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We study the regularity of the roots of complex univariate polynomials whose coefficients depend smoothly on parameters. We show that any continuous choice of the roots of a C n-1,1 -curve of monic polynomials of degree n is locally absolutely continuous with locally p-integrable derivatives for every 1 ≤ p < n/(n -1), uniformly with respect to the coefficients. This result is optimal: in general, the derivatives of the roots of a smooth curve of monic polynomials of degree n are not locally n/(n -1)-integrable, and the roots may have locally unbounded variation if the coefficients are only of class C n-1,α for α < 1. We also give a generalization of Ghisi and Gobbino's higher order Glaeser inequalities.

Introduction

This paper is dedicated to the problem of determining the optimal regularity of the roots of univariate polynomials whose coefficients depend smoothly on parameters. There is a vast literature on this problem, but most contributions treat special cases:

• the polynomial is assumed to have only real roots ( [START_REF] Bronshtein | Smoothness of roots of polynomials depending on parameters[END_REF], [START_REF] Mandai | Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter[END_REF], [START_REF] Wakabayashi | Remarks on hyperbolic polynomials[END_REF], [START_REF] Alekseevsky | Choosing roots of polynomials smoothly[END_REF], [START_REF] Kriegl | Choosing roots of polynomials smoothly. II[END_REF], [START_REF] Bony | Nonnegative functions as squares or sums of squares[END_REF], [START_REF] Bony | On the differentiability class of the admissible square roots of regular nonnegative functions, Phase space analysis of partial differential equations[END_REF], [START_REF]Note on the Bronshtein theorem concerning hyperbolic polynomials[END_REF], [START_REF]On square roots of class C m of nonnegative functions of one variable[END_REF], [START_REF] Colombini | On the regularity of the roots of hyperbolic polynomials[END_REF], [START_REF]A new proof of Bronshtein's theorem[END_REF]), • only radicals of functions are considered ( [START_REF] Glaeser | Racine carrée d'une fonction différentiable[END_REF], [START_REF] Colombini | Well-posedness in the Gevrey classes of the Cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time[END_REF], [START_REF] Tarama | On the lemma of Colombini, Jannelli and Spagnolo, Memoirs of the Faculty of Engineering[END_REF], [START_REF] Colombini | Une procedure de Calderón-Zygmund pour le problème de la racine k-ième[END_REF], [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]),

• it is assumed that the roots meet only of finite order, e.g., if the coefficients are real analytic or in some other quasianalytic class, ( [START_REF] Chaumat | Division par un polynôme hyperbolique[END_REF], [START_REF] Rainer | Perturbation of complex polynomials and normal operators[END_REF], [START_REF]Quasianalytic multiparameter perturbation of polynomials and normal matrices[END_REF], [START_REF]Smooth roots of hyperbolic polynomials with definable coefficients[END_REF], [START_REF]Differentiable roots, eigenvalues, and eigenvectors[END_REF]), • quadratic and cubic polynomials ( [START_REF] Spagnolo | On the absolute continuity of the roots of some algebraic equations[END_REF]), etc. In this paper we consider the general case: let (α, β) ⊆ R be a bounded open interval and let (1.1) P a (t)(Z) = P a(t) (Z) = Z n + n j=1 a j (t)Z n-j , t ∈ (α, β), be a monic polynomial whose coefficients are complex valued smooth functions a j : (α, β) → C, j = 1, . . . , n. It is not hard to see that P a always admits a continuous system of roots (e.g. [19, Ch. II Theorem 5.2]), but in general the roots cannot satisfy a local Lipschitz condition. For a long time it was unclear whether the roots of P a admit locally absolutely continuous parameterizations. This question was affirmatively solved in our recent paper [START_REF] Parusiński | Regularity of roots of polynomials[END_REF]: we proved that there is a positive integer k = k(n) and a rational number p = p(n) > 1 such that, if the coefficients are of class C k , then each continuous root λ is locally absolutely continuous with derivative λ being locally q-integrable for each 1 ≤ q < p, uniformly with respect to the coefficients. See the introduction of [START_REF] Parusiński | Regularity of roots of polynomials[END_REF] for the history of the problem and for applications. The main tool of [START_REF] Parusiński | Regularity of roots of polynomials[END_REF] was the resolution of singularities. With this technique we could not determine the optimal parameters k and p.

In the present paper we prove the optimal result by elementary methods. Our main result is the following theorem.

Theorem 1. Let (α, β) ⊆ R be a bounded open interval and let P a be a monic polynomial (1.1) with coefficients a j ∈ C n-1,1 ([α, β]), j = 1, . . . , n. Let λ ∈ C 0 ((α, β)) be a continuous root of P a on (α, β). Then λ is absolutely continuous on (α, β) and belongs to the Sobolev space W 1,p ((α, β)) for every 1 ≤ p < n/(n -1). The derivative λ satisfies λ L p ((α,β)) ≤ C(n, p) max{1, (β -α) 1/p , (β -α) -1+1/p } max 1≤j≤n a j 1/j

C n-1,1 ([α,β]) , (1.2)
where the constant C(n, p) depends only on n and p.

Remark. The factor (β -α) -1+1/p , which makes the bound (1.2) blow up if the length of the interval (α, β) tends to 0 unless p = 1, appears only in very special situations. For details and more precise bounds see Section 8.7. This result is best possible in the following sense:

• In general the roots of a polynomial of degree n cannot lie locally in W 1,n/(n-1) , even when the coefficients are real analytic. For instance, Z n = t, t ∈ R. • If the coefficients are just in C n-1,δ ([α, β]) for every δ < 1, then the roots need not have bounded variation in (α, β). See [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]Example 4.4]. A curve of complex monic polynomials (1.1) admits a continuous choice of its roots. This is no longer true if the dimension of the parameter space is at least two. In that case monodromy may prevent the existence of continuous roots. We get however the following multiparameter result, where we impose the existence of a continuous root.

Theorem 2. Let U ⊆ R m be open and let P a (x)(Z) = P a(x) (Z) = Z n + n j=1 a j (x)Z n-j , x ∈ U, be a monic polynomial with coefficients a j ∈ C n-1,1 (U ), j = 1, . . . , n. Let λ ∈ C 0 (V ) be a root of P a on a relatively compact open subset V U . Then λ belongs to the Sobolev space W 1,p (V ) for every 1 ≤ p < n/(n -1). The distributional gradient ∇λ satisfies

(1.3) ∇λ L p (V ) ≤ C(m, n, p, K) max 1≤j≤n a j 1/j C n-1,1 (W ) ,
where K is any finite cover of V by open boxes m i=1 (α i , β i ) contained in U and W = K; the constant C(m, n, p, K) depends only on m, n, p, and the cover K.

The proof of Theorem 1 makes essential use of the recent result of Ghisi and Gobbino [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF] who found the optimal regularity of radicals of functions (we will need a version for complex valued functions; see Section 3): Theorem 3 (Ghisi and Gobbino [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]). Let k be a positive integer, let α ∈ (0, 1], let I ⊆ R be an open bounded interval, and let f : I → R be a function. Assume that f is continuous and that there exists g ∈ C k,α (I, R) such that |f | k+α = |g|.

Let p be defined by

1 p + 1 k + α = 1.
Then we have f ∈ L p w (I) and (1.4) f p,w,I ≤ C(k) max Höld α,I (g (k) ) 1/(k+α) |I| 1/p , g

1/(k+α) L ∞ (I)
,

where C(k) is a constant that depends only on k.

Here L p w (I) denotes the weak Lebesgue space equipped with the quasinorm • p,w,I (see Section 2.2), and Höld α,I (g (k) ) is the α-Hölder constant of g (k) on I.

Let us briefly describe the strategy of our proof of Theorem 1. It is by induction on the degree of the polynomial and its heart is Proposition 3. First we reduce the polynomial P a to Tschirnhausen form P ã (indicated by adding tilde), where ã1 ≡ 0 (see Section 4.1), and split it near points t 0 , where not all coefficients vanish, P ã(t) = P b (t)P b * (t), t ∈ I, (t 0 ∈ I).

The splitting is universal and gives formulas for the coefficients b i (and b * i ) in terms of ãj (see Section 4.2); hereby the differentiability class is preserved. After Tschirnhausen transformation, P b ; P b, we split P b near points t 1 ∈ I, where not all bi vanish, P b(t) = P c (t)P c * (t), t ∈ J, (t 1 ∈ J).

