have seen that the satisfiability problem for Presburger
arithmetic is decidable and many verification problems for subclasses of counter sys-
tems can be reduced to this problem. In this section, we shall informally describe
the decidability of satisfiability problem for Presburger arithmetic by translation into
the non-emptiness problem for finite-state automata. The use of automata for logical
decision problems goes back to [BÜC 60a] and we shall provide below the approach
by automatic structures developed in [BOU 96, BLU 00] (see also [WOL 95]). The
seminal paper [BÜC 60b] describes how to use the automata-based approach to deal
with Presburger arithmetic. Of course, other decision procedures exist for Presburger
arithmetic: for instance, quantifier elimination method from [RED 78] improves the
method developped in [COO 72].

Before presenting the principles of the automata-based approach for Presburger
arithmetic, let us mention that in general, the automata-based approach consists in
reducing logical problems into automata-based decision problems in order to take
advantage of known results from automata theory. Alternatively, this can be viewed
as a means to transform declarative statements (typically formulae) into operational
devices (typically automata with sometimes rudimentary computational power). The
most standard target problems in automata used in this approach is the non-emptiness
problem that checks whether an automaton admits at least one accepting computation.
A pioneering work by Büchi [BÜC 60a] show that Büchi automata are equivalent to
formulae in monadic second-order logic (MSO) over (N, <); models of a formula
built over the second-order variables P1, . . . , PN are ω-sequences over the alphabet
P({P1, . . . , PN}). In full generality, the following are a few desirable properties of
the approach:
– the reduction should be conceptually simple, apart from being semantically faith-

ful;
– the computational complexity of the automata-based target problem should be

well-characterized. In that way, a complexity upper bound is obtained to solve the
source logical problem;
– last but not least, the reduction should preferably allow the optimal complexity

for the source logical problem to be obtained.

260 Models and Analysis for Distributed Systems

We have seen that each Presburger formula ϕ with n ≥ 1 free variables defines a
subset ofNn, namelyREL(ϕ) ⊆ Nn, that corresponds to the set of variable valuations
that makeϕ true. For instance,REL(x = y+z) = {(k1, k2, k3) ∈ N3 : k1 = k2+k3}.
The automata-based approach for Presburger arithmetic consists of representing the
tuples in REL(ϕ) by a regular language that can be effectively defined, for instance
with the help of a finite-state automaton. In that way, satisfiability ofϕ, which is equiv-
alent to the non-emptiness ofREL(ϕ), becomes equivalent to the non-emptinesss of a
finite-state automaton (which is an easy problem to solve once the automaton is built).
In order to define regular languages, first we need to specify how natural numbers
and tuples of natural numers are encoded by words over a finite alphabet. Numerous
options are possible (see e.g. [LER 03, KLA 04b]) and below we adopt a simple and
standard encoding in which natural numbers are viewed as finite words over the alpha-
bet {0, 1} by using a binary representation in which the least significant bit is first. We
adopt a representation of natural numbers that is not unique, for instance the number
five can be encoded by 101 or by 101000. Tuples of natural numbers of dimension
n are represented by finite words over the alphabet {0, 1}n by using an equal length
representation for each number. Typically, the pair

(
5
8

)

can be represented by the
word

(
1
0

) (
0
0

) (
1
0

) (
0
1

) (
0
0

)

over the alphabet {0, 1}2. So, we introduce the
map f : N → P({0, 1}∗) such that f(0) def

= 0∗ and for k > 0, f(k) def
= bk · 0∗ where

bk is the shortest binary representation of k (least significant bit first). The map f is
extended to subsets of N in the obvious way as well as to n-tuples of natural numbers
with alphabet {0, 1}n such that f(!x) ⊆ P(({0, 1}n)∗) with !x ∈ Nn and !b ∈ f(!x)

iff for i ∈ [1, n], the projection of !b on the ith row belongs to f(!x(i)). The map f is
typically a state-encoding schema in the sense of [BOI 98, LEG 08].

Given a Presburger formula ϕ with n ≥ 1 free variables and a finite-state automa-
ton A over the alphabet {0, 1}n, we write ϕ ≈ A whenever L(A) = f(REL(ϕ)).

