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Abstract. A set of tasks consuming a continuous, cumulative and re-
newable resource with limited capacity, has to be scheduled. The con-
sumption profile of the task is a decision variable of the problem that
can vary continuously over time and must lie within a minimum and
a maximum value once the task is started. The task is completed as
soon as the integration over its time window of a non-decreasing and
continuous efficiency function of the consumption profile has reached a
predefined amount of energy. The goal is to find a feasible schedule,
which is an NP-complete problem. For the case where functions are con-
cave and piecewise linear, we present two satisfiability tests. The first
one is the adaptation to concave functions of the variant of the energetic
reasoning based satisfiability test previously proposed in [11] for linear
functions. The second test is a flow-based linear program. Finally, the
complementarity of the tests is assessed via their integration in a hybrid
branch-and-bound.

Keywords: continuous scheduling, continuous resources, concave piece-
wise linear functions, energy constraints, energetic reasoning

1 Introduction

This paper deals with a scheduling problem involving a set of tasks and a
continuously-divisible renewable resource of limited capacity shared by the tasks.
Each task must be processed between a release date and a due date. During its
time window, each task must receive a given total amount of resource units that
we will refer to as a required energy amount. We consider the case where the re-
source amount (intensity) that a task requires during its processing is not fixed.
More precisely, the resource requirement is a continuous function of time that
must be determined. Once the activity is started the resource amount must lie
within an interval until the total required energy has been received by the task.

? Student
?? Supervisor



2 CECSP with concave piecewise linear functions

Furthermore we consider that the total energy received by the task is not equal
to the total amount of the resource used by it. Instead we have efficiency func-
tions, which translates the required resource amounts into energy. Consequently,
the duration of the activity is not fixed neither but is determined by the resource
requirement function as the activity is finished once the necessary energy has
been received.

As typical examples, we cite energy-consuming production scheduling prob-
lems. In [1], a foundry application is presented where a metal is melted in induc-
tion furnaces. Due to the complexity of the problem, efficiency functions were
not considered in the paper. In a continuous time setting but still without con-
sidering the efficiency functions, constraint propagation algorithms based on the
energetic reasoning concept were proposed in [2]. An extension of this work to
linear efficiency functions were considered in [10, 11].

In this paper, we perform an analysis of the structural properties of the
problem for more realistic concave piecewise linear functions [7, 9]. We show
first that the resource demand profile of a task can be restricted to a piecewise
constant function with break points at the start and ends of tasks. From these
theoretical properties, we are able to compute the minimal resource consumption
of a task inside an interval in O(1) and we prove that the set of relevant intervals
of polynomial size that was shown sufficient for energetic reasoning with linear
functions is also sufficient in our case. We also define a new satisfiability test
which rely on a flow-based linear program and we show that no test subsumes
the other. A hybrid branch-and-bound algorithm integrating the two tests and
a mixed integer linear program is evaluated on a set of instances.

2 Problem definition

In this paper, we consider the Continuous Energy-Constrained Scheduling Prob-
lem (CECSP) defined as follows. A set of tasks A = {1, . . . , n}, consuming a
continuous, cumulative and renewable resource of capacity B, has to be sched-
uled. At each time t, a task i ∈ A consumes a variable amount of the resource,
bi(t). The objective is to find, for each task i ∈ A, its start time sti, its end time
eti and its resource allocation function bi(t). These quantities have to satisfy the
following constraints.

First, each task i has to be executed during its time window [ri, di], i.e.

ri ≤ sti ≤ eti ≤ di (1)

Then, if a task i is in process at time t, then bi(t) has to lie between a
minimum and maximum requirement, bmini and bmaxi respectively, and has to be
equal to zero otherwise, i.e.

bmini ≤ bi(t) ≤ bmaxi ∀t ∈ [sti, eti] (2)

bi(t) = 0 ∀t 6∈ [sti, eti] (3)

Note that the case where bmini = 0 corresponds to the preemptive case.
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Furthermore, during its processing, a task receives an energy quantity from
the resource. Thus, each task consumes a part of the same resource but the
energy type received from the resource might be different for each task. In this
sense, each task has is own conversion function, also called power processing
rate function, fi and a task is finished when it has received a required amount
of energy Wi

1, i.e. ∫ eti

sti

fi(bi(t))dt = Wi (4)

Thus, function fi has to be integrable. Hence, in this paper, we only consider
continuous functions.

The last constraint is the resource capacity constraint. At each time t, the
resource consumed by all tasks can not exceed the resource capacity, i.e.∑

i∈A
bi(t) ≤ B ∀t (5)

In this paper, we consider the case where functions fi are non-decreasing, con-
cave, piecewise linear and for which fi(0) = 0. This problem is NP-complete [11].

