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Let U be an open relatively compact subanalytic subset of a real analytic manifold M . We show that there exists a "finite linear covering" (in the sense of Guillermou-Schapira) of U by subanalytic open subsets of U homeomorphic to an open ball.

We also show that the characteristic function of U can be written as a finite linear combination of characteristic functions of open relatively compact subanalytic subsets of M homeomorphic, by subanalytic and bi-lipschitz maps, to an open ball.

Let M be a real analytic manifold of dimension n. In this paper we study the subalgebra S (M ) of integer valued functions on M generated by charcteristic functions of relatively compact open subanalytic subsets of M (or equivalently by characteristic functions of compact subanalytic subsets of M ). As we show this algebra is generated by characteristic functions of open subanalytic sets with Lipschitz regular boundaries. More precisely, we call a relatively compact open subanalytic subset U ⊂ M an open subanalytic Lipschitz ball if its closure is subanalytically bi-Lipschitz homeomorphic to the unit ball of R n . Here we assume that M is equipped with a Riemannian metric. Any two such metrics are equivalent on relatively compact sets and hence the above definition is independent of the choice of a metric.

Theorem 0.1. The algebra S (M ) is generated by characteristic functions of open subanalytic Lipschitz balls.

That is to say if U is a relatively compact open subanalytic subset of M then its characteristic function 1 U is a finite integral linear combination of characteristic functions 1 W 1 , ..., 1 Wm , where the W j are open subanalytic Lipschitz balls. Note that, in general, U cannot be covered by finitely many subanalytic Lipschitz balls, as it is easy to see for {(x, y) ∈ R 2 ; y 2 < x 3 , x < 1}, M = R 2 , due to the presence of cusps. Nevertheless we show the existence of a "regular" cover in the sense that we control the distance to the boundary. Theorem 0.2. Let U be an open relatively compact subanalytic subset of M . Then there exist a finite cover U = i U i by open subanalytic sets such that :

(1) every U i is subanalytically homeomorphic to an open n-dimensional ball; (2) there is C > 0 such that for every x ∈ U , dist(x, M \ U ) ≤ C max i dist(x, M \ U i )
The proof of Theorem 0.1 is based on the classical cylindrical decomposition and the L-regular decomposition of subanalytic sets, cf. [START_REF] Kurdyka | On a Subanalytic Stratification Satisfying a Whitney Property with Exponent 1[END_REF], [START_REF] Parusiński | Lipschitz stratification of subanalytic sets[END_REF], [START_REF]Paw lucki, Lipschitz cell decomposition in o-minimal structures[END_REF]. L-regular sets are natural multidimensional generalization of classical cusps. We recall them briefly in Subsection 1.6.

For the proof of Theorem 0.2 we need also the regular projection theorem, cf. [START_REF] Mostowski | Lipschitz Equisingularity[END_REF], [START_REF] Parusiński | Regular projection for sub-analytic sets[END_REF], [START_REF] Parusiński | Lipschitz stratification of subanalytic sets[END_REF], that we recall in Subsection 1.4.

We also show the following strengthening of Theorem 0.2.

Theorem 0.3. In Theorem 0.2 we may require additionally that all U i are open L-regular cells.

For an open U ⊂ M we denote ∂U = U \ U . 

U ij such that U ij ⊂ V i and 1 U is a combination of 1 U ij .
Thus it suffices to show Theorem 0.1 for relatively compact open subanalytic subsets of R n . Similarly, it suffices to show Theorems 0.2 and 0.3 for M = R n . Indeed, it follow from the observation that the function

x → max i dist(x, M \ V i )
is continuous and nowhere zero on i V i and hence bounded from below by a nonzero constant c > 0 on U . Then

dist(x, M \ U ) ≤C 1 ≤ c -1 C 1 max i dist(x, M \ V i )
where C 1 is the diameter of U and hence, if

c -1 C 1 ≥ 1, dist(x, M \ U ) ≤ c -1 C 1 max i (min{dist(x, M \ U ), dist(x, M \ V i )}).
Now if for each U ∩ V i we choose a cover j U ij satisfying the statement of Theorem 0.2 or 0.