Again the splitting is universal, we get formulas for c h (and c * h ) in terms of bj , and the differentiability class is preserved. Apply the Tschirnhausen transformation, P c ; P c. Let k ∈ {2, . . . , n} be such that

|ã k (t 0 )| 1/k = max 2≤j≤n |ã j (t 0 )| 1/j and ∈ {2, . . . , deg P b } such that | b (t 1 )| 1/ = max 2≤i≤deg P b | bi (t 1 )| 1/i .
The central idea consists in showing that, for 1 ≤ p < n/(n -1), we have an estimate of the form

|J| -1 | b (t 1 )| 1/ L p (J) + deg Pc h=2 (c 1/h h ) L p (J) ≤ C |I| -1 |ã k (t 0 )| 1/k L p (J) + deg P b i=2 ( b1/i i ) L p (J) , (1.5) 
for a universal constant C = C(n, p). In the derivation of this estimate we make essential use of (1.4) in order to bound (c

1/h h ) L p (J)
. We get the estimate (1.5) on neighborhoods J of all points t 1 ∈ I, where not all bi vanish. In order to glue them we prove in Proposition 2 that there is a countable subcollection of intervals J such that every point in their union is covered at most by two intervals. In this gluing process we use the σ-additivity of • p L p . Since the L p w -quasinorm lacks this property, we are forced to switch from L n/(n-1) w -to L p -bounds for p < n/(n -1).

The paper is structured as follows. We fix notation and recall facts on function spaces in Section 2. Ghisi and Gobbino's result on radicals (Theorem 3) is extended to complex valued functions in Section 3. We collect preliminaries on polynomials and define a universal splitting of such in Section 4. We derive bounds for the coefficients of a polynomial and generalize Ghisi and Gobbino's higher order Glaeser inequalities [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]Prop. 3.4] in Section 4.4, by applying these bounds to the Taylor polynomial. In Sections 5 and 6 we deduce estimates for the iterated derivatives of the coefficients before and after the splitting. Section 7 is dedicated to the proof of Proposition 2. The proof of Theorem 1 is finally carried out in Section 8. We deduce Theorem 2 in Section 9. Finally, in Section 10 we provide three applications of our results: local solvability of a system of pseudodifferential equations, lifting mappings from orbit spaces, and multi-valued Sobolev spaces.

Function spaces

In this section we fix notation for function spaces and recall well-known facts.

Hölder spaces.

Let Ω ⊆ R n be open. We denote by C 0 (Ω) the space of continuos complex valued functions on Ω. For k ∈ N ∪ {∞} we set

C k (Ω) = {f ∈ C Ω : ∂ α f ∈ C 0 (Ω), 0 ≤ |α| ≤ k}, C k (Ω) = {f ∈ C k (Ω) : ∂ α f has a continuous extension to Ω, 0 ≤ |α| ≤ k}. For α ∈ (0, 1] a function f : Ω → C belongs to C 0,α (Ω) if it is α-Hölder continuous in Ω, i.e., Höld α,Ω (f ) := sup x,y∈Ω,x =y |f (x) -f (y)| |x -y| α < ∞. If f is Lipschitz, i.e., f ∈ C 0,1 (Ω), we use Lip Ω (f ) = Höld 1,Ω (f ).
We define

C k,α (Ω) = {f ∈ C k (Ω) : ∂ β f ∈ C 0,α (Ω), |β| = k}.
Note that C k,α (Ω) is a Banach space when provided with the norm 

f C k,α (Ω) := sup |β|≤k x∈Ω |∂ β f (x)| + sup |β|=k Höld α,Ω (∂ β f ).
with the convention 1 = ∞ and ∞ = 1. Let 1 ≤ p < ∞. A measurable function f : Ω → C belongs to the weak L p -space L p w (Ω) if f p,w,Ω := sup r≥0 r |{x ∈ Ω : |f (x)| > r}| 1/p < ∞. For 1 ≤ q < p < ∞ we have (cf. [17, Ex. 1.1.11]) (2.1) f q,w,Ω ≤ f L q (Ω) ≤ p p -q 1/q |Ω| 1/q-1/p f p,w,Ω
and hence L p (Ω) ⊆ L p w (Ω) ⊆ L q (Ω) ⊆ L q w (Ω) with strict inclusions. It will be convenient to normalize the L p -norm and the L p w -quasinorm, i.e., we will consider

f * L p (Ω) := |Ω| -1/p f L p (Ω) , f * p,w,Ω := |Ω| -1/p f p,w,Ω . Note that 1 * L p (Ω) = 1 * p,w,Ω = 1. Then, for 1 ≤ q < p < ∞, f * L q (Ω) ≤ f * L p (Ω) , (2.2) f * q,w,Ω ≤ f * L q (Ω) ≤ p p -q 1/q f * p,w,Ω . (2.3)
We remark that • p,w,Ω is only a quasinorm; the triangle inequality fails, but for f j ∈ L p w (Ω) we still have

m j=1 f j p,w,Ω ≤ m m j=1 f j p,w,Ω .
There exists a norm equivalent to • p,w,Ω which makes

L p w (Ω) into a Banach space if p > 1. The L p w -quasinorm is σ-subadditive: if {Ω j } is a countable family of open sets with Ω = Ω j then (2.4) f p p,w,Ω ≤ j f p p,w,Ω j for every f ∈ L p w (Ω).
But it is not σ-additive: for instance, for h : (0, ∞) → R, h(t) := t -1/p , we have h p p,w,(0, ) = 1 for every > 0, but h p p,w,(1,2) = 1/2.

Sobolev spaces.

For k ∈ N and 1 ≤ p ≤ ∞ we consider the Sobolev space

W k,p (Ω) = {f ∈ L p (Ω) : ∂ α f ∈ L p (Ω), 0 ≤ |α| ≤ k},
where ∂ α f denote distributional derivatives. On bounded intervals I ⊆ R the Sobolev space W 1,1 (I) coincides with the space AC(I) of absolutely continuous functions on I if we identify each W 

|a i -b i | < δ implies n i=1 |f (a i ) -f (b i )| < whenever [a i , b i ], i = 1, . . . , n, are non-overlapping intervals contained in Ω.
We shall also use W k,p loc , AC loc , etc. with the obvious meaning. 2.4. Extension lemma. We will use the following extension lemma. The analogue for L p wquasinorms may be found in [START_REF] Parusiński | Regularity of roots of polynomials[END_REF]Lemma 2.1] which is a slight generalization of [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]Lemma 3.2]. Here we need a version for L p -norms.

Lemma 1.

Let Ω ⊆ R be open and bounded, let f : Ω → C be continuous, and set

Ω 0 := {t ∈ Ω : f (t) = 0}. Assume that f | Ω 0 ∈ AC loc (Ω 0 ) and that f | Ω 0 ∈ L p (Ω 0 ) for some p > 1 (note that f is differentiable a.e. in Ω 0 ). Then the distributional derivative of f in Ω is a measurable function f ∈ L p (Ω) and (2.5) f L p (Ω) = f | Ω 0 L p (Ω 0 ) .
Proof. The function ψ : Ω → C defined by

ψ(t) := f (t) if t ∈ Ω 0 0 if t ∈ Ω \ Ω 0
clearly belongs to L p (Ω). We show that ψ is the distributional derivative of f in Ω. Let φ ∈ C ∞ c (Ω) be a test function with compact support in Ω and let C denote the (at most countable) set of connected components of Ω 0 . Then, using integration by parts for the Lebesgue integral (see e.g. [START_REF] Leoni | A first course in Sobolev spaces[END_REF] Corollary 3.37)

Ω f φ dt = Ω 0 f φ dt = J∈C J f φ dt = - J∈C J f φ dt = - Ω 0 f φ dt = - Ω ψφ dt. (If J = (a, b) then b a f φ dt = lim →0 + b- a+ f φ dt = -lim →0 + b- a+ f φ dt = - b a f φ dt,
by the dominated convergence theorem, continuity of f , and (2.2).) Moreover, we have

f L p (Ω) = ψ L p (Ω) = ψ L p (Ω 0 ) = f | Ω 0 L p (Ω 0 )
, that is (2.5).

Radicals of differentiable functions

We derive an analogue of Theorem 3 for complex valued functions.

Proposition 1. Let I ⊆ R be a bounded interval, let k ∈ N >0 , and α ∈ (0, 1]. For each g ∈ C k,α (I) we have 

(3.1) |g (t)| ≤ Λ k+α (t)|g(t)| 1-1/(k+α
I → C is a continuous function such that f n = g ∈ C n-1,1 (I). Then we have f ∈ L n w (I) and (3.3) f n ,w,I ≤ C(n) max Lip I (g (n-1) ) 1/n |I| 1/n , g 1/n L ∞ (I) ,
where C(n) is a constant that depends only on n and 1/n + 1/n = 1.

Proof. On the set Ω 0 = {t ∈ I : f (t) = 0}, f is differentiable and satisfies

|f (t)| = 1 n |g (t)| |g(t)| 1-1/n .
So the assertion follows from Proposition 1 and the L p w -analogue of Lemma 1; see [29, Lemma 2.1].

