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Abstract : 

The g-factor enhancement of the spin-polarized two-dimensional electron gas was 

measured directly over a wide range of spin polarizations, using spin flip resonant Raman 

scattering spectroscopy on two dimensional electron gases embedded in Cd1-xMnxTe 

semi-magnetic quantum wells. At zero Raman transferred momentum, the single particle 

spin flip excitation, energy Z*, coexists in the Raman spectrum with the spin flip wave of 

energy Z, the bare giant Zeeman splitting. We compare the measured g-factor 

enhancement with recent spin susceptibility enhancement theories and deduce the spin 

polarization dependence of the mass renormalization.  
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It is well established that exchange and correlation Coulomb interactions at low electron 

densities are predicted to enhance the spin susceptibility χ of a paramagnetic electron gas over 

that of the Pauli spin susceptibility χ0 for non-interacting electrons1. Thus, a full 

characterization of this exchange-correlation enhancement of the spin susceptibility should 

underpin our understanding of spin resolved Coulomb interactions in homogeneous electron 

gases2.  There has been considerable recent interest in theoretical2, ,3 4 and experimental5, , , ,6 7 8 9 

investigations of the spin susceptibility enhancement in low dimensional systems embedded 

in semiconductor heterostructures, aimed at finding evidence for the the spin susceptibility 

enhancement in very clean two dimensional electron gases (2DEGs)5,6, and for the eventual 

divergence of the spin susceptibility near the critical density for the Metal Insulator Transition 

observed in Si-MOSFET inversion layers7, ,8 9. However, these studies have not fully 

considered the dependence of the enhancement on the degree of spin polarization, although 

strong non linear behaviour is expected in a clean 2DEG. 

 

The spin susceptibility enhancement is given by the relation10, 
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where 
 
ζ = n↑ − n↓( ) n↑ + n↓( ) is the spin polarization of an electron gas with equilibrium 

density . 2Dn n n↑ ↓= + rs = aB
* πn2 D( −1) is the ratio of the mean spacing between electrons to 

the Bohr radius,   , and   is the exchange-correlation part of the ground-state energy, 

expressed in Rydbergs

aB
* ε xc

11.  

 



Experimental investigations to date of clean 2DEGs in the metallic state have focused on the 

dependence of the spin-susceptibility enhancement on rs. These have included thermodynamic 

measurements, for which the possible contribution of localized moments remains 

controversial, and magneto-transport measurements5, , ,6 7 8, which are only sensitive to mobile 

electrons. The spin susceptibility enhancement factor is usually given by the relation,  

 

 χ χ0 = m*g* mbgb  , (2.) 

 

where the electron mass m* and g-factor g* are renormalized relative to their respective non-

interacting values determined at the conduction band minimum, mb and gb. Magneto-transport 

measurements accurately determine the product of m* with g* in two ways: (i)  Measurement 

of the in-plane field necessary to polarize fully the 2DEG (|ζ| = 1); (ii) Determination of the 

specific tilt-angle of the field for which the energy spacing of Landau levels becomes 

identical to the spin splitting energy6, ,7 8. The Landau quantization introduced by the latter 

technique has to be kept negligible, and so only low spin polarization degrees can be probed 

(|ζ| < 10%). The density dependence at |ζ| = 1 and |ζ| < 0.1 is now well understood; excellent 

agreement was obtained recently between experiment and theory using a quantum Monte 

Carlo (QMC) evaluation of the correlation energy and accounting for the finite thickness of 

the quantum well. However, the continuous spin-degree dependence of the spin-susceptibility 

enhancement has not been considered experimentally. Moreover, the g-factor enhancement 

g*/gb is deduced after independent determinations of the mass m* using a multiple parameter 

fit and the product m*g*, together with an assumed value for mb  and gb
12. No direct 

measurement of the g-factor enhancement g /g*
b has yet been reported.  
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Here, we provide a direct determination of g*/gb over a wide range of spin polarization (0 < 

|ζ| < 0.6), by measuring directly and simultaneously both g* and gb. From a comparison with 

the theories of Ref. 2 and 3, we extract data about the dependence of the mass enhancement 

on the spin polarization, which we then compare with recent predictions of a non-linear 

dependence of the spin-susceptibility and mass enhancement13 with spin-polarization. 

 

We have employed electronic Raman scattering as a probe of electronic excitations of spin-

polarized 2DEGs (SP2DEGs) embedded in dilute magnetic semiconductor (DMS) 

modulation-doped quantum wells. The giant Zeeman effect occurring in these systems allows 

the creation of a highly spin polarized electron gas with a very low magnetic field. This has 

the advantage of negligible Landau orbital quantization, contrary to GaAs-based systems. 