THEOREM 8.16 (see e.g. [BOU 96]) Given a Presburger formula ϕ, we can build a
finite-state automatonAϕ such that ϕ ≈ Aϕ.

We also have REL(ϕ) ⊆ REL(ψ) iff L(Aϕ) ⊆ L(Aψ) (see e.g., [LEG 08, theo-
rem 3.22]).

The finite-state automaton Aϕ can be built recursively over the structure of ϕ.
For instance, conjunction is handled by the product construction, existential quanti-
fier is handled by projection, negation is handled by the complement construction, see
details below. Nevertheless, a crude complexity analysis of the construction of Aϕ

reveals a non-elementary worst-case complexity. Indeed, for every negation, a com-
plementation needs to be operated. However, developments related to the optimal size
of automata can be found in [KLA 04a].

Verification of Infinite-State Systems 261

The recursive definition is based on the following properties. Let ϕ and ψ be
Presburger formulae with free variables x1, . . . , xn.

conjunction If ϕ ≈ A and ψ ≈ B, then ϕ ∧ ψ ≈ A ∩ B where ∩ is the product
construction computing intersection;

negation If ϕ ≈ A, then ¬ϕ ≈ A where · performs complementation, which may
cause an exponential blow-up;

quantification If ϕ ≈ A, then ∃ xn ϕ ≈ A′ where A′ is built over the alphabet

{0, 1}n−1 by forgetting the nth component. Typically, q
"b−→ q′ in A′ whenever

there is a transition q
"b′−→ q′ in A such that !b and !b′ agree on the n − 1 first bit

values.

In the above construction, we assumed that ϕ and ψ share the same set of free
variables, which does not always hold true for arbitrary formulae. If it is not the case,
ϕ ≈ A and ψ ≈ B, then we perform an operation that consists of adding dummy bits.
For instance, suppose that ϕ contains the free variables x1, . . . , xn. We can build the
automatonA′ over the alphabet {0, 1}n+1 obtained by adding the n+1th component.

Typically, q
"b−→ q′ in A′ whenever there is a transition q

"b′−→ q′ in A such that !b and !b′

agree on the n first bit values. It remains to deal with atomic formulae to achieve the
inductive building of the automaton.

The proof of theorem 8.16 is clearly based on the above constructions but we
need to complete the argument in order to deal with atomic formulae. Without any
loss of generality, we can restrict ourselves to equalities of the form x = y + z (at
the cost of introducing new variables in order to deal with sums made of more than
two variables). Such a restriction is only helpful to simplify the presentation of the
method but it makes sense to consider the full language with linear constraints in order
to optimize the reduction to automata, see e.g. [BOI 02, BOU 96]. The variables in
x = y + z are not necessarily distinct.

The automaton for x1 = x2 + x3 is described in the left part of Figure 8.16 where
q1 is the initial state as well as the final state. The state q1 represents a carry-over of 0
whereas the state q2 represents a carry-over of 1. We can check that (x1 = x2 + x3) ≈
A. The right part of Figure 8.16 describes the automaton for x1 = x2 + x2.

Figure 8.16. Finite-state automata for x1 = x2 + x3 and x1 = x2 + x2

262 Models and Analysis for Distributed Systems

The automata-based approach for Presburger arithmetic can be extended to richer
theories such as (R,Z,+,≤), see e.g. [BOI 02], or can be refined by providing other
reductions, see e.g. [LER 03, KLA 04a, SCH 07]. An overview of automata-based
decision procedures for Presburger arithmetic and related formalisms can be found
in [KLA 04a].

8.4.3. A selection of tools for Presburger arithmetic

So far, we have seen how to reduce verification problems into the satisfiability
problem for Presburger arithmetic. Then, we presented the principle of an automata-
based decision procedure for Presburger arithmetic by viewing sets of tuples defined
in Presburger arithmetic as regular languages. Below, we provide a (non-exhaustive)
list of tools that can handle first-order logics with linear arithmetic. In that way, we
have provided the natural set of steps to perform formal verification of infinite-state
systems dealing with counters:
– LIRA implements decision procedures based on automata-theoretic techniques

for the first-order theory of (Z,+, <) and for other related logics with linear arith-
metic [BEC 07]. It is closely related to MONA [BIE 96], LASH [BOI 01] and
PRESTAF [COU 05]. Contrary to numerous SMT solvers, LIRA can handle quan-
tifiers (this is also true for MONA and LASH very briefly described below);
– the MONA tool provides an implementation for the automata-based decision