Remark 1. Proposition 1 and hence also Corollary 1 are optimal in the following sense:

• Λ k+α can in general not be chosen in L p . Indeed, for g :

(-1, 1) → R, g(t) = t, we have |g | |g| 1-1/(k+α) p = |t| -1 ,
which is not integrable near 0. See [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]Example 4.3].

• If f is just in C k,β ( 
I) for every β < α, then (3.1) does in general not hold with Λ k+α ∈ L 1 (I). Indeed, in [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]Example 4.4] there is constructed a non-negative function f : I → R which belongs to C k,β (I) ∩ C ∞ (I) for every β < α, but not for β = α, and whose non-negative (k + α)-root has unbounded variation in I.

Preliminaries on polynomials

4.1. Tschirnhausen transformation. A monic polynomial

P a (Z) = Z n + n j=1 a j Z n-j , a = (a 1 , . . . , a n ) ∈ C n
is said to be in Tschirnhausen form if a 1 = 0. Every polynomial P a can be transformed to a polynomial P ã in Tschirnhausen form by the substitution Z → Z -a 1 /n, which we refer to as the Tschirnhausen transformation,

P ã(Z ) = P a (Z -a 1 /n) = Z n + n j=2 ãj Z n-j , ã = (ã 2 , . . . , ãn ) ∈ C n-1 .
We have the formulas

(4.1) ãj = j =0 C a a 1 j-, j = 2, . . . , n,
where C are universal constants. The effect of the Tschirnhausen transformation will always be indicated by adding tilde to the coefficients, P a ; P ã. We will identify the set of monic complex polynomials P a of degree n with the set C n (via P a → a) and the set of monic complex polynomials P ã of degree n in Tschirnhausen form with the set C n-1 (via P ã → ã). 4.2. Splitting. The following well-known lemma (see e.g. [START_REF] Alekseevsky | Choosing roots of polynomials smoothly[END_REF] or [START_REF] Bierstone | Arc-analytic functions[END_REF]) is a consequence of the inverse function theorem.

Lemma 2. Let P a = P b P c , where P b and P c are monic complex polynomials without common root. Then for P near P a we have P = P b(P ) P c(P ) for analytic mappings of monic polynomials P → b(P ) and P → c(P ), defined for P near P a , with the given initial values.

Proof. The splitting P a = P b P c defines on the coefficients a polynomial mapping ϕ such that a = ϕ(b, c), where a = (a i ), b = (b i ), and c = (c i ). The Jacobian determinant det dϕ(b, c) equals the resultant of P b and P c which is nonzero by assumption. Thus ϕ can be inverted locally.

If P ã is in Tschirnhausen form and if ã = 0, then P ã splits, i.e., P ã = P b P c for monic polynomials P b and P c with positive degree and without common zero. For, if λ 1 , . . . , λ n denote the roots of P ã and they all coincide, then since

λ 1 + • • • + λ n = ã1 = 0 they all must vanish, contradicting ã = 0.
Let us identify the set of monic complex polynomials P ã of degree n in Tschirnhausen form with the set C n-1 , and let ã2 , . . . , ãn denote the coordinates in C n-1 . Fix k ∈ {2, . . . , n} and let p ∈ C n-1 ∩ {ã k = 0}; p corresponds to the polynomial P ã. We associate the polynomial

Q a (Z) := ã-n/k k P ã(ã 1/k k Z) = Z n + n j=2 ã-j/k k ãj Z n-j , a j := ã-j/k k ãj , j = 2, . . . , n,
where the radicals are interpreted as multi-valued functions. Then Q a is in Tschirnhausen form and a k = 1. By Lemma 2 we have a splitting

Q a = Q b Q c on some open ball B ρ (p)
centered at p with radius ρ > 0. In particular, there exist analytic functions ψ i so that, on

B ρ (p), b i = ψ i ã-2/k k ã2 , ã-3/k k ã3 , . . . , ã-n/k k ãn , i = 1, . . . , deg P b .
The splitting 

Q a = Q b Q c induces a splitting P ã = P b P c , where (4.2) b i = ãi/k k ψ i ã-2/k k ã2 , ã-3/k k ã3 , . . . , ã-n/k k ãn , i = 1, . . .
(x) = a 1 x + • • • + a m x m ∈ C[x] satisfy (4.4) |P (x)| ≤ A(1 + M x m+α ), for x ∈ [0, B] ⊆ R,
and constants A, M ≥ 0 and B > 0. Then

(4.5) |a j | ≤ CA(1 + M j/(m+α) B j )B -j , j = 1, . . . , m,
for a constant C depending only on m and α.

Proof. The statement is well-known if M = 0; see [START_REF]A new proof of Bronshtein's theorem[END_REF]Lemma 3.4]. Assume that M > 0.

It suffices to consider the special case A = B = 1. The general case follows by applying the special case to

Q(x) = A -1 P (Bx) = b 1 x + • • • + b m x m , where b i = A -1 B i a i .
Fix k ∈ {1, . . . , m} and write the inequality (4.4) in the form

(4.6) |x -k P (x)| ≤ x -k + M x m+α-k .
The function on the right-hand side of (4.6) attains is minimum on {x > 0} at the point (4.7)

x k = k m+α-k 1/(m+α) M -1/(m+α)
and this minimum is of the form C k M k/(m+α) for some C k depending only on k, m, and α. Thus,

(4.8) |P (x k )| ≤ Ck ,
for some Ck depending only on k, m, and α. Suppose first that x k ≤ 1 for all k = 1, . . . , m and consider

a 1 x k + • • • + a m x m k = P (x k ), k = 1, .
. . , m, as a system of linear equations with the unknowns a k M -k/(m+α) and the (Vandermonde-like) matrix

L = k m+α-k j/(m+α) m k,j=1 .
Then the vector of unknowns is given by

(a 1 M -1/(m+α) , . . . , a m M -m/(m+α) ) T = L -1 (P (x 1 ), P (x 2 ), . . . , P (x m )) T .
By (4.8), we may conclude that

|a j | ≤ CM j/(m+α) , j = 1, . . . , m,
for a constant C depending only on m and α.

If

x k > 1 then M < k/(m + α -k)
, by (4.7), and hence for x ∈ [0, 1],

|P (x)| ≤ 1 + M x m+α ≤ 1 + k m+α-k ≤ m+α α .
In this case we may apply the lemma with M = 0, A = (m + α)/α, and B = 1, and obtain

|a j | ≤ C, j = 1, . . . , m,
for a constant C depending only on m and α.

Summing up, we obtained (4.5) in the case

A = B = 1.
As a consequence we get estimates for the intermediate derivatives of a finitely differentiable function in terms of the function and its highest derivative. For an interval I ⊆ R and a function f : I → C we define

V I (f ) := sup t,s∈I |f (t) -f (s)|. Lemma 4. Let I ⊆ R be a bounded open interval, m ∈ N, and α ∈ (0, 1]. If f ∈ C m,α (I),
then there is a universal constant C, depending only on m and α, such that for all t ∈ I and s = 1, . . . , m,

|f (s) (t)| ≤ C|I| -s V I (f ) + V I (f ) (m+α-s)/(m+α) (Höld α,I (f (m) )) s/(m+α) |I| s . (4.9)
Proof. We may suppose that I = (-δ, δ). If t ∈ I then at least one of the two intervals

[t, t ± δ), say [t, t + δ), is included in I. By Taylor's formula, for t 1 ∈ [t, t + δ), m s=1 f (s) (t) s! (t 1 -t) s = f (t 1 ) -f (t) - 1 0 (1 -τ ) m-1 (m -1)! f (m) (t + τ (t 1 -t)) -f (m) (t) dτ (t 1 -t) m
and hence

m s=1 f (s) (t) s! (t 1 -t) s ≤ V I (f ) + Höld α,I (f (m) )(t 1 -t) m+α = V I (f ) 1 + V I (f ) -1 Höld α,I (f (m) )(t 1 -t) m+α .
The assertion follows from Lemma 3.

4.4.

Higher order Glaeser inequalities. As a corollary of Lemma 4 we obtain a generalization of Ghisi and Gobbino's higher order Glaeser inequalities [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]Prop. 3.4].

Corollary 2. Let m ∈ N and α ∈ (0, 1]. Let I = (t 0 -δ, t 0 + δ) with t 0 ∈ R and δ > 0. If f ∈ C m,α (I)
is such that f and f do not change their sign on I, then there is a universal constant C, depending only on m and α, such that for all s = 1, . . . , m,

|f (s) (t 0 )| ≤ C|I| -s |f (t 0 )| + |f (t 0 )| (m+α-s)/(m+α) (Höld α,I (f (m) )) s/(m+α) |I| s . (4.10)
Proof. For simplicity assume t 0 = 0. Changing f to -f and t to -t if necessary, we may assume that f (t) ≥ 0 and f (t) ≤ 0 for all t ≥ 0. Then V [0,δ) (f ) ≤ f (0) and so (4.10) follows from (4.9).