3 then for x ∈ U dist(x, M \ U ) ≤ c -1 C 1 max i (min{dist(x, M \ U ), dist(x, M \ V i )} ≤ c -1 C 1 max i dist(x, M \ U ∩ V i ) ≤ Cc -1 C 1 max ij dist(x, M \ U ij )
Thus the cover i,j U ij satisfies the claim of Theorem 0.2, resp. of Theorem 0.3. 1.2. Regular projections. We recall after [START_REF] Parusiński | Regular projection for sub-analytic sets[END_REF], [START_REF] Parusiński | Lipschitz stratification of subanalytic sets[END_REF] the subanalytic version of the regular projection theorem of T. Mostowski introduced originally in [START_REF] Mostowski | Lipschitz Equisingularity[END_REF] for complex analytic sets germs.

Let X ⊂ R n be subanalytic. For ξ ∈ R n-1 we denote by π ξ : R n → R n-1 the linear projection parallel to (ξ, 1)

∈ R n-1 × R. Fix constants C, ε > 0. We say that π = π ξ is (C, ε)-regular at x 0 ∈ R n (with respect to X) if (a) π| X is finite; (b) the intersection of X with the open cone C ε (x 0 , ξ) = {x 0 + λ(η, 1); |η -ξ| < ε, λ ∈ R \ 0} (1.1)
is empty or a finite disjoint union of sets of the form

{x 0 + λ i (η)(η, 1); |η -ξ| < ε},
where λ i are real analytic nowhere vanishing functions defined on |η -ξ| < ε. (c) the functions λ i from (b) satisfy for all |η -ξ| < ε

grad λ i (η) ≤ C|λ i (η)|,
We say that P ⊂ R n-1 defines a set of regular projections for X if there exists C, ε > 0 such that for every

x 0 ∈ R n there is ξ ∈ P such that π ξ is (C, ε)-regular at x 0 . Theorem 1.1. [[8], [9]] Let X be a compact subanalytic subset of R n such that dim X < n.
Then the generic set of n+1 vectors ξ 1 , . . . , ξ n+1 , ξ i ∈ R n-1 , defines a set of regular projections for X.

Here by generic we mean in the complement of a subanalytic nowhere dense subset of (R n-1 ) n+1 . 1.3. Cylindrical decomposition. We recall the first step of a basic construction called the cylindrical algebraic decomposition in semialgebraic geometry or the cell decomposition in o-minimal geometry, for details see for instance [START_REF] Coste | An introduction to o-minimal geometry[END_REF], [START_REF] Van Den Dries | Tame Topology and O-minimal Structures[END_REF].

Set X = U \ U . Then X is a compact subanalytic subset of R n of dimension n -1. We denote by Z ⊂ X the set of singular points of X that is the complement in X of the set Reg(X) := {x ∈ X; (X, x) is the germ of a real analytic submanifold of dimension n -1}.

Then Z is closed in X, subanalytic and dim Z ≤ n -2.

Assume that the standard projection π : R n → R n-1 restricted to X is finite. Denote by ∆ π ⊂ R n-1 the union of π(Z) and the set of critical values of π| Reg(X) . Then ∆ π , called the discriminant set of π, is compact and subanalytic. It is clear that

π(U ) = π(U ) ∪ ∆ π . Proposition 1.2. Let U ⊂ π(U ) \ ∆ π
be open and connected. Then there are finitely many bounded real analytic functions

ϕ 1 < ϕ 2 < • • • < ϕ k defined on U , such that X ∩ π -1 (U ) is the union of graphs of ϕ i 's. In particular, U ∩ π -1 (U ) is the union of the sets {(x , x n ) ∈ R n ; x ∈ U , ϕ i (x ) < x n < ϕ i+1 (x )},
and moreover, if U is subanalytically homeomorphic to an open (n -1)-dimensional ball, then each of these sets is subanalytically homeomorphic to an open n-dimensional ball.

1.4. The case of a regular projection. Fix x 0 ∈ U and suppose that π : R n → R n-1 is (C, ε)-regular at x 0 ∈ R n with respect to X. Then the cone (1.1) contains no point of Z. By [START_REF] Parusiński | Lipschitz stratification of subanalytic sets[END_REF] Lemma 5.2, this cone contains no critical point of π| Reg(X) , provided ε is chosen sufficiently small (for fixed C). In particular,

x 0 = π(x 0 ) ∈ ∆ π .
In what follows we fix C, ε > 0 and suppose ε small. We denote the cone (1.1) by C for short. Then for C sufficiently large, that depends only on C and ε, we have