Theorem 1. Let I be a feasible instance of CECSP, with non-decreasing, con-
cave piecewise linear functions fi such that fi(0) = 0, ∀i ∈ A. A solution such
that, for all i ∈ A, bi(t) is piecewise constant, exists. Furthermore, ∀i ∈ A the
only breakpoints of bi(t) can be restricted to the start and end times of the tasks.

In order to prove Th.1, we start by proving that, for any interval [t1, t2] where
bi(t) is not constant, we can find a constant biq for which executing i at biq during
[t1, t2] gives more energy to i and consumes as much resource. This constant is

equal to the mean value of bi(t) over [t1, t2], i.e. biq =
∫ t2
t1
bi(t)dt/(t2 − t1).

Lemma 1. 1 Let biq =
∫ t2
t1
bi(t)dt

t2−t1 . Then, we have :∫ t2

t1

biqdt =

∫ t2

t1

bi(t)dt (6)

∫ t2

t1

fi(biq)dt ≥
∫ t2

t1

fi(bi(t))dt (7)

Proof. Equation (6) is trivially verified by replacing biq by its value. To prove
that equation (7) is satisfied, we use the following theorem, due to Jensen [8].

Theorem 2 (Jensen). Let α(t) and g(t) be two integrable functions on [t1, t2]
such that α(t) ≥ 0, ∀t ∈ [t1, t2]. We have:

φ

(∫ t2
t1
α(t)g(t)dt∫ t2
t1
α(t)dt

)
≥
∫ t2
t1
α(t)φ(g(t))dt∫ t2
t1
α(t)dt

(8)

where φ is a continuous concave funtion in [ mint∈[t1,t2] g(t),maxt∈[t1,t2] g(t)].

1 see illustration in Appendix
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Replacing φ(t) by fi(t), g(t) by bi(t) and α(t) by the constant function equal to
1, we obtain the desired result. �

We are now able to prove Th.1. Actually, we prove that if a solution S exists,
then another solution S′ can be created from S with the property that each
function b′i(t) is piecewise constant.

Proof (Th. 1). Let S be a feasible solution of I and let (tq){q=1..Q} be the
increasing series of distinct start time and end time values (Q ≤ 2n). For ease
of notation, we define intermediary functions b̃i(t), ∀i ∈ A as follows:

b̃i(t) =


bi0 if t ∈ [t0, t1]

...
bi(Q−1) if t ∈ [tQ−1, tQ]

with biq =

∫ tq+1
tq

bi(t)dt

tq+1−tq

Then, S′ is constructed in the following way:

st′i = sti
b′i(t) =

{
b̃i(t) if t ∈ [sti, et

′
i]

0 otherwiseet′i = min(τ |
∫ τ
sti
fi(b̃i(t))dt = Wi)

It is easy to see that S′ satisfies the time window constraints (1), as, by
Lemma 1, et′i ≤ eti. Furthermore, S′ verifies the energy constraints (4) since it
is defined in this way. Then, S′ also verifies the resource capacity constraints (5).
Indeed, as S is a feasible solution, we have ∀q ∈ {1, . . . , Q} and ∀t ∈ [tq, tq+1]:∑
i∈A bi(t) ≤ B ⇒

∑
i∈A

∫ tq+1

tq
bi(t)dt ≤ B(tq+1 − tq).

And, then :
∑
i∈A b

′
i(t) ≤

∑
i∈A b̃i(t) =

∑
i∈A biq =

∑
i∈A

∫ tq+1
tq

bi(t)dt

tq+1−tq ≤ B.

Finally, we can show that S′ satisfies the resource requirement constraints (2)-
(3) in a similar way. �

An interesting remark can be made about Th.1. Actually, in order to find a
solution to CECSP, we only have to find, for each task, its start time sti, its
end time eti and the quantity of resource allocated to i between two consecutive
start/end times biq.

3 Energetic reasoning

In this section, we present an extension of the energetic reasoning for the CECSP
with non-decreasing, linear function fi [11] to the CECSP with non-decreasing,
concave and piecewise linear fi.

In order to present this satisfiability test, we define two quantities: the mini-
mum resource consumption (resp. energy requirement) of a task i over an inter-
val [t1, t2], b(i, t1, t2) (resp. w(i, t1, t2)). Then, the energetic reasoning consists in
testing whether the available area within [t1, t2] (B×|[t1, t2]|) is large enough to
contain the minimum resource quantity needed by all the tasks in this interval.