procedure for weak monadic second-order logic WS1S [BIE 96]. The logic WS1S is
known to be strongly related to Presburger arithmetic, see e.g. [BÜC 60b];
– LASH is an automata library that provides the implementation of standard con-

structions on automata [BOI 01] as well as constructions for linear inequations. Com-
parisons of data structures used in MONA and LASH can be found in [KLA 04a,
Chapter 5]. As an application domain, LASH has been used successfully to verify
properties on counter systems, see e.g., [BOI 98];
– TAPAS is a suite of libraries [LER 09] dedicated to first-order logics of linear

arithmetic. The application programming interface GENEPI for such logics encapsu-
late many standard solvers such as LIRA or MONA. FAST [BAR 06] is a tool over
TAPAS that is designed to verify reachability properties of counter systems; this is a
client application in TAPAS;
– the tool CVC3 is an automatic theorem prover for Satisfiability Modulo first-

order Theories (SMT), see e.g., [BAR 08], [BAR 07]. CVC3 is the last offspring of
a series of popular SMT provers, which originated at Stanford University with the
SVC system. In particular, it builds on the code base of CVC Lite, its most recent
predecessor. The automatic theorem prover CVC3 (and the new version CVC4) is
a tool that can prove the validity of first-order formulae in a large number of built-
in logical theories, including rational and integer linear arithmetic, arrays, tuples, bit
vectors, etc;
– Z3 is an efficient SMT solver, see e.g., [MOU 08], that can deal with linear real

and integer arithmetic. This is an SMT solver developed by Microsoft Research that

Verification of Infinite-State Systems 263

is freely available for academic research. Z3 is designed to tackle problems that arise
in software verification and software analysis.

8.5. Concluding remarks

The verification of infinite-state systems is a very tough problem for which deci-
sion procedures do not always exist. In this chapter, we have illustrated the verification
methods for such systems on recursive Petri nets and on subclasses of counter systems.

As far as SRPNs are concerned, we have seen that the addition of recursion to
Petri nets increases the expressive power of the computational model even though
some of the verification problems remain decidable, such as the reachability problem.
The decidability proof for that problem on SRPNs uses a solver for the reachability
problem for standard Petri nets as a blackbox. Similarly, the computation of linear
invariants for Petri nets can be adapted to SRPNs as shown in section 8.3.

As far as counter systems are concerned, we have shown how to reduce a verifica-
tion problem in a subclass of counter systems (for instance for the reversal-bounded
counter automata) into satisfiability in some first-order theory. In order to solve the
instances of the logical problem, one option consists of eliminating quantifiers and
then using dedicated SMT solvers such as Z3 or CVC3. Alternatively, a Presburger
formula can be effectively transformed into a finite-state automaton such that satisfia-
bility is equivalent to the non-emptiness of the language recognized by the automaton.
This allows the use of tools dedicated to decision procedures for automata such as
LIRA or LASH. Alternatively, the formula can be given to a suite of libraries such as
TAPAS and then satisfiability can be checked with any standard solver that is plugged
in.

At some abstract level, similar ideas can be found to verify timed systems with
real-time constraints (timed automata, timed Petri nets, see e.g. Chapter 9) or push-
down systems even though the methods are undertaken differently. The wealth of
infinite-state systems as well as the diversity of properties that requires verification
has induced the development of numerous methods and tools even though two central
problems always need to be solved in order to run verification tools:

1) how do you symbolically represent an infinite set (configurations, processes,
data)?

2) which data structures allow you to represent concisely such sets (when possible)
in order to effectively manipulate the symbolic representations in verification tools?

8.6. Bibliography

[ABD 96] ABDULLA P., JONSSON B., “Verifying programs with unreliable channels”, Infor-
mation and Computation, vol. 127, num. 2, p. 91–101, 1996.

264 Models and Analysis for Distributed Systems

[ALU 94] ALUR R., DILL D., “A theory of timed automata”, Theoretical Computer Science,
vol. 126, p. 183–235, 1994.

[ARA 77] ARAKI T., KASAMI T., “Decidability problems on the strong connectivity of Petri
net reachability sets”, Theoretical Computer Science, vol. 4, p. 99–119, 1977.