dist(x 0 , X \ C ) ≤ C dist(x 0 , π(X \ C )) ≤ C dist(x 0 , ∆ π ). (1.2)
The first inequality is obvious, the second follow from the fact that the singular part of X and the critical points of π| Reg(X) are both outside the cone. 1.5. Proof of Theorem 0.2. Induction on n. Set X = U \ U and let π ξ 1 , . . . , π ξ n+1 be a set of (C, ε)-regular projections with respect to X. To each of these projections we apply the cylindrical decomposition. More precisely, let us fix one of these projections that for simplicity we suppose standard and denote it by π. Then we apply the inductive assumption to π(U ) \ ∆ π . Thus let π(U ) \ ∆ π = U i be a finite cover satisfying the statement of Theorem 0.2. Applying to each U i Proposition 1.2 we obtain a family of cylinders that covers U \ π -1 (∆ π ). In particular they cover the set of those points of U at which π is (C, ε)-regular.

Lemma 1.3. Suppose π is (C, ε)-regular at x 0 ∈ U . Let U be an open subanalytic subset of π(U ) \ ∆ π such that x 0 = π(x 0 ) ∈ U and dist(x 0 , ∆ π ) ≤ C dist(x 0 , ∂U ), (1.3) with C ≥ 1 for which (1.2) holds. Then dist(x 0 , X) ≤ ( C) 2 dist(x 0 , ∂U 1 ), (1.4)
where U 1 is the member of cylindrical decomposition of U ∩ π -1 (U ) containing x 0 .

Proof. We decompose ∂U 1 into two parts. The first one is vertical, i.e. contained in π -1 (∂U ), and the second part is contained in X. If dist(x 0 , ∂U 1 ) < dist(x 0 , X) then the distance to the vertical part realizes the distance of x 0 to ∂U 1 and dist(x 0 , ∂U 1 ) = dist(x 0 , ∂U ). Hence dist(x 0 , ∂U 1 ) = min{dist(x 0 , X), dist(x 0 , ∂U )}. (1.5) If dist(x 0 , ∂U 1 ) = dist(x 0 , X) then (1.4) holds with C = 1, otherwise by (1.2) and ( 1

.3) dist(x 0 , X \ C ) ≤ C dist(x 0 , ∆ π ) ≤ ( C) 2 dist(x 0 , ∂U ) = ( C) 2 dist(x 0 , ∂U 1 ). (1.6)
Thus to complete the proof of Theorem 0.2 it suffices to show that (1.3) holds if U is an element of the cover π(U ) \ ∆ π = U i for which dist(x 0 , ∂π(U )) ≤ C dist(x 0 , ∂U ). This follows from the inclusion ∂π(U ) ⊂ ∆ π that gives dist(x 0 , ∆ π ) ≤ dist(x 0 , ∂π(U )). This ends the proof of Theorem 0.2.

1.6. L-regular sets. Let Y ⊂ R n be subanalytic, dim Y = n. Then Y is called L-regular (with respect to given system of coordinates) if (1) if n = 1 then Y is a non-empty closed bounded interval; (2) if n > 1 then Y is of the form Y = {(x , x n ) ∈ R n ; f (x ) ≤ x n ≤ g(x ), x ∈ Y }, (1.7)
where Y ⊂ R n-1 is L-regular, f and g are continuous subanalytic functions defined in Y . It is also assumed that on the interior of Y , f and g are analytic, satisfy f < g, and have the first order partial derivatives bounded.

If dim Y = k < n then we say that Y is L-regular (with respect to given system of coordinates) if

(1.8) Y = {(y, z) ∈ R k × R n-k ; z = h(y), y ∈ Y },
where Y ⊂ R k is L-regular, dim Y = k, h is a continuous subanalytic map defined on Y , such that h is real analytic on the interior of Y , and has the first order partial derivatives bounded.

We say that Y is L-regular if it is L-regular with respect to a linear (or equivalently orthogonal) system of coordinates on R n .

We say that A ⊂ R n is an L-regular cell if A is the relative interior of an L-regular set. That is, it is the interior of A if dim A = n, and it is the graph of h restricted to Int(Y ) for an L-regular set of the form (1.8). By convention, every point is a zero-dimensional L-regular cell.