For s = 1 we recover [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]Prop. 3.4]. Indeed, for s = 1 we may write (4.10) in the form

|f (t 0 )| ≤ C|f (t 0 )| (m+α-1)/(m+α) max |f (t 0 )| 1/(m+α) |I| -1 , (Höld α,I (f (m) )) 1/(m+α) , (4.11)
and the inequality in [START_REF] Ghisi | Higher order Glaeser inequalities and optimal regularity of roots of real functions[END_REF]Prop. 3.4] can be written as

|f (t 0 )| ≤ C|f (t 0 )| (m+α-1)/(m+α) max |f (t 0 )| 1/(m+α) |I| -1+1/(m+α) , (Höld α,I (f (m) )) 1/(m+α) . (4.12)
These two inequalities are equivalent in the following sense. If (4.11) holds with the constant C > 0 then (4.12) holds with the constant max{C, C (m+α-1)/(m+α) } and symmetrically, if (4.12) holds with the constant C > 0 then (4.11) holds with the constant max{C, C (m+α)/(m+α-1) }. For instance, suppose that (4.11) holds. If the second term in the maximum is dominant then (4.12) holds with the same constant. If the first term is dominant in the maximum, that is |f (t 0 )| ≤ C|f (t 0 )||I| -1 , then |f (t 0 )| (m+α-1)/(m+α) ≤ (C|f (t 0 )||I| -1 ) (m+α-1)/(m+α) and (4.12) holds with the constant C (m+α-1)/(m+α) .

5.

Estimates for the iterated derivatives of the coefficients 

P ã(t) (Z) = Z n + n j=2 ãj (t)Z n-j , t ∈ I,
be a monic complex polynomial in Tschirnhausen form with coefficients ãj ∈ C n-1,1 (I), j = 2, . . . , n. We make the following assumptions. Suppose that t 0 ∈ I and k ∈ {2, . . . , n} are such that

(5.2) |ã k (t 0 )| 1/k = max 2≤j≤n |ã j (t 0 )| 1/j = 0
and that, for some positive constant B < 1/3,

n j=2 (ã 1/j j ) L 1 (I) ≤ B|ã k (t 0 )| 1 k . (5.3)
By Corollary 1, every continuous selection f of the multi-valued function ã1/j j is absolutely continuous on I and f L 1 (I) is independent of the choice of the selection, by (2.3) and (3.3). (By a selection of a set-valued function F : X ; Y we mean a single-valued function f : X → Y such that f (x) ∈ F (x) for all x ∈ X.) So henceforth we shall fix one continuous selection of ã1/j j , and, abusing notation, denote it by ã1/j j as well.

Lemma 5. Assume that the polynomial (5.1) satisfies (5.2)- (5.3). Then for all t ∈ I and j = 2, . . . , n,

|ã 1/j j (t) - ã1/j j (t 0 )| ≤ B|ã k (t 0 )| 1/k , (5.4) 2 3 < 1 -B ≤ ãk (t) ãk (t 0 ) 1/k ≤ 1 + B < 4 3 , (5.5) (5.6) |ã j (t)| 1/j ≤ 4 3 |ã k (t 0 )| 1/k ≤ 2|ã k (t)| 1/k .
Proof. In fact, by (5.3),

|ã 1/j j (t) - ã1/j j (t 0 )| = | t t 0 (ã 1/j j ) ds| ≤ (ã 1/j j ) L 1 (I) ≤ B|ã k (t 0 )| 1/k , that is (5.4). For j = k it implies ãk (t) ãk (t 0 ) 1/k -1 ≤ B,
and thus (5.5). By (5.2), (5.4), and (5.5),

|ã j (t)| 1/j ≤ (1 + B)|ã k (t 0 )| 1/k ≤ 2|ã k (t)| 1/k , that is (5.6).
By (5.5), ãk does not vanish on the interval I and so the curve

a : I → {(a 2 , . . . , a n ) ∈ C n-1 : a k = 1} (5.7) t → a(t) := (ã -2/k k ã2 , . . . , ã-n/k k ãn )(t)
is well-defined.

Lemma 6. Assume that the polynomial (5.1) satisfies (5.2)-(5.3). Then the length of the curve (5.7) is bounded by 3n 2 2 n B.

Proof. The estimates (5.4), (5.5), and (5.6) imply )) 1/n |ã k (t 0 )| (n-j)/(kn) .

|ã -j/k k ã j | ≤ 2 n |ã -1+1/j j ã j ã-1/k k | ≤ 3n 2 n-1 |(ã 1/j j ) ||ã k (t 0 )| -1/k |(ã -j/k k ) ãj | ≤ n2 n |ã -1/k k (ã 1/k k ) | ≤ 3n 2 n-1 |(ã 1/k k ) ||ã k (t 0 )| -1/k , and thus |(ã -j/k k ãj ) | ≤ 3n 2 n-1 |ã k (t 0 )| -1/k |(ã 1/j j ) | + |(ã 1/k k ) | . Consequently, using (5.3), I |a | ds ≤ 3n 2 2 n B,
Lemma 7. Assume that the polynomial (5.1) satisfies (5.2) and (5.8). Then for all t ∈ I, j = 2, . . . , n, and s = 1, . . . , n,

|ã (s) j (t)| ≤ C(n)|I| -s |ã k (t 0 )| j/k . (5.10) Proof. By Lemma 4, |ã (s) j (t)| ≤ C|I| -s V I (ã j ) + V I (ã j ) (n-s)/n Lip I (ã (n-1) j ) s/n |I| s . By (5.6), V I (ã j ) ≤ 2 ãj L ∞ (I) ≤ 2 (4/3) n |ã k (t 0 )| j/k and, by (5.8), max 2≤j≤n (Lip I (ã (n-1) j )) s/n |ã k (t 0 )| -js/(kn) |I| s = |ã k (t 0 )| -s/k M s |I| s ≤ 1. Thus V I (ã j ) + V I (ã j ) (n-s)/n Lip I (ã (n-1) j ) s/n |I| s ≤ |ã k (t 0 )| j/k C 1 + C 2 Lip I (ã (n-1) j ) s/n |ã k (t 0 )| -js/(kn) |I| s ≤ C 3 |ã k (t 0 )| j/k ,
for constants C i that depend only on n. So (5.10) is proved.

6. The estimates after splitting 6.1. Estimates after splitting on I. Assume that the polynomial (5.1) satisfies (5.2)-( 5.3) and the estimates (5.10).

We suppose additionally that the curve a as defined in (5.7) lies entirely in one of the balls B ρ (p) from Section 4.2 on which we have a splitting. Then P ã splits on I,

P ã(t) = P b (t)P b * (t), t ∈ I. (6.1)
By (4.2) and (4.3), the coefficients b i are of the form

(6.2) b i = ãi/k k ψ i ã-2/k k ã2 , . . . , ã-n/k k ãn , i = 1, . . . , deg P b ,
and after Tschirnhausen transformation P b ; P b, we get

(6.3) bi = ãi/k k ψi ã-2/k k ã2 , . . . , ã-n/k k ãn , i = 2, . . . , deg P b ,
where ψ i and ψi are the analytic functions specified in Section 4.2.

Lemma 8. Assume that the polynomial (5.1) satisfies (5.2)-(5.3), (5.10), and (6.1)-(6.3).