[BAR 06] BARDIN S., LEROUX J., POINT G., “FAST extended release”, in CAV’06,
vol. 4144 of Lecture Notes in Computer Science, Springer, p. 63–66, 2006.

[BAR 07] BARRETT C., TINELLI C., “CVC3”, in CAV’07, vol. 4590 of Lecture Notes in
Computer Science, Springer, p. 298–302, 2007.

[BAR 08] BARRETT C., SEBASTIANI R., SESHIA S., TINELLI C., “Satisfiability modulo the-
ories”, vol. 185 of Frontiers in Artificial Intelligence and Applications, Chapter 26, p. 825–
885, IOS Press, 2008.

[BEC 07] BECKER B., DAX C., EISINGER J., KLAEDTKE F., “LIRA: handling constraints of
linear arithmetics over the integers and the reals”, in CAV’07, vol. 4590 of Lecture Notes
in Computer Science, Springer, p. 307–310, 2007.

[BER 80] BERMAN L., “The complexity of logical theories”, Theoretical Computer Science,
vol. 11, p. 71–78, 1980.

[BER 01] BERARD B., BIDOIT M., FINKEL A., LAROUSSINIE F., PETIT A., PETRUCCI
L., SCHNOEBELEN P., Systems and Software Verification, Model-checking Techniques and
Tools, Springer, 2001.

[BIE 96] BIEHL M., KLARLUND N., RAUHE T., “Mona: decidable arithmetic in practice”, in
FTRTFT’96, vol. 1135 of Lecture Notes in Computer Science, Springer, p. 459–462, 1996.

[BLU 00] BLUMENSATH A., GRÄDEL E., “Automatic structures”, in LICS’00, p. 51–62,
2000.

[BOI 98] BOIGELOT B., Symbolic methods for exploring infinite state spaces, PhD thesis,
University of Liège, 1998.

[BOI 01] BOIGELOT B., JODOGNE S., WOLPER P., “On the use of weak automata for decid-
ing linear arithmetic with integer and real variables”, in IJCAR’01, vol. 2083 of Lecture
Notes in Artificial Intelligence, Springer, p. 611–625, 2001.

[BOI 02] BOIGELOT B., WOLPER P., “Representing arithmetic constraints with finite au-
tomata: an overview”, in ICLP’02, vol. 2401 of Lecture Notes in Computer Science,
Springer, p. 1–19, 2002.

[BOR 76] BOROSH I., TREYBIG L., “Bounds on positive integral solutions of linear diophan-
tine equations”, AMS, vol. 55, p. 299–304, 1976.

[BOU 96] BOUDET A., COMON H., “Diophantine equations, Presburger arithmetic and finite
automata”, in CAAP’96, vol. 1059 of Lecture Notes in Computer Science, Springer, p. 30–
43, 1996.

[BOU 06a] BOUAJJANI A., BOZGA M., HABERMEHL P., IOSIF R., MORO P., VOJNAR T.,
“Programs with lists are counter automata”, in CAV’06, vol. 4144 of Lecture Notes in
Computer Science, Springer, p. 517–531, 2006.

Verification of Infinite-State Systems 265

[BOU 06b] BOUAJJANI A., HABERMEHL P., ROGALEWICZ A., VOJNAR T., “Abstract tree
regular model checking of complex dynamic data structures”, SAS’06, vol. 4134 of Lecture
Notes in Computer Science, Springer, p. 52–70, 2006.

[BOZ 10] BOZGA M., IOSIF R., KONEČNÝ F., “Fast acceleration of ultimately periodic rela-
tions”, in CAV’10, vol. 6174 of Lecture Notes in Computer Science, Springer, p. 227–242,
2010.

[BÜC 60a] BÜCHI J., “On a decision method in restricted second-order arithmetic”, in Logic,
Methodology, and Philosophy of Science, p. 1–11, 1960.

[BÜC 60b] BÜCHI R., “Weak second-order arithmetic and finite automata”, Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, vol. 6, p. 66–92, 1960.

[CAS 99] CASSANDRAS C. G., LAFORTUNE S., Introduction to Discrete Event Systems,
Kluwer Academic Publishers, 1999.