By [START_REF] Kurdyka | On a Subanalytic Stratification Satisfying a Whitney Property with Exponent 1[END_REF], see also Lemma 2.2 of [START_REF] Parusiński | Lipschitz stratification of subanalytic sets[END_REF] and Lemma 1.1 of [START_REF] Kurdyka | Quasi-convex decomposition in o-minimal structures[END_REF], L-regular sets and L-regular cells satisfy the following property, called in [START_REF] Kurdyka | On a Subanalytic Stratification Satisfying a Whitney Property with Exponent 1[END_REF] quasi-convexity. We say that Z ⊂ R n is quasiconvex if there is a constant C > 0 such that every two points x, y of Z can be connected in Z by a continuous subanalytic arc of length bounded by C x -y . It can be shown that for an L-regular set or cell Y of the form (1.7) or (1.8) the constant C depends only on n, the analogous constant for Y , and the bounds on first order partial derivatives of f and g, resp. h. By Lemma 2.2 of [START_REF] Parusiński | Lipschitz stratification of subanalytic sets[END_REF], an L-regular cell is subanalytically homeomorphic to the (open) unit ball.

Let Y be a subanalytic subset of a real analytic manifold M . We say that Y is L-regular if there exists its neighborhood V in M and an analytic diffeomorphism ϕ : V → R n such that ϕ(Y ) is L-regular. Similarly we define an L-regular cell in M . 1.7. Proof of Theorem 0.3. Fix a constant C 1 sufficiently large and a projection π : R n → R n-1 that is assumed, for simplicity, to be the standard one. We suppose that π restricted to X = ∂U is finite. We say that x ∈ π(U ) \ ∆ π is C 1 -regularly covered if there is a neighborhood Ũ of x in π(U ) \ ∆ π such that X ∩ π -1 ( Ũ ) is the union of graphs of analytic functions with the first order partial derivatives bounded (in the absolute value) by C 1 . Denote by U (C 1 ) the set of all x ∈ π(U ) \ ∆ π that are C 1 regularly covered. Then U (C 1 ) is open (if we use strict inequalities while defining it) and subanalytic. By Lemma 5.2 of [START_REF] Parusiński | Lipschitz stratification of subanalytic sets[END_REF], if π is a (C, ε)-regular projection at x 0 then x 0 is C 1 -regularly covered, for C 1 sufficiently big C 1 ≥ C 1 (C, ε). Moreover we have the following result.

Lemma 1.4. Given positive constants C, ε. Suppose that the constants C and C 1 are chosen sufficiently big,

C 1 ≥ C 1 (C, ε), C ≥ C(C, ε) . Let π be (C, ε)-regular at x 0 / ∈ X and let V = {x ∈ R n-1 ; dist(x , x 0 ) < ( C) -1 dist(x 0 , X ∩ C )}.
Then π -1 (V ) ∩ X ∩ C is the union of graphs of ϕ i with all first order partial derivatives bounded (in the absolute value) by C 1 . Moreover, then either

π -1 (V ) ∩ (X \ C ) = ∅ or dist(x 0 , ∆ π ) = dist(x 0 , π(X \ C )) ≤ dist(x 0 , ∂U (C 1 )).
Proof. We only prove the second part of the statement since the first part follows from Lemma 5.2 of [START_REF] Parusiński | Lipschitz stratification of subanalytic sets[END_REF]. If π -1 (V ) ∩ X \ C = ∅ then any point of π(X \ C ) realizing dist(x 0 , π(X \ C )) must be in the discriminant set ∆ π .

We now apply to U (C 1 ) the inductive hypothesis and thus assume that U (C 1 ) = U i is a finite regular cover by open L-regular cells. Fix one of them U and let U 1 be a member of the cylindrical decomposition of U ∩ π -1 (U ). Then U 1 is an L-regular cell. Let x 0 ∈ U 1 . We apply to x 0 Lemma 1.4.

If

π -1 (V ) ∩ (X \ C ) = ∅ then dist(x 0 , X) ≤ dist(x 0 , X ∩ C ) ≤ C dist(x 0 , ∂U (C 1 )) ≤ C2 dist(x 0 , ∂U ),
where the second inequality follows from the first part of Lemma 1.4 and the last inequality by the induction hypothesis. Then dist(x 0 , X) ≤ C2 dist(x 0 , ∂U 1 ) follows from (1.5). Otherwise, dist(x 0 , ∆ π ) ≤ dist(x 0 , ∂U (C 1 )) ≤ C dist(x 0 , ∂U ) and the claim follows from Lemma 1.3. This ends the proof.

1.8. Proof of Theorem 0.1. The proof is based on the following result.

Theorem 1.5. [Theorem A of [START_REF] Kurdyka | On a Subanalytic Stratification Satisfying a Whitney Property with Exponent 1[END_REF]] Let Z i ⊂ R n be a finite family of bounded subanalytic sets. Then there is be a finite disjoint collection {A j } of L-regular cells such that each Z i is the disjoint union of some of A j .