Then there is a universal constant C, depending only on n and on the functions ψi , such that for all t ∈ I, i = 2, . . . , deg P b , and s = 1, . . . , n,

(6.4) | b(s) i (t)| ≤ C|I| -s |ã k (t 0 )| i/k . Moreover, for all t ∈ I, (6.5) |b 1 (t)| ≤ C|I| -1 |ã k (t 0 )| 1/k .
Proof. We claim that the functions ψi • a satisfy (6.6)

|∂ s t ( ψi • a)| ≤ C|I| -s
, for a constant C as required in the lemma. Using induction, (5.10), and differentiating the following equation (s -1) times,

∂ t ( ψi • a) = n j=2 ((∂ j-1 ψi ) • a) ∂ t ã-j/k k ãj , (6.6 
) follows easily. (Here we used the fact that all partial derivatives of the functions ψi are separately bounded and that these bounds are universal.) Now (6.4) is a consequence of (6.3) and (6.6). The proof of (6.5) is analogous. 

| bi (t)| ≤ C 1 |ã k (t 0 )| i/k ,
where the constant C 1 depends only on the functions ψi . As an immediate consequence of (6.8) we may conclude that we can choose a universal constant D < 1/3 and that there is an open interval J, t 1 ⊆ J ⊆ I, such that

|J||I| -1 |ã k (t 0 )| 1/k + deg P b i=2 ( b1/i i ) L 1 (J) = D| b (t 1 )| 1/ . (6.9) It suffices to choose D < C -1
1 where C 1 is the constant in (6.8); b1/i i is absolutely continuous by Corollary 1. Let us set

ϕ t 1 ,+ (s) := (s -t 1 )|I| -1 |ã k (t 0 )| 1/k + deg P b i=2 ( b1/i i ) L 1 ([t 1 ,s)) , s ≥ t 1 , ϕ t 1 ,-(s) := (t 1 -s)|I| -1 |ã k (t 0 )| 1/k + deg P b i=2 ( b1/i i ) L 1 ((s,t 1 ]) , s ≤ t 1 .
Then ϕ t 1 ,± ≥ 0 are continuous with ϕ t 1 ,± (t 1 ) = 0. We let ϕ t 1 ,± grow until

ϕ t 1 ,-(s -) + ϕ t 1 ,+ (s + ) = D| b (t 1 )| 1/
, that is (6.9) with J = (s -, s + ). And we do this symmetrically whenever possible: (i) We say that the interval J = (s -, s + ) is of first kind if (6.10)

ϕ t 1 ,-(s -) = ϕ t 1 ,+ (s + ) = D 2 | b (t 1 )| 1/ .
(ii) If (6.10) is not possible, i.e., we reach the boundary of the interval I before either ϕ t 1 ,-or ϕ t 1 ,+ has grown to the value (D/2)| b (t 1 )| 1/ , then we say that J = (s -, s + ) is of second kind.

6.3.

Estimates after splitting on J.

Lemma 9. Assume that the polynomial (5.1) satisfies (5.2)-(5.3), (5.10), (6.1)-( 6.3), and (6.7). Let D and J be as in (6.9). Then the functions bi on J satisfy the conclusions of Lemmas 5, 6, and 7. More precisely, for all t ∈ J and i = 2, . . . , deg P b ,

| b1/i i (t) - b1/i i (t 1 )| ≤ D| b (t 1 )| 1/ , (6.11) 2 3 < 1 -D ≤ b (t) b (t 1 ) 1/ ≤ 1 + D < 4 3 , (6.12) | bi (t)| 1/i ≤ 4 3 | b (t 1 )| 1/ ≤ 2| b (t)| 1/ . (6.13)
The length of the curve

(6.14) J t → b(t) := ( b-2/ b2 , . . . , b-deg P b / bdeg P b )(t) is bounded by 3(deg P b ) 2 2 deg P b D.
There is a universal constant C, depending only on n and ψi , such that for all t ∈ J, i = 2, . . . , deg P b , and s = 1, . . . , n,

| b(s) i (t)| ≤ C|J| -s | b (t 1 )| i/ . (6.15)
Proof. The proof of (6.11)-(6.13) is analogous to the proof of Lemma 5; use (6.7) and (6.9) instead of (5.2) and (5.3). The bound for the length of the curve J t → b(t) (which is well-defined by (6.12)) follows from (6.9) and (6.11)-(6.13); see the proof of Lemma 6.

Let us prove (6.15). By (6.4), for t ∈ I and i = 2, . . . , deg P b ,

(6.16) | b(i) i (t)| ≤ C|I| -i |ã k (t 0 )| i/k
, where C = C(n, ψi ). Thus, for t ∈ J and s = 1, ..., i,

| b(s) i (t)| ≤ C|J| -s V J ( bi ) + V J ( bi ) (i-s)/i b(i) i s/i L ∞ (J) |J| s by Lemma 4 ≤ C 1 |J| -s | b (t 1 )| i/ + | b (t 1 )| (i-s)/ |J| s |I| -s |ã k (t 0 )| s/k
by (6.13) and (6.16)

≤ C 2 |J| -s | b (t 1 )| i/ by (6.9), for constants C = C(i) and C i = C i (n, ψi ). For s > i, (6.4) implies | b(s) i (t)| ≤ C|I| -s |ã k (t 0 )| i/k = C|J| -s |J||I| -1 s |ã k (t 0 )| i/k ≤ C|J| -s |J||I| -1 |ã k (t 0 )| 1/k i ≤ C|J| -s | b (t 1 )| i/ ,
where the last inequality follows from (6.9). Thus (6.15) is proved.

A special cover by intervals

Assume that the polynomial (5.1) satisfies (5.2)-(5.3), (5.10), and (6.1)-(6.3). The arguments in Section 6.2 show that for each point t 1 in

I := I \ {t ∈ I : b2 (t) = • • • = bdeg P b (t) = 0}
there exists ∈ {2, . . . , deg P b } such that (6.7) and there is an open interval J = J(t 1 ), t 1 ∈ J ⊆ I , such that (6.9); that J ⊆ I follows from (6.12).

The goal of this section is to prove the following proposition.

Proposition 2. The collection {J(t 1 )} t 1 ∈I has a countable subcollection J that still covers I and such that every point in I belongs to at most two intervals in J . In particular,

J∈J |J| ≤ 2|I |.
Remark 2. It is essential for us that J is a subcollection and not a refinement; by shrinking the intervals we would lose equality in (6.9).

We can treat the connected components of I separately. So let (α, β) be any connected component of I and let I := {J(t 1 )} t 1 ∈(α,β) . The coefficients bi may or may not all vanish at the endpoints. We distinguish three cases: (i) b vanishes at both endpoints, (7.1)

deg P b i=2 | bi (α)| 1/i = deg P b i=2 | bi (β)| 1/i = 0.
(ii) b vanishes at one endpoint, say α, but not at the other, (7.2)

deg P b i=2 | bi (α)| 1/i = 0, deg P b i=2 | bi (β)| 1/i = 0.
(iii) b does not vanishes at either endpoint, (7.3)

deg P b i=2 | bi (α)| 1/i = 0, deg P b i=2 | bi (β)| 1/i = 0.
Lemma 10. We have: (2) If b(α) = 0, then there exists an interval J ∈ I of second kind (with endpoint α). If b(β) = 0, then there exists an interval J ∈ I of second kind (with endpoint β).

Proof.

(1) By (6.12), b cannot vanish at the endpoints of J. That |J(t 1 )| → 0 as t 1 tends to an endpoint, where b vanishes, is immediate from (6.9).

(2) Suppose that b(β) = 0. If all intervals J(t 1 ) in I were of first kind then, by (6.9) and (6.10), (7.4)

ϕ t 1 ,+ (β) ≥ D 2 | b (t 1 )| 1/ = D 2 max 2≤i≤deg P b | bi (t 1 )| 1/i , t 1 ∈ (α, β).
But ϕ t 1 ,+ (β) → 0 as t 1 → β, while the right-hand side of (7.4) tends to a positive constant, a contradiction.

Lemma 11. Suppose that J ∈ I and t 1 ∈ J such that J(t 1 ) is of first kind. Then J ⊆ J(t 1 ).

Proof. Let J = J(s 1 ) = (α s 1 , β s 1 ) and assume without loss of generality that β s 1 ≤ t 1 . Suppose that J(s 1 ) ⊆ J(t 1 ). Since J(t 1 ) = (α t 1 , β t 1 ) is of first kind (cf. (6.10)), we have

(t 1 -α t 1 )|I| -1 |ã k (t 0 )| 1/k + deg P b i=2 ( b1/i i ) L 1 ((αt 1 ,t 1 ]) = D 2 | b t 1 (t 1 )| 1/ t 1 < D| b s 1 (s 1 )| 1/ s 1 ,
because by (6.12) and (6.13),

| b t 1 (t 1 )| 1/ t 1 < 3 2 | b t 1 (s 1 )| 1/ t 1 ≤ 2| b s 1 (s 1 )| 1/ s 1 .
But this leads to a contradiction in view of (6.9).

Case (i). By (7.1) and Lemma 10, each J ∈ I is an interval of first kind. Choose any interval J(t 1 ), t 1 ∈ (α, β), and denote it by J 0 = (α 0 , β 0 ). Define recursively (for γ ∈ Z)

J γ = (α γ , β γ ) := J(β γ-1 ) if γ ≥ 1, J(α γ+1 ) if γ ≤ -1.
By Lemma 11, we have α < α γ < α γ+1 and β γ < β γ+1 < β for all γ. Let us show that the collection J = {J γ } γ∈Z covers (α, β). Suppose that, say, τ := sup γ β γ < β. By (6.9) and since all intervals are of first kind (cf. (6.10)),

(τ -β γ )|I| -1 |ã k (t 0 )| 1/k + deg P b i=2 ( b1/i i ) L 1 ((βγ ,τ ]) ≥ D 2 max 2≤i≤deg P b | bi (β γ )| 1/i .
But the left-hand side tends to 0 as γ → +∞, whereas the right-hand side converges to (D/2) max 2≤i≤deg P b | bi (τ )| 1/i > 0, a contradiction. Now Proposition 2 follows from Lemma 10 and the following lemma.