[CLA 00a] CLARKE E., GRUMBERG O., JHA S., LU Y., VEITH H., “Counter-example-
guided abstraction refinement”, in CAV’00, vol. 1855 of Lecture Notes in Computer Sci-
ence, Springer, p. 154–169, 2000.

[CLA 00b] CLARKE E., GRUMBERG O., PELED D.,Model Checking, The MIT Press Books,
2000.

[COL 90] COLOM J. M., SILVA M., “Convex geometry and semiflows in P/T nets. A compar-
ative study of algorithms for computation of minimal P-semiflows”, in Advances in Petri
Nets, vol. 483 of Lecture Notes Computer Science, Springer-Verlag, p. 79–112, June 1990.

[COM 98] COMON H., JURSKI Y., “Multiple counters automata, safety analysis and Pres-
burger arithmetic”, in CAV’98, vol. 1427 of Lecture Notes in Computer Science, Springer,
p. 268–279, 1998.

[COM 00] COMON H., CORTIER V., “Flatness is not a weakness”, in CSL’00, vol. 1862 of
Lecture Notes in Computer Science, Springer, p. 262–276, 2000.

[COO 72] COOPER D., “Theorem proving in arithmetic without multiplication”, Machine
Learning, vol. 7, p. 91–99, 1972.

[COR 02] CORTIER V., “About the decision of reachability for register machines”, Theoretical
Informatics and Applications, vol. 36, num. 4, p. 341–358, 2002.

[COU 05] COUVREUR J., “A BDD-like implementation of an automata package”, inCIAA’04,
vol. 3317 of Lecture Notes in Computer Science, Springer, p. 310–311, 2005.

[DAN 01] DANG Z., IBARRA O., SAN PIETRO P., “Liveness verification of reversal-bounded
multicounter machines with a free counter”, in FST&TCS’01, vol. 2245 of Lecture Notes
in Computer Science, Springer, p. 132–143, 2001.

[DEM 06] DEMRI S., FINKEL A., GORANKO V., VAN DRIMMELEN G., “Towards a model-
checker for counter systems”, in ATVA’06, vol. 4218 of Lecture Notes in Computer Science,
Springer, p. 493–507, 2006.

[El 95] EL FALLAH SEGHROUCHNI A., HADDAD S., “A Formal model for coordinating
plans in multiagents systems”, in Proceedings of Intelligent Agents Workshop, Oxford,
United Kingdom, Augusta Technology Ltd, Brooks University, 1995.

266 Models and Analysis for Distributed Systems

[El 96] EL FALLAH SEGHROUCHNI A., HADDAD S., “A recursive model for distributed
planning”, Second International Conference on Multi-Agent Systems, Kyoto, Japan, 1996.

[ESP 94] ESPARZA J., NIELSEN M., “Decidability issues for Petri nets - a survey”, Bulletin
of the European Association for Theoretical Computer Science, vol. 52, p. 245–262, 1994.

[ESP 97] ESPARZA J., “Petri nets, commutative context-free grammars, and basic parallel pro-
cesses”, Fundamenta Informaticae, vol. 31, num. 13, p. 13–26, 1997.

[ESP 99] ESPARZA J., FINKEL A., MAYR R., “On the verification of broadcast protocols”, in
LICS’99, p. 352–359, 1999.

[FER 79] FERRANTE J., RACKOFF C., The Computational Complexity of Logical Theories,
vol. 718 of Lecture Notes in Mathematics, Springer, 1979.

[FIN 97] FINKEL A., WILLEMS B., WOLPER P., “A direct symbolic approach to model
checking pushdown systems”, in INFINITY’97, vol. 9 of Electronic Notes in Theoreti-
cal Computer Science, Elsevier Science Publishers, 1997.

[FIN 00] FINKEL A., SUTRE G., “Decidability of reachability problems for classes of two
counter automata”, in STACS’00, vol. 2256 of Lecture Notes in Computer Science,
Springer, p. 346–357, 2000.

[FIN 01] FINKEL A., SCHNOEBELEN P., “Well-structured transitions systems everywhere!”,
Theoretical Computer Science, vol. 256, num. 1–2, p. 63–92, 2001.