Theorem 3 ([6]). Let I be an instance of CECSP. If it exists (t1, t2) such that
B(t2 − t1)−

∑
i∈A b(i, t1, t2) < 0 then I is infeasible.
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Proof. Left to the reader.

To compute the minimum required resource consumption, we, first, have to com-
pute w(i, t1, t2). Given an interval [t1, t2], the minimum consumption always cor-
responds to a configuration where task i is either left-shifted or right-shifted or
both1. Therefore, w(i, t1, t2) can be computed exactly in the same way as in [11].
Hence, it is not described in this paper.

Thus, let J be the interval over which task imust receive an energy w(i, t1, t2),
i.e. J = [t1, t2]∩ [ri, di]. First, we claim that processing a task i at bmini , has the
best efficiency ratio, i.e. maxx∈[bmin

i ,bmax
i ] fi(x)/x = fi(b

min
i )/bmini (see Proposi-

tion 1). We have two cases to consider:

– J is sufficiently large to schedule the task at bmini , i.e. |J | ≥ w(i,t1,t2)
fi(bmin

i )
, and

then b(i, t1, t2) = bmini
w(i,t1,t2)
fi(bmin

i )

– J is not large enough to schedule the task at bmini and finding b(i, t1, t2) is
equivalent to solving:

minimize
∫
J
bi(t)dt

subject to
∫
J
fi(bi(t))dt ≥ w(i, t1, t2)

In the latter case, thanks to lemma 1, we know that it exists a solution where bi(t)
is constant and this constant is equal to f−1i (Wi/|J |). Since fi is a non-decreasing
concave piecewise linear function this value can easily be computed. Indeed, let
Pi be the number of pieces of function fi and let γip,∀p ∈ {1, . . . , Pi} be the

break points of fi. Thus, fi(b) = aip ∗ b+ cip, ∀b ∈ [γip, γ
i
p+1] and f−1i (Wi/|J |) =

maxp(
w(i,t1,t2)−cip|J|

aip|J| ).

Therefore, the expression of b(i, t1, t2) is the following:

b(i, t1, t2) = max(bmini

w(i, t1, t2)

fi(bmini )
,max

p
(

1

aip
(w(i, t1, t2)− |J |cip))) (9)

if bmini 6= 0, else b(i, t1, t2) = max(0,maxp(
1
aip

(w(i, t1, t2)− |J |cip))). Note that,

in this case, the energetic reasoning can be very poor.
Now, we have to prove that maxx∈[bmin

i ,bmax
i ] fi(x)/x = fi(b

min
i )/bmini . To do

so, we use the following proposition:

Proposition 1. Let g be a function defined on an interval J and ∀t ∈ J \ {δ},
φδ(t) = g(t)−g(δ)

t−δ . Then, g is concave if and only if φδ(t) is decreasing, ∀δ ∈ J .

In particular, when δ = 0 and since fi(0) = 0, fi(t)t is decreasing. Thus,
maxx∈[bmin

i ,bmax
i ] fi(x)/x = fi(b

min
i )/bmini .

Indeed, this result also implies that the relevant intervals, i.e. the intervals
on which we have to perform the test, described in [11] adapting from [5] are
exactly the ones for our problem. Furthermore, the time window adjustments,
also described in [11] adapting the ones in [3], are still valid in our case.

1 see illustration in Appendix
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4 Flow-based checker

In this section, we describe a linear program which helps to detect infeasibility.
Indeed, if the program is infeasible, then there is no solution for the CECSP.

To describe this program, let (tq)q∈Q be the increasing series of distinct
domain bounds of the start and end times values and let smaxi (resp. emini ) be
the latest start (resp. earliest end) time of i. Then, for each interval [tq, tq+1] and
for each task, we define two variables biq and wiq, which stand for the quantity
of resource (resp. energy) used (resp. received) by task i in this interval.

max
∑
i∈A

∑
e∈E

wiq (10)

∑
i∈A

biq ≤ B(tq+1 − tq) ∀q ∈ Q (11)

biq ≥ bmin
i (tq+1 − tq) ∀i ∈ A ; ∀q ∈ Q|smax

i ≤ tq ≤ emin
i (12)

biq ≤ bmax
i (tq+1 − tq) ∀i ∈ A ;∀q ∈ Q (13)

biq = 0 ∀i ∈ A ;∀q ∈ Q|tq 6∈ [ri, di] (14)

wiq ≤ aipbiq + cip(tq+1 − tq) ∀i ∈ A ;∀q ∈ Q ; ∀p ∈ {1..Pi} (15)∑
q∈Q

wiq = Wi ∀i ∈ A (16)

The linear program is based on the following observation: in all intervals [tq, tq+1]
⊆ [smaxi , emini ], task i has to be scheduled, at least, at bmini . These constraints
are expressed by (12). Constraints (11) model the resource capacity constraints.
Constraints (13) impose that the maximum resource requirement constraints are
satisfied. Constraints (14) set the resource consumption of task i to be equal to
0 in [tq, tq+1] if [tq, tq+1] 6⊆ [ri, di]. Constraints (15) combined with the objective
function, ensure the resource conversion. Finally, constraints (16) state that the
tasks received the required energy.