Lemma 12. Let J = {J γ } γ∈Z be a countable collection of bounded open intervals J γ = (α γ , β γ ) ⊆ R such that (1) J = (α, β) is a bounded open interval, (2) α 
< α γ < α γ+1 and β γ < β γ+1 < β for all γ ∈ Z, (3) 
|J γ | → 0 as γ → ±∞. Then there is a subcollection J 0 ⊆ J with J 0 = (α, β) and such that every point in (α, β) belongs to at most two intervals in J 0 .

Proof. The assumptions imply that the sequence of left endpoints (α γ ) converges to β as γ → ∞, and the sequence of right endpoints (β γ ) converges to α as γ → -∞. Thus, there exists γ 1 > 0 such that α γ 1 < β 0 ≤ α γ 1 +1 , there exists γ 2 > γ 1 such that α γ 2 < β γ 1 ≤ α γ 2 +1 , and iteratively, there exists γ j > γ j-1 such that α γ j < β γ j-1 ≤ α γ j +1 . Symmetrically, there exist integers γ j-1 < γ j < 0 (j ∈ Z <0 ) such that β γ j-1 -1 ≤ α γ j < β γ j-1 . Set γ 0 := 0 and define J 0 := {J γ j } j∈Z .

By construction J 0 still covers (α, β) and the left and right endpoints of the intervals J γ j are interlacing,

• • • < β γ j-2 < α γ j < β γ j-1 < α γ j+1 < β γ j < α γ j+2 < • • • Thus J 0 has the required properties.
Case (ii). By (7.2) and Lemma 10, the collection I contains an interval of second kind. Since b(α) = 0, all intervals of second kind in I must have endpoint β. Thus, and because |J(t 1 )| → 0 as t → α by Lemma 10, τ := inf{t 1 : J(t 1 ) ∈ I is of second kind} > α.

The interval J(τ ) is of first kind (being of second kind is an open condition).

There is an interval J 0 = (α 0 , β 0 = β) of second kind in I with J(τ ) ∩ J 0 = ∅. Let us denote J(τ ) by J -1 = (α -1 , β -1 ) and define recursively

J γ = (α γ , β γ ) := J(α γ+1 ), γ ≤ -1.
The arguments in Case (i) imply that the collection J := {J γ } γ≤0 is a countable cover of (α, β) satisfying α < α γ < α γ+1 and |J γ | → 0.

Proposition 2 follows from (an obvious modification of) Lemma 12.

Case (iii). In this case I has a finite subcollection J that still covers (α, β). Indeed, by (7.3) and Lemma 10, the collection I contains intervals of second kind with endpoints α and β, say, (α, δ) and ( , β). If their intersection is non-empty we are done. Otherwise there are finitely many intervals in I that cover the compact interval [δ, ]. Proposition 2 follows from the following lemma.

Lemma 13. Every finite collection J of open intervals with J = (α, β) has a subcollection that still covers (α, β) and every point in (α, β) belongs to at most two intervals in the subcollection.

Proof. The collection J contains an interval with endpoint α; let J 0 = (α = α 0 , β 0 ) be the biggest among them. If β 0 < β, let J 1 = (α 1 , β 1 ) denote the interval among all intervals in J containing β 0 whose right endpoint is maximal. If β 1 < β, let J 2 = (α 2 , β 2 ) denote the interval among all intervals in J containing β 0 whose right endpoint is maximal, etc. This yields a finite cover of (α, β) by intervals

J i = (α i , β i ), i = 0, 1, . . . , N , such that α 0 < α 1 < • • • < α N . Define i 1 := max α i <β 0 i, i j := max α i <β i j-1 i, j ≥ 2.
Then {J 0 , J i 1 , J i 2 , . . . , J N } has the required properties.

Proof of Theorem 1

Let (α, β) ⊆ R be a bounded open interval and let (8.1)

P a (t)(Z) = P a(t) (Z) = Z n + n j=1 a j (t)Z n-j , t ∈ (α, β),
be a monic polynomial with coefficients a j ∈ C n-1,1 ([α, β]), j = 1, . . . , n.

The proof of Theorem 1 is by induction on the degree of the polynomial. We will reduce the degree by splitting P a locally. Since the first splitting is atypical we shall consider subsequent splittings before we apply the inductive hypothesis.

8.1. Reduction to Tschirnhausen form. Without loss of generality we may assume that n ≥ 2 and that P a = P ã is in Tschirnhausen form, i.e., ã1 = 0. We shall see in Section 8.8 how to get the bound (1.2) from a corresponding bound involving the ãj .

Let {λ j (t)} n j=1 , t ∈ (α, β), be any system of the roots of P ã (not necessarily continuous). Since P ã is in Tschirnhausen form, for fixed t ∈ (α, β),

(8.2) ∀ i,j λ i (t) = λ j (t) ⇐⇒ ∀ i λ i (t) = 0 ⇐⇒ ∀ i ãi (t) = 0.
8.2. Universal splitting of P ã. The space of monic polynomials of degree n in Tschirnhausen form can be identified with C n-1 ; let the coordinates in C n-1 be denoted by a 2 , a 3 , . . . , a n . The set (ã

K := n k=2 {(a 2 , . . . , a n ) ∈ C n-1 : a k = 1, |a j | ≤ 1 for j =
1/j j ) L 1 (I) ≤ B|ã k (t 0 )| 1/k , (8.5) 
with M given by (5.9).

In particular, all conclusions of Section 5 hold true. Consider the point p = a(t 0 ), where a is the curve defined in (5.7). By (8.4), p ∈ K and thus there exists δ ∈ ∆ such that B ρ (p) ⊆ B ρ δ (p δ ). By Lemma 6 and by (8.3), the length of the curve a| I is bounded by ρ. It follows that we have a splitting on I, P ã(t) = P b (t)P b * (t), t ∈ I. By (4.2), the coefficients b i of P b are of the form

b i = ãi/k k ψ i ã-2/k k ã2 , . . . , ã-n/k k ãn , i = 1, . . . , deg P b ,
and after Tschirnhausen transformation

P b ; P b, see (4.3), bi = ãi/k k ψi ã-2/k k ã2 , . . . , ã-n/k k ãn , i = 2, . . . , deg P b ,
where ψ i , respectively, ψi , are analytic functions all whose partial derivatives are separately bounded on B ρ (p). (Similar formulas hold for b * i and b * i .) In summary, the restriction of the curve of polynomials P ã to the interval I satisfies all assumptions and thus all conclusions of Sections 5 and 6.

It follows that the assumptions of the following proposition are satisfied.

Proposition 3. Let I ⊆ R be a bounded open interval and let P ã be a monic polynomial in Tschirnhausen form with coefficients of class C deg P ã-1,1 (I). Let t 0 ∈ I and k ∈ {2, . . . , deg P ã} be such that

(1) |ã k (t 0 )| 1/k = max 2≤j≤deg P ã |ã j (t 0 )| 1/j = 0, ( 2 
) deg P ã j=2 (ã 1/j j ) L 1 (I) ≤ B|ã k (t 0 )| 1/k for some constant B < 1/3, (3) |ã (s) j (t)| ≤ C|I| -s |ã k (t 0 )| j/k
for all t ∈ I, j = 2, . . . , deg P ã, and s = 1, . . . , deg P ã, and some constant C = C(deg P ã). (4) Assume that P ã splits on I, i.e., P ã(t) = P b (t)P b * (t) for t ∈ I. Then every continuous root µ ∈ C 0 (I) of P b is absolutely continuous and satisfies

(8.6) µ L p (I) ≤ C |I| -1 |ã k (t 0 )| 1/k L p (I) + deg P b i=2 ( b1/i i ) L p (I) ,
for all 1 ≤ p < (deg P ã) and a constant C depending only on deg P ã and p.