[FIN 02] FINKEL A., LEROUX J., “How to compose Presburger accelerations: applications to
broadcast protocols”, in FST&TCS’02, vol. 2256 of Lecture Notes in Computer Science,
Springer, p. 145–156, 2002.

[FIS 74] FISCHER M., RABIN M., “Super-exponential complexity of Presburger arithmetic”,
in Complexity of Computation, vol. 7 of SIAM-AMS proceedings, American Mathematical
Society, p. 27–42, 1974.

[GAN 09] GANTY P., MAJUMDAR R., RYBALCHENKO A., “Verifying liveness for asyn-
chronous programs”, in POPL’09, ACM, p. 102–113, 2009.

[GIN 66] GINSBURG S., SPANIER E., “Semigroups, Presburger formulas and languages”, Pa-
cific Journal of Mathematics, vol. 16, num. 2, p. 285–296, 1966.

[GRÄ 88] GRÄDEL E., “Subclasses of Presburger arithmetic and the polynomial-time hierar-
chy”, Theoretical Computer Science, vol. 56, p. 289–301, 1988.

[GUR 81] GURARI E., IBARRA O., “The complexity of decision problems for finite-turn
multicounter machines”, in ICALP’81, vol. 115 of Lecture Notes in Computer Science,
Springer, p. 495–505, 1981.

[HAD] HADDAD S., POITRENAUD D., Decidability and undecidability results for recursive
Petri nets, Report , University.

[HAD 99] HADDAD S., POITRENAUD D., “Theoretical aspects of recursive Petri nets”, in
Proc. of the 20th Int. Conf. on Applications and Theory of Petri nets, vol. 1639 of Lecture
Notes in Computer Science, Williamsburg, VA, USA, Springer-Verlag, p. 228–247, 1999.

Verification of Infinite-State Systems 267

[HAD 00] HADDAD S., POITRENAUD D., “Modelling and analyzing systems with recursive
Petri nets”, in Proc. of the 5th Workshop on Discrete Event Systems - Analysis and Control,
Gand, Belgique, Kluwer Academics Publishers, p. 449–458, 2000.

[HAD 01] HADDAD S., POITRENAUD D., “Checking linear temporal formulas on sequential
recursive Petri nets”, in Proc of the 8th International Symposium on Temporal Representa-
tion and Reasonning, Cividale del Friuli, Italy, IEEE Computer Society Press, 2001.

[HAD 07] HADDAD S., POITRENAUD D., “Recursive Petri nets – theory and application to
discrete event systems”, Acta Informatica, vol. 44, num. 7–8, p. 463–508, Springer, De-
cember 2007.

[HEN 03] HENZINGER T., JHALA R., MAJUMDAR R., SUTRE G., “Software verification
with BLAST”, in SPIN’03, vol. 2648 of Lecture Notes in Computer Science, Springer,
p. 235–239, 2003.

[HEN 05] HENZINGER T., MAJUMDAR R., RASKIN J., “A classification of symbolic transi-
tions systems”, ACM Transactions on Computational Logic, vol. 6, num. 1, p. 1–32, 2005.

[HOP 79] HOPCROFT J., PANSIOT J., “On the reachability problem for 5-dimensional vector
addition systems”, Theoretical Computer Science, vol. 8, p. 135–159, 1979.

[IBA 78] IBARRA O., “Reversal-bounded multicounter machines and their decision prob-
lems”, Journal of the Association for Computing Machinery, vol. 25, num. 1, p. 116–133,
1978.

[JAN 79] JANTZEN M., “On the hierarchy of Petri net languages”, RAIRO, vol. 13, num. 1,
p. 19–30, 1979.

[KAI 10] KAISER A., KROENING D., WAHL T., “Dynamic cutoff detection in parameter-
ized concurrent programs”, in CAV’10, vol. 6174 of Lecture Notes in Computer Science,
Springer, p. 645–659, 2010.

[KAR 69] KARP R. M., MILLER R. E., “Parallel program schemata”, Journal of Computer
and System Sciences, vol. 3, num. 2, p. 147–195, 1969.

[KIE 89] KIEHN A., “Petri nets systems and their closure properties”, in Advances in Petri
Nets 1989, vol. 424 of Lecture Notes in Computer Science, Springer-Verlag, p. 306-328,
1989.