In some cases, this linear program is stronger than the energetic reason-
ing. For example, consider the following instance, with n = 3, B = 3, ri =
{0, 4, 0}, di = {2, 6, 6}, Wi = {4, 4, 10}, bmini = {2, 2, 1}, bmaxi = {2, 2, 2} and
fi(b) = b, ∀i = {1, 2, 3}.

The relevant intervals for the energetic reasoning are: [0, 2], [0, 4], [0, 6], [2, 4],
[2, 6], [4, 6]. Figure 1 illustrates the energetic reasoning on some of these inter-
vals. It can be seen that no infeasibility is detected, since, for each intervals, the
sum of minimum consumption never exceeds the interval capacity.

[0, 2] [0, 4] [0, 6] [2, 4]

Fig. 1: Energetic reasoning on four of the six relevant intervals
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Consider now the flow-based LP defined previously. We have six relevant
time points: t0 = 0, t1 = 1, t2 = 2, t3 = 4, t4 = 5, t5 = 6 and biq corresponds
to the amount of resource allocated to task i in time slot [tq, tq+1]. Note that we
do not need variable wiq since fi(b) = b is the identity function. Writing the LP,
we obtain:

b10 = b11 = 2, b1q = 0 q = 2..4 (17)

b23 = b24 = 2, b2q = 0 q = 0..2 (18)

b3q ≤ 2 q = 0, 4 (19)

1 ≤ b3q ≤ 2 q = 1, 3 (20)

b3q + 2 ≤ 3 q 6= 2 (21)

2 ≤ b32 ≤ 4 (22)

b30 + b31 + b32 + b33 + b34 = 10 (23)

b32 ≤ 6 (24)

As constraints (21) bound b3q from above by 1, for q = 0, 1, 3, 4, constraint (23)
implies that b32 = 6 which contradicts constraint (22). Thus, the LP detects the
infeasibility of the instance whereas the energetic reasoning fails to prove it.

5 Hybrid branch and bound

In this section, we describe the hybrid branch-and-bound algorithm we used to
solve the CECSP. This algorithm is an adaptation of the one in [11] for linear
functions.

First, a branch-and-bound algorithm is used to reduce the size of possible
start and end intervals (until their size is less than a given ε > 0) and, then,
a start/end event-based MILP is used in order to find exact task start and
end times and to determine the quantity of resource allocated to i between two
consecutive events. The event-based MILP used for our case is the same used
for linear functions except that constraints:

Wie ≤ aiBie + ci(te+1 − te) ∀i ∈ A ;∀e ∈ E

are replaced by constraints:

Wie ≤ aipBie + cip(te+1 − te) ∀i ∈ A ; ∀p ∈ Pi; ∀e ∈ E

The branching procedure is inspired by the work of Carlier et al. [4]. At
the beginning, a task can start (resp. end) at any time sti ∈ [ri, s

max
i ] (resp

eti ∈ [emini , di]). The idea is, at each node, to reduce the size of one of these
intervals. For example, suppose that we choose to reduce the start time interval
of i, then we create two nodes: one with constraint sti ∈ [ri, (ri + smaxi )/2] and
one with constraint sti ∈ [(ri + smaxi )/2, smaxi ]. The variable on which we will
branch are choosed with the following heuristic: we choose the smallest interval
among all [ri, s

max
i ] and [emini , di].

At each node, we apply one or both of the satisfiability tests described above
and, if the test does not fail, we perform the time-window adjustments found
in [11]. We continue this procedure using a depth-first strategy until all intervals
are smaller than an ε. When it happens, the remaining solution space is searched
via the event-based MILP.
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6 Experiments

The experiments are conducted on an Intel Core i7-4770 processor with 4 cores
and 8 gigabytes of RAM under the 64-bits Ubuntu 12.04 operating system. The
hybrid branch-and-bound algorithm is coded in C++ and uses CPLEX 12.6 with
1 threads at each leaf.