In this proposition and from now on we apply the following convention: Any dependence of constants on parameters of the universal splitting, like ρ, ψi , etc., will no longer be explicitly stated. For simplicity it will henceforth be subsumed by saying that the constants depend on the degree of the polynomials. Universal constants will be denoted by C and may vary from line to line. We shall prove this proposition by induction on the degree. The assumptions of the proposition amount exactly to the assumptions (5.1)-( 5.3), (5.10), and (6.1)-( 6.3). Thus we may rely on all conclusions of Sections 5 and 6. 8.4. Second splitting. By (5.5), ãk does not vanish on I, and thus b i and bi belong to C n-1,1 (I). Let us set

I := I \ {t ∈ I : b2 (t) = • • • = bdeg P b (t) = 0}.
For each t 1 ∈ I there is ∈ {2, . . . , deg P b } such that (6.7) holds, i.e.,

| b (t 1 )| 1/ = max 2≤i≤deg P b | b1 (t 1 )| 1/i = 0,
and, by Section 6.2, there is an open interval J = J(t 1 ), t 1 ∈ J ⊆ I , such that (6.9), i.e.,

|J||I| -1 |a k (t 0 )| 1/k + deg P b i=2 ( b1/i i ) L 1 (J) = D| b (t 1 )| 1/ .
The universal constant D can be chosen sufficiently small such that on J we have a splitting

P b(t) = P c (t)P c * (t), t ∈ J;
in fact, it suffices to choose

(8.7) D < min 1 3 , σ 3(deg P b ) 2 2 deg P b , C -1 1 ,
where C 1 is the constant in (6.8) and where σ is the analogue of ρ in Section 8.2 for a cover of

deg P b =2 {(b 2 , . . . , b deg P b ) ∈ C deg P b -1 : b = 1, |b i | ≤ 1 for i = }, b i := b-i/ bi .
This follows from Lemma 9 and the arguments in Sections 8.2 and 8.3 applied to P b.

By Proposition 2, we may conclude that there is a countable family {J γ } of open intervals J γ ⊆ I , of points t γ ∈ J γ , and of integers γ ∈ {2, . . . , deg

P b } satisfying | b γ (t γ )| 1/ γ = max 2≤i≤deg P b | bi (t γ )| 1/i = 0, (8.8) |J γ ||I| -1 |ã k (t 0 )| 1/k + deg P b i=2 ( b1/i i ) L 1 (Jγ ) = D| b γ (t γ )| 1/ γ , (8.9) P b(t) = P cγ (t)P c * γ (t), t ∈ J γ , (8.10) γ J γ = I , γ |J γ | ≤ 2|I |. (8.11)
In particular, for every γ, the polynomial P b(t) = P cγ (t)P c * γ (t), t ∈ J γ , satisfies the assumptions of Proposition 3; indeed, (3) corresponds to (6.15). 8.5. Inductive step. Let µ ∈ C 0 (I) be a continuous root of P b. We may assume without loss of generality that in J γ , (8.12) μ(t

) := µ(t) + c γ1 (t) deg P cγ , t ∈ J γ ,
is a root of P cγ . Since deg P cγ < deg P b < deg P ã, the induction hypothesis implies that μ is absolutely continuous and satisfies where θ h , respectively, θh , are analytic functions all whose partial derivatives are separately bounded. (Similar formulas hold for c * γh and c * γh .) By (6.12), b γ does not vanish on J γ and thus c γh and cγh belong to C deg P ã-1,1 (J γ ). Analogously to (6.4) we find that, for t ∈ J γ , h = 2, . . . , deg P cγ , and s = 1, . . . , deg P ã,

(8.13) μ L p (Jγ ) ≤ C |J γ | -1 | b γ (t γ )| 1/ γ L p (Jγ ) + deg Pc γ h=2 (c 1 
|c (s) γh (t)| ≤ C|J γ | -s | b γ (t γ )| h/ γ , where C = C(deg P ã). Together with (3.3), it implies (c 1/h γh ) h ,w,Jγ ≤ C(h) max Lip Jγ (c (h-1) γh ) 1/h |J γ | 1/h , c γh 1/h L ∞ (Jγ ) ≤ C|J γ | -1+1/h | b γ (t γ )| 1/ γ ,
where the constant C depends only on deg P ã. Thus, (c

1/h γh ) * h ,w,Jγ ≤ C|J γ | -1 | b γ (t γ )| 1/ γ ,
and so, in view of (2.3), for all p, 1 ≤ p < (deg P cγ ) ,

deg Pc γ h=2 (c 1/h γh ) * L p (Jγ ) ≤ C|J γ | -1 | b γ (t γ )| 1/ γ ,
for a constant C that depends only on deg P ã and p. Consequently, by (8.9) and (2.2),

|J γ | -1 | b γ (t γ )| 1/ γ * L p (Jγ ) + deg Pc γ h=2 (c 1/h γh ) * L p (Jγ ) ≤ (1 + C)|J γ | -1 | b γ (t γ )| 1/ γ = (1 + C)D -1 |I| -1 |ã k (t 0 )| 1/k * L 1 (Jγ ) + deg P b i=2 ( b1/i i ) * L 1 (Jγ ) ≤ (1 + C)D -1 |I| -1 |ã k (t 0 )| 1/k * L p (Jγ ) + deg P b i=2 ( b1/i i ) * L p (Jγ )
and therefore

|J γ | -1 | b γ (t γ )| 1/ γ p p (Jγ ) + deg Pc γ h=2 (c 1/h γh ) p L p (Jγ ) ≤ CD -p |I| -1 |ã k (t 0 )| 1/k p L p (Jγ ) + deg P b i=2 ( b1/i i ) p L p (Jγ ) , (8.14)
for a constant C that depends only on deg P ã and p.

Furthermore, the analogue of (6.5) gives

c γ1 L ∞ (Jγ ) ≤ C|J γ | -1 | b γ (t γ )| 1/ γ
, where C = C(deg P ã). Thus, by (8.9) and (2.2),

c γ1 * L p (Jγ ) ≤ CD -1 |I| -1 |ã k (t 0 )| 1/k * L p (Jγ ) + deg P b i=2 ( b1/i i ) * L p (Jγ )
and hence

c γ1 p L p (Jγ ) ≤ CD -p |I| -1 |ã k (t 0 )| 1/k p L p (Jγ ) + deg P b i=2 ( b1/i i ) p L p (Jγ ) , (8.15)
for a constant C that depends only on deg P ã and p.

Hence, by (8.11), (8.13), and (8.14),

γ μ p L p (Jγ ) ≤ CD -p γ |I| -1 |ã k (t 0 )| 1/k p L p (Jγ ) + deg P b i=2 ( b1/i i ) p L p (Jγ ) ≤ 2CD -p |I| -1 |ã k (t 0 )| 1/k p L p (I) + deg P b i=2 ( b1/i i ) p L p (I) . (8.16)
Similarly, with (8.15) we get

γ c γ1 p L p (Jγ ) ≤ CD -p |I| -1 |ã k (t 0 )| 1/k p L p (I) + deg P b i=2 ( b1/i i ) p L p (I) . (8.17)
By (8.11), (8.12), (8.16), and (8.17), we may conclude that µ is absolutely continuous on I and

µ p L p (I ) ≤ γ µ p L p (Jγ ) ≤ CD -p |I| -1 |ã k (t 0 )| 1/k p L p (I) + deg P b i=2 ( b1/i i ) p L p (I) ,
and hence

µ L p (I ) ≤ CD -1 |I| -1 |ã k (t 0 )| 1/k L p (I) + deg P b i=2 ( b1/i i ) L p (I) ,
for a constant C that depends only on deg P ã and p. Since µ vanishes on I \ I , Lemma 1 implies that µ is absolutely continuous on I and

µ L p (I) ≤ CD -1 |I| -1 |ã k (t 0 )| 1/k L p (I) + deg P b i=2 ( b1/i i ) L p (I) .
This completes the proof of Proposition 3, since C = C(deg P ã, p) and D = D(deg P ã) by (8.7).

8.7.

End of proof of Theorem 1. We have seen in Section 8.3 that for a polynomial P ã in Tschirnhausen form satisfying (8.4) and (8.5) the assumptions of Proposition 3 hold with the constant B fulfilling (8.3). Let λ ∈ C 0 ((α, β)) be a continuous root of P ã. We may assume without loss of generality that in I, it is a root of P b . Then it has the form

λ(t) = - b 1 (t) deg P b + µ(t), t ∈ I, (8.18)
where µ is a continuous root of P b. By Proposition 3, µ is absolutely continuous on I and satisfies (8.6). Let us estimate the right-hand side of (8.6).