Indeed, beyond the immediate results presented here, we demonstrate that such DMS 

quantum wells provide an excellent model system for the study of the ideal spin-polarized 

electron gas.  

 

Electronic Resonant Raman Scattering (RRS) is a powerful technique for measurement of the 

low energy excitation dispersions of the 2DEG Fermi disk, such as the determination of spin 

excitations in the quantum Hall regime14. We demonstrated recently that RRS may be 

employed as a probe of spin excitations dispersions in a SP2DEG embedded in a semi-

magnetic quantum well15. Here, we have investigated samples optimized so that the disorder 

introduced by random magnetic impurities has been reduced while conserving a sufficiently 

high giant Zeeman effect to achieve high spin polarization. Each sample comprises a 150Å 

wide Cd1-xMnxTe quantum well (x = 0.8±0.05%) and barriers of Cd0.8Mg0.2Te with a spacer 

thickness of 200Å and different doping layer thicknesses in order to achieve electron densities 

n2D in the range 2 – 3×1011 cm-2 (the corresponding range for rs is 2.5 to 2.0). Measurements 
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have been performed at 1.5K in a backscattering Voigt configuration (see Fig. 1b) with in-

plane magnetic field below 4T, such that the minimum electron magnetic length remains 

comparable to the well width, rendering the magnetic orbital quantization negligible. Given 

this, the mass enhancement due to the magneto-hybrid band-bending is also negligible16.  

 

The applied magnetic field polarizes localized spins of the Manganese ions which, through 

the exchange interaction with the conduction electrons, lift the spin degeneracy of the 

quantum well conduction band with a bare Zeeman energy given by,  

 

 
  
Z B( )= x ⋅ N0α ⋅ Sz B,T( )  , (3.) 

 

where N0α  = 220 meV is the ferromagnetic coupling integral between s conduction electrons 

and d Manganese electrons17. 
  

Sz B,T( )  is the thermal equilibrium average of the localized 

Manganese spins given by the modified Brillouin function and x is the paramagnetic Mn 

concentration ( x ≈ x ). In a Fermi liquid, single-particle and collective excitations co-exist and 

the SP2DEG exhibits a spin flip wave (SFW) that involves a simultaneous flip of all electron 

spins. By Larmor’s Theorem18, the zero wavevector SFW energy SFW(q=0) is sensitive only 

to the external magnetic field applied to the 2DEG. Here the coupling with Manganese spins 

plays the role of the external field, such that SFW(q=0) = Z(B). In addition, a single electron 

flipping its spin sees its energy change by a renormalized Zeeman energy Z*(B) = Z(B) + Wxc, 

due to exchange and correlation19. For the densities considered here, the ferromagnetic 

exchange dominates over correlations. As a consequence, flipping the spin of a single electron 

without disturbance of other spins is more costly in energy than the collective mode, such that  

Z* ≥ Z.  
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Figure 1(a) shows depolarized Raman spectra for in-plane magnetic fields ranging from 0 to 2 

T. With illumination and collection along the growth axis, excitations with vanishing 

momentum (q=0) are probed and depolarized Raman spectra, obtained with crossed incident 

and scattered polarizations, give access to spin flip excitations. Each spectrum shows the 

coexistence of a narrow low energy line with a broader high energy line, both dispersing with 

the applied magnetic field. Earlier15,20, we showed that the narrow line corresponds to the 

collective spin flip wave (SFW), the energy of which for vanishing wavevector q coincides 

with the bare Zeeman energy Z(B) [Eq. (3)]. Figure 1(b) shows that the Raman shift of the 

additional high energy line observed here, which is only present in depolarized spectra, 

increases with the applied field in the same way as Z(B). We assign the high energy line to a 

spin flip single particle excitation (SF-SPE), the energy of which for q=0 is given by the 

renormalised Zeeman energy Z*. The Raman response of the system exhibits both a collective 

and single particle response, contrary to, for example, electron spin resonance (ESR)21 which 

couples only with the collective response. This behavior originates from the strong resonance 

condition needed for RRS22.  

 

These SF-SPE involve transitions across the Fermi level, between spin-split subbands, as 

illustrated in Figs. 2(c) and (d). The SF-SPE are degenerate at q = 0 and develop into a 

continuum of excitations for q≠0. This continuum and the SFW dispersion, calculated from 

the spin-density response,19,20 are shown in Fig. 2(a). The well-defined SFW and broader SF-

SPE line are clearly visible in theoretical Raman spectra20, also shown in Fig. 2(a). 