First, the instances have been generated with identity power processing rate
functions, i.e. fi(b) = b, ∀i ∈ A. We generated 129 instances of n = 30 tasks
according to the following framework. The resource availability B is set to 10
and three parameters regulate the dispersion of the data: scale, mf and df .
Then, ri, b

min
i , bmaxi are randomly generated in their corresponding interval:

bmaxi ∈ [1, B], bmini ∈ [0, bmaxi /2], ri ∈ [0, (df ∗ n ∗ B ∗ scale)/2]; Wi is set to
max(1, bmini + δ), where δ is generated with a binomial distribution B(scale ∗
B, 0.5), and di is set to ri + Wi/b

max
i + σ, where σ is uniformly generated in

[1,mf ∗ scale ∗B].
Then, we transform them in order to obtain instances with power processing

rate functions in the following way. We randomly generated the parameters of
the function: Pi ∈ [1, bmaxi − bmini ], the number of pieces of fi, then the break
points γip of fi such that γip−1 < γip, and finally, for each piece, aip within interval
[1, 10] and cip is calculate to preserve continuity.

Table 1 presents the results of the hybrid branch-and-bound algorithm with
parameter ε = 2.5 with a total time limit of 7200 seconds. Row 1 corresponds
to the results with both satisfiability tests, row 2 with only energetic reasoning
and row 3 with only the flow-based checker. In the table, “solved” mean either
proved infeasible or that a solution is found.

%solved #nodes %ER cut %flow cut

both 96.1 25.5 13.1 12.5
flow 95.3 26 X 24.71
ER 86.8 17.33 13.1 X

Table 1: Results of the comparison of the two satisfiability test.

We can see that the flow-based satisfiability test solves more instances than
the energetic reasoning. However, it does not dominate the energetic reasoning
since performing both tests is better.

7 Conclusion

We demonstrated that the resource usage changes can be restricted to start and
end times of tasks. This allows us to present two polynomial satisfiability tests
for the CECSP with concave piecewise linear power processing rate functions
and we compare them in a solution method. We also showed the interest of both
methods since none of them dominates the other one.

In the continuity of this work, it will be interesting to establish the instance
properties that make one test stronger than the other. Studying more general
functions is also a challenging research direction.
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Appendix

Example of a CECSP instance and solution

In the example of Fig. 1, we can see that, the energy received by task 2 is equal
to (2× 3 + 1) + (2× 4 + 1) + (2× 4 + 1) = 25 which is not equal to the amount
of resource consumed (11 in this case).

1

3

B = 5

2
i ri di Wi bmin

i bmax
i fi(b)

1 0 2 6 3 3 b
2 1 5 25 3 4 2b+1
3 0 6 39 1 5 3b

Fig. 1: An example of instance and corresponding solution of CECSP.

Illustration of Lemma 1

Figure 2 presents the value of functions bi(t) and fi(bi(t)) before and after ap-
plying Lemma 1. In figure 2b, bi(t) is equal to 3 between t1 and t1 + 3 and equal

to 1 between t1 + 3 and t2 = t1 + 6. Thus
∫ t2
t1
bi(t)dt = 12 and biq = 12/6 = 2.

Applying Lemma 1 set bi(t) to 2 between t1 and t2 (figure 2c) and we also have∫ t2
t1
bi(t)dt = 12.

Using function fi(b) defined by figure 2a, fi(bi(t)) is equal to 6 between t1 and

t1 +3 and equal to 3 between t1 +3 and t2 (see figure 2d). Thus
∫ t2
t1
fi(bi(t))dt =

27. Applying Lemma 1 set bi(t) to 2 between t1 and t2 and then, fi(bi(t)) = 5

on this interval (figure 2e). Hence,
∫ t2
t1
fi(bi(t))dt = 30 ≥ 27.

0 fi(b)

b

3

5
6

1 2 3

(a) function fi(b)

Fig. 2: Illustration of Lemma 1 (Part 1)
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t1

bi(t)

t

i

3

1

t1 + 3 t2

(b) bi(t) before applying Lemma 1

t1

bi(t)

t

i

2

t2

(c) bi(t) after applying Lemma 1

t1

fi(bi(t))

t

i

6

1

t1 + 3 t2

(d) fi(bi(t)) before applying
Lemma 1

t1

fi(bi(t))

t

i

5

t2

(e) fi(bi(t)) after applying
Lemma 1

Fig. 2: Illustration of Lemma 1 (Part 2)
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Possible configurations for minimal energy consumption

Figure 3 represents the different configurations leading to a minimal energy con-
sumption (w(i, t1, t2)) inside [t1, t2]. Configurations figs. 3a, 3d and 3g correspond
to the case where i is left-shifted, configurations figs. 3c, 3f and 3i to the case
where i is right-shifted and configurations figs. 3b, 3e and 3h to the case where
i is both.
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Fig. 3: Possible configurations for minimal consumptions