[KLA 04a] KLAEDTKE F., Automata-based decision procedures for weak arithmetics, PhD
thesis, Institut für Informatik, Albert-Ludwigs-University, Freiburg, February 2004.

[KLA 04b] KLAEDTKE F., “On the automata size for Presburger arithmetic”, in LICS’04,
IEEE, p. 110–119, 2004.

[KOS 82] KOSARAJU R., “Decidability of reachability in vector addition systems”, in
STOC’82, p. 267–281, 1982.

[LEG 08] LEGAY A., Generic methods for the verification of infinite-state systems, PhD the-
sis, University of Liège, 2008.

[LER 03] LEROUX J., Algorithmique de la vérification des systèmes à compteurs. approxima-
tion et accélération. implémentation de l’outil FAST., PhD thesis, ENS de Cachan, France,
2003.

268 Models and Analysis for Distributed Systems

[LER 05] LEROUX J., SUTRE G., “Flat counter systems are everywhere!”, in ATVA’05,
vol. 3707 of Lecture Notes in Computer Science, Springer, p. 489–503, 2005.

[LER 09] LEROUX J., POINT G., “TaPAS: the Talence Presburger arithmetic suite”, in
TACAS’09, vol. 5505 of Lecture Notes in Computer Science, Springer, p. 182–185, 2009.

[LIP 76] LIPTON R. J., The reachability problem requires exponential space, Report num. 62,
Department of Computer Science, Yale University, 1976.

[MAN 77] MANDEL A., SIMON I., “On finite semigroups of matrices”, Theoretical Computer
Science, vol. 5, num. 2, p. 101–111, 1977.

[MAY 84] MAYR E., “An algorithm for the general Petri net reachability problem”, SIAM
Journal of Computing, vol. 13, num. 3, p. 441–460, 1984.

[MAY 97] MAYR R., “Combining Petri nets and PA-processes”, inProc. of the 3rd Int. Sympo-
sium on Theoretical Aspects of Computer Software, vol. 1281 of Lecture Notes in Computer
Science, Sendai, Japan, Springer-Verlag, p. 547–561, 1997.

[MCM 93] MCMILLAN K., Symbolic Model Checking, Kluwer Academic Publishers, 1993.

[MIN 67] MINSKY M., Computation: Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, NJ, 1967.

[MOU 08] DE MOURA L., BJÖRNER N., “Z3: An efficient SMT solver”, in TACAS’08,
vol. 4963 of Lecture Notes in Computer Science, Springer, p. 337–340, 2008.

[OPP 78] OPPEN D., “A 22
2pn

upper bound on the complexity of Presburger arithmetic”, Jour-
nal of Computer and System Sciences, vol. 16, num. 3, p. 323–332, 1978.

[PAP 81] PAPADIMITRIOU C., “On the complexity of integer programming”, Journal of the
Association for Computing Machinery, vol. 28, num. 4, p. 765–768, 1981.

[PAR 66] PARIKH R., “On context-free languages”, Journal of the Association for Computing
Machinery, vol. 13, num. 4, p. 570–581, 1966.

[PET 81] PETERSON J., Petri Net Theory and the Modelling of Systems, Prentice-Hall, 1981.

[PRE 29] PRESBURGER M., “Über die vollständigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchem die addition als einzige operation hervortritt”, Comptes Rendus
du premier congrès de mathématiciens des Pays Slaves, Warsaw, p. 92–101, 1929.

[RAC 78] RACKOFF C., “The covering and boundedness problems for vector addition sys-
tems”, Theoretical Computer Science, vol. 6, num. 2, p. 223–231, 1978.

[RED 78] REDDY C., LOVELAND W., “Presburger arithmetic with bounded quantifier alter-
nation”, in STOC’78, ACM press, p. 320–325, 1978.

[REI 98] REISIG W., ROZENBERG G., Eds., Lectures on Petri Nets I: Basic Models, vol. 1491
of Lecture Notes in Computer Science, Springer, 1998.

[REU 90] REUTENAUER C., The Mathematics of Petri Nets, Masson and Prentice, 1990.

[SCH 07] SCHUELE T., SCHNEIDER K., “Verification of data paths using unbounded inte-
gers: automata strike back”, in HVC’06, vol. 4383 of Lecture Notes in Computer Science,
Springer, p. 65–80, 2007.