Occupancy of the spin-up subband leads, for q≠0, to a double peak structure  in the continuum 

spectrum, which is also observed in the experimental spectra (see e.g. Fig. 2(b)) for all 

samples. In summary, depolarized RRS gives access directly to both Z and Z*, the bare and 

the enhanced Zeeman energies, as a function of the magnetic field. 
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We may define a bare spin polarization  to be the spin polarization of the non-interacting 

electron gas, such that 

ζ0

2
0 2bm Z nζ π= h 2D . Then, since χ = ∂mz ∂bz , where the 

magnetization 2z Dm n ζ∝  and bz is the magnetic field acting upon the 2DEG, the spin 

susceptibility enhancement is given by, 

 

 0 0d dχ χ ζ ζ=  . (4.) 

 

Integration of Eq.(1), combined with Eq. (4), yields the following exact result for the spin 

polarization enhancement: 
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If we now assume parabolic spin-split sub-bands of equal renormalized mass, such that 

 (the validity of this assumption will be discussed later), then   m↑
* = m↓

* = m*

* * 2 *
22 2D Fm Z n Z Eζ π= =h , where EF  is the Fermi energy of the unpolarized 2DEG. 

Hence:   

 

 ζ ζ0 = m*Z * mbZ  . (6.) 

 

In non-magnetic samples    and Z * = g*μB B b BZ g Bμ= , where µB is the electron Bohr 

magneton. Thus, one sees from Eqs. (4) and (6) that Eq. (2), which is employed in magneto-

transport investigations , implicitly assumes a linear dependence of Z  on B, whereas Eqs. 

(4) and (6) are more general. Hence, we show how knowledge of both single-particle and 

B

5- ,8 12 *
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collective spin flip excitation energies, and hence Z* and Z, enables the simultaneous 

determination of both g  and g*
b, providing a direct determination of the g-factor enhancement.  

 

We present in Fig. 3(a) the observed dependence of Z* on Z determined, respectively, from 

the SF-SPE and SFW lines in Raman spectra (e.g, those of Fig. 1). To compare these data 

with numerical predictions based on Eqs. (5) and (6) we have determined the electron density 

n2D from measurements of polarized Raman spectra, measured with parallel incident and 

scattered polarizations and zero applied magnetic field. Under strong resonance the polarized 

Raman spectrum reveals unscreened single-particle excitations (SPE). The dispersion of the 

high-energy cut-off of the SPE band follows , where vFv qh F is the Fermi velocity of the non-

polarized 2DEG. Table I gives the Fermi velocities measured by this technique. The electron 

density is then given by ( )
1

* 2
2 2D F Fn m v π= h , where  is the Fermi electron mass. 

Renormalization of the Fermi-mass has been predicted

mF
*

23 and confirmed by transport 

measurements8,12 in a single heterojunction, for which case (rs ~ 2) the out of plane extension 

of the 2D electron wavefunction is much larger than the quantum well thickness of the present 

samples. Thus, an evaluation of    for our samples is not available and so we give, in Table 

I, the non-corrected density  and corresponding , determined 

assuming  . 

mF
*

n2 D
0

  rs
0

mF
* = mb = 0.105me

 

We present in Fig. 3(b) the Zeeman energy enhancement Z* Z , deduced from Fig. 3(a), as a 

function of  , which is determined assuming  (this is expected to give a correction 

of less than 5% in r

ζ0 n2 D = n2 D
0

s). This is compared with the calculated dependence on  of the spin 

polarization enhancement  

 ζ0

ζ ζ0 , determined from Eq. (5) using the exchange-correlation 
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energy  from Ref.  ε xc 2 and accounting for finite thickness effects using Ref. 3. Fig. 3(b) 

demonstrates that   Z
* Z  and  ζ ζ0  are not proportional, as expected from Eq. (6). This 

suggests that for finite spin polarization we must consider the mass m* in Eq. (6) to be a spin 

polarization dependent renormalized mass, m* .  

 

Figure 3(c) shows *
bm m  obtained by division of the theoretical ζ ζ0  by the experimental 

  Z
* Z , as a function of the spin polarization ζ  (determined from the dependence of ζ ζ0  

with  ). We find an enhanced mass ζ0 m*  ( m* mb ≥ 1) for high ζ, and a strong variation with 

the spin polarization. Such behavior cannot be understood within the assumption of equal 

masses (  ). This is consistent with a recent prediction of strong non-linear 

behavior of  and  with ζ, which gives m

m↑
* = m↓

* = m*

*m↑
*m↓ ↑

* m↓
* ≈ 1.1 for ζ = 50%. 

 

To understand   m
* mb requires the derivation of Eq. (6) with the inclusion of a spin-dependent 

renormalization of the mass. If we assume the bands are still parabolic, but   , we find m↑
* ≠ m↓

*

 

 ( ) ( )
* *

*
* * 1 * * * *

2 1
1

m m
m

m m m m m mζ
↑ ↓

−
↑ ↓ ↑ ↓ ↑ ↓

=
+ − − +

 .  (7.) 