Similar results in the (more general) o-minimal set-up are proven in [START_REF] Kurdyka | Quasi-convex decomposition in o-minimal structures[END_REF] and [START_REF]Paw lucki, Lipschitz cell decomposition in o-minimal structures[END_REF]. Let U be a relatively compact open subanalytic subset of R n . By Theorem 1.5, U is a disjoint union of L-regular cells and hence it suffices to show the statement of Theorem 0.1 for an L-regular cell. We consider first the case of an open L-regular cell. Thus suppose that

U = {(x , x n ) ∈ R n ; f (x ) < x n < g(x ), x ∈ U }, (1.9)
where U is a relatively compact L-regular cell, f and g are subanalytic and analytic functions on U with the first order partial derivatives bounded. Then, by the quasi-convexity of U , f and g are Lipschitz. By an extension formula of [START_REF] Mcshane | Extension of range of functions[END_REF], see also [START_REF] Whitney | Analytic extensions of differentiable functions defined on closed sets[END_REF] and [START_REF] Banach | Wstȩp do teorii funkcji rzeczywistych[END_REF], we may suppose that f and g are restrictions of Lipschitz subanalytic functions, that we denote later also by f and g, defined everywhere on R n-1 and satisfying f ≤ g. Indeed, this extension of f is given by f

(p) = sup q∈U f (q) -L p -q ,
where L is the Lipschitz constant of f . Then f is Lipschitz with the same constant as f and subanalytic. Therefore by the inductive assumption on dimension we may assume that U is given by (1.9) with U a subanalytic Lipschitz ball. Denote U by U f,g to stress its dependence on f and g (with U fixed). Then 

1 U f,g = 1 U f -1,g + 1 U f,g+1 -1 U f -1,g+1
U = {(y, z) ∈ R k × R n-k ; z = h(y), y ∈ U },
where U is an open L-regular cell of R k , h is a subanalytic and analytic map defined on U with the first order partial derivatives bounded. Hence h is Lipschitz. We may again assume that h is the restriction of a Lipschitz subanalytic map h : R k → R n-k and then, by the inductive hypothesis, that U is a subanalytic Lipschitz ball. Let This ends the proof.

Remarks on the o-minimal case

It would be interesting to know whether the main theorems of this paper, Theorems 0.1, 0.2, 0.3, hold true in an arbitrary o-minimal structure in the sense of [START_REF] Van Den Dries | Tame Topology and O-minimal Structures[END_REF], i.e. if we replace the word "subanalytic" by "definable in an o-minimal structure", and fix M = R n . This is the case for Proposition 1.2 and Theorem 1.5 by [START_REF] Van Den Dries | Tame Topology and O-minimal Structures[END_REF], resp. [START_REF] Kurdyka | Quasi-convex decomposition in o-minimal structures[END_REF], [START_REF]Paw lucki, Lipschitz cell decomposition in o-minimal structures[END_REF], and therefore Theorem 0.1 holds true in the o-minimal set-up. But it is not clear whether the analog of Theorem 1.1 holds in an arbitrary o-minimal structure. Its proof in [START_REF] Parusiński | Regular projection for sub-analytic sets[END_REF] uses Puiseux Theorem with parameters in an essential way. Thus we state the following questions. One would expect the positive answers for the polynomially bounded o-minimal structures, though even this case in not entirely obvious.

U

  ∅ = {(y, z) ∈ U × R n-k ; h i (y) -1 < z i < h i (y) + 1 , i = 1, ..., n -k}For I ⊂ {1, ..., n -k} we denoteU I = {(y, z) ∈ U ∅ ; z i = h i (y) for i ∈ I}.Note that each U I is the disjoint union of 2 |I| of open subanalytic Lipschitz balls and that 1 U = I⊂{1,...,n-k} (-1) |I| 1 U I .

Question 2 . 1 .

 21 Does the regular projections theorem, Theorem 1.1, hold true in an arbitrary o-minimal strucure? Question 2.2. Do Theorems 0.2, 0.3, hold true in an arbitrary o-minimal strucure?

  Reduction to the case M = R n . Let U be an open relatively compact subanalytic subset of M . Choose a finite cover U ⊂ i V i by open relatively compact sets such that for each V i there is an open neighborhood of V i analytically diffeomorphic to R n . Then there are finitely many open subanalytic

1. Proofs 1.1.