By Lemma 8, we have (6.4), and thus together with (3.3),

( b1/i i ) i ,w,I ≤ C(i) max Lip I ( b(i-1) i ) 1/i |I| 1/i , b i 1/i L ∞ (I) ≤ C(n)|I| -1+1/i |ã k (t 0 )| 1/k . Hence ( b1/i i ) * i ,w,I ≤ C(n)|I| -1 |ã k (t 0 )| 1/k . Since n < min 2≤i≤deg P b i and by (2.
3), we get for all p, 1 ≤ p < n ,

deg P b i=2 ( b1/i i ) * L p (I) ≤ C|I| -1 |ã k (t 0 )| 1/k ,
where the constant C depends only on n and p. It follows that

|I| -1 |ã k (t 0 )| 1/k * L p (I) + deg P b i=2 ( b1/i i ) * L p (I) ≤ (1 + C)|I| -1 |ã k (t 0 )| 1/k . (8.19)
At this stage we distinguish the following two cases:

(i) Either we have equality in (8.5), i.e.,

M |I| + n j=2 (ã 1/j j ) L 1 (I) = B|ã k (t 0 )| 1/k . (8.20) (ii) Or I = (α, β) and M |I| + n j=2 (ã 1/j j ) L 1 (I) < B|ã k (t 0 )| 1/k . (8.21)
Case (i). In this cases we can estimate (8.19) by (8.20) and obtain

|I| -1 |ã k (t 0 )| 1/k * L p (I) + deg P b i=2 ( b1/i i ) * L p (I) ≤ CB -1 M 1 * L 1 (I) + n j=2 (ã 1/j j ) * L 1 (I)
by (8.20)

≤ CB -1 M 1 * L p (I) + n j=2 (ã 1/j j ) * L p (I) by (2.2) 
and therefore

|I| -1 |a k (t 0 )| 1/k L p (I) + deg P b i=2 ( b1/i i ) L p (I) ≤ CB -1 M 1 L p (I) + n j=2 (ã 1/j j ) L p (I) , (8.22) 
for a constant C that depends only on n and p.

Thus, by (8.6) and (8.22), (8.23)

µ L p (I) ≤ CB -1 M 1 L p (I) + n j=2 (ã 1/j j ) L p (I) .
Similarly, by (2.2), (6.5), (8.20), and (8.22),

b 1 L p (I) ≤ CB -1 M 1 L p (I) + n j=2 (ã 1/j j ) L p (I) . (8.24)
In view of (8.18), (8.23), and (8.24) we obtain that λ is absolutely continuous on I and

λ L p (I) ≤ CB -1 M 1 L p (I) + n j=2 (ã 1/j j ) L p (I) .
The constant M given (5.9) depends on t 0 ; thus we set (8.25) Ã := max 2≤j≤n ãj

1/j C n-1,1 ([α,β])
and estimate M by

M = max 2≤j≤n (Lip I (ã (n-1) j )) 1/n |ã k (t 0 )| (n-j)/(kn) ≤ max 2≤j≤n Ãj/n Ã(n-j)/n = Ã.
Thus,

λ L p (I) ≤ CB -1 Ã 1 L p (I) + n j=2 (ã 1/j j ) L p (I) . (8.26)
Case (ii). In this case we have a splitting P ã = P b P b * on the whole interval I = (α, β); cf. Section 8.3. Thus, (8.19) becomes

|(β -α) -1 |ã k (t 0 )| 1/k L p ((α,β)) + deg P b i=2 ( b1/i i ) L p ((α,β)) ≤ C(β -α) -1+1/p |ã k (t 0 )| 1/k ≤ C(β -α) -1+1/p max 2≤j≤n ãj 1/j L ∞ ((α,β))
Similarly, (6.5) implies

b 1 L p ((α,β)) ≤ C(β -α) -1+1/p max 2≤j≤n ãj 1/j L ∞ ((α,β)) .
In view of (8.18) and (8.6) we obtain that λ is absolutely continuous on (α, β) and

λ L p ((α,β)) ≤ C(β -α) -1+1/p max 2≤j≤n ãj 1/j L ∞ ((α,β)) , (8.27) 
where C = C(n, p).

Gluing the estimates. In Case (ii) the bound (8.27) holds on the whole interval; no gluing is required. Hence, if there is at least one point t 0 in (α, β) at which Case (ii) occurs, we are done.

Let us assume that at all points in (α, β), that do not satisfy (8.2), Case (i) occurs. In analogy to Section 8.4, we can cover the complement in (α, β) of the points t satisfying (8.2) by a countable family I of open intervals I on which (8.26) holds and such that I∈I |I| ≤ 2(β -α). Since λ vanishes on the points t satisfying (8.2), we can apply Lemma 1 and obtain that λ is absolutely continuous on (α, β) and satisfies

λ L p ((α,β)) ≤ CB -1 Ã 1 L p ((α,β)) + n j=2 (ã 1/j j ) L p ((α,β)) .
By (3.3), we may conclude that λ is absolutely continuous on (α, β) and satisfies (8.28)

λ L p ((α,β)) ≤ CB -1 Ã(β-α) 1/p + n j=2 max (Lip (α,β) (ã (j-1) j )) 1/j (β-α) 1-1/j , ã j 1/j L ∞ ((α,β))
, where C = C(n, p) and B = B(n) by (8.3).

Remarks. (1)

We can avoid the distinction of cases in Section 8.7 if we require that the constant B also satisfies

(8.29) B max 2≤j≤n ãj 1/j L ∞ ((α,β)) ≤ M (β -α).
which enforces Case (i). Then, however, the factor B -1 that appears in (8.28) blows up as β -α → 0.

(2) Also the bound in Case (ii) for λ L p ((α,β)) in (8.27) tends to infinity if β -α → 0 unless p = 1.

(3) A sufficient condition for the elimination of this blow-up phenomenon is the following. Assume that for all j = 2, . . . , n there is a point s = s(j) ∈ (α, β) such that ãj (s) = 0. In that case we have, for t ∈ (α, β),

|ã 1/j j (t)| = | t s (ã 1/j j ) dτ | ≤ (ã 1/j j ) L 1 ((α,β))
and hence (8.30) max 2≤j≤n ãj

1/j L ∞ ((α,β)) ≤ n j=2 (ã 1/j j ) L 1 ((α,β)) .
Since B < 1 (by (8.3)), (8.30) 

λ L p ((α,β)) ≤ C(n, p) max{1, (β -α) 1/p , (β -α) -1+1/p } Ã,
where à is given by (8.25).

In order to get the bound in terms of the a j (i.e., before Tschirnhausen transformation) let λ := λ -a 1 /n and set

A := max 1≤j≤n a j 1/j C n-1,1 ([α,β]) . Then λ L p ((α,β)) ≤ λ L p ((α,β)) + (1/n) a 1 L p ((α,β))
and

a 1 L p ((α,β)) ≤ (β -α) 1/p a 1 L ∞ ((α,β)) . Observe that à ≤ C(n)A,
by the weighted homogeneity of the formulas (4.1). Hence, by (8.31),

λ L p ((α,β)) ≤ C(n, p) max{1, (β -α) 1/p , (β -α) -1+1/p }A,
that is (1.2). The proof of Theorem 1 is complete.

Proof of Theorem 2

Theorem 2 follows from Theorem 1 by the arguments given in the proof of [START_REF] Parusiński | Regularity of roots of polynomials[END_REF]Theorem 4.1]. We provide full details in order to see that the constant in the bound (1.3) does not depend on V ; this will be important in forthcoming work.

Proof of Theorem 2. By Theorem 1, λ is absolutely continuous along affine lines parallel to the coordinate axes (restricted to V ). So λ possesses the partial derivatives ∂ i λ, i = 1, . . . , m, which are defined almost everywhere and are measurable.

Set x = (t, y), where t = x 1 , y = (x 2 , . . . , x m ), and let V 1 be the orthogonal projection of V on the hyperplane {x 1 = 0}. For each y ∈ V 1 we denote by V y := {t ∈ R : (t, y) ∈ V } the corresponding section of V ; note that V y is open in R.

We may cover V by finitely many open boxes

K = I 1 × • • • × I m contained in U . Let K be fixed and set L = I 2 ו • •×I m . Fix y ∈ V 1 ∩L
and let λ y j , j = 1, . . . , n, be a continuous system of the roots of P a ( , y) on Ω y := V y ∩ I 1 such that λ( , y) = λ y 1 ; it exists since λ( , y) can be completed to a continuous system of the roots of P a ( , y) on each connected component of Ω y by [37, Lemma 6.17]. Our goal is to bound

∂ t λ( , y) L p (Ω y ) = (λ y 1 ) L p (Ω y ) uniformly in y ∈ V 1 ∩ L.
To this end let C y denote the set of connected components J of the open subset Ω y ⊆ R. For each J ∈ C y we extend the system of roots λ y j | J , j = 1, . . . , n, continuously to I 1 , i.e., we choose continuous functions λ y,J j , j = 1, . . . , n, on I 1 such that λ y,J j | J = λ y j | J for all j and

P a (t, y)(Z) = n j=1 (Z -λ y,J j (t)), t ∈ I 1 .
This is possible since λ y j | J has a continuous extension to the endpoints of the (bounded) interval J, by [START_REF] Kriegl | Lifting smooth curves over invariants for representations of compact Lie groups. II[END_REF]Lemma 4.3], and can then be extended on the left and on the right of J by a continuous system of the roots of P a ( , y) after suitable permutations.

By Theorem 1, for each y ∈ V 1 ∩L, J ∈ C y , and j = 1, . . . , n, the function