 

We present in Fig. 3(c)   m
* mb  determined using Eq. (7) with Fermi masses given by Ref. 13 

(Z&D). Although this calculation neglects correlations and thickness corrections, it predicts a 

mass enhancement of the same order as we observe, as well as a dependence on the spin 

polarization. Nevertheless, the strong increase of  m* mb  with spin polarization is not 

reproduced, and it is likely that a non-parabolic mass enhancement is required to account for 
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the observed dependence of the mass enhancement in Fig 3(c). For this, the spin resolved 

electron self-energy and density of states are required for a derivation of   m
* mb . 

 

We have presented resonant Raman scattering measurements of the zero momentum spin flip 

excitations in a spin-polarized 2DEG embedded in a high mobility semi-magnetic quantum 

well. The spin flip of a single particle coexists with the spin flip wave in Raman scattering 

spectra. Using this, we have explored the dependence of the spin susceptibility, g-factor and 

mass enhancement over a wide range of spin-polarization, without the effects of Landau 

quantization. We provide a direct determination of the g-factor enhancement and we have 

introduced a generalized expression (Eqs. (6) and (7)) of the spin polarization degree, 

necessary for such high spin polarization. We introduce an average renormalized mass where 

both the zone centre mass and the Fermi mass renormalization play a role. We give new data 

about the spin polarization degree dependence of this average mass and compare it with the 

only available theory. The latter does not well reproduce the data, indicating a need for the 

development of an accurate spin resolved theory for self-energy and mass renormalization. 

 

We thank the UK EPSRC and CNRS for financial support and S. De Palo, P. Gori-Giorgi, M. 

Polini, G. F. Giuliani and G. Vignale for fruitful discussions. 
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Table I. Sample parameters (see text).  

Sample (A) (B) (C) (D) 

x (%) 0.75 0.84 0.78 0.79 

vF (106cm/s) 14.7 13.4 13.3 12.7 

  
n2 D

0 1011cm-2( ) rs
0⎡⎣ ⎤⎦  2.83 [2.11] 2.35 [2.31] 2.31 [2.33] 2.12 [2.47] 
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Figure Captions  

 

FIG.1 (a) (Color online) Typical depolarized Raman spectra of one of the four samples 

studied (sample A), measured at Ei=1.621 eV, showing the spin flip wave (SFW) and  the spin 

flip single particle excitation (SF-SPE). The background at high Raman shift is from 

luminescence. The Voigt back scattering geometry [ x σπ( )x ] is parallel to the growth axis x 

and perpendicular to the in-plane field. (b) Magnetic field dependence of energies Z and Z* 

deduced from (a). Z(B) has been fitted with the Brillouin function. 

 

FIG.2 (a) (Color online) Typical theoretical dispersions of spin flip excitations of the 

SP2DEG calculated for ζ=-0.4 and rs=2.0. Full circles are the SFW and the hatched area is the 

SF-SPE continuum. Lines numbered 1, 2, 3, 4 correspond respectively to the excitations 1, 2, 

3, 4 in (d): Line 4 (1) is the excitation of a spin down electron with initial wavector k = kF↓ (k 

= –kF↓). Lines 2 and 3 are limits where the number of excitations is restricted due to filling of 

the up spin subband. Overlaid are the calculated Raman spectra for q/kF = 0 and 0.2.. (b) 

Experimental spectra obtained on sample A for B = 4.8 T and q = 0 and 9.5 µm-1 

(  q kF ≈ 0.1). (c) and (d) Schematic of spin-split subbands indicating representative SF-SPE 

excitations for (c) q = 0 and (d) non-zero q. 
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FIG. 3 (a) (Color online) Z* (Z) for all samples. (b) Comparison of Z*/Z (symbols) deduced 

from (a) and theoretical  ζ ζ0   (lines) given by Eq. (5)  as a function of the bare spin 

polarization  . Line colors match with symbol colors for the different samples. The black 

dotted lines around the solid black line for sample A are limits of 

ζ0

ζ ζ0 when including the 

error on    and varying the thickness of the square well from ±10% (a variation which 

overestimates the error of the growth technique and any error from neglecting the wave-

function penetration into the barrier). (c) Symbols indicate  the average renormalized mass 

rs
0

  
m* ζ( ) mb extracted from (b) as a function of the spin polarization ζ,  determined from 

using  ζ0  ζ ζ0 . Lines are Z&D prediction (Ref. 13) for rs=1, 2 and 3. We have added 

 from Ref. (* 0Fm ζ = ) 23. Sample C has been removed for clarity. 
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Figures 
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FIG.2 
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FIG.3 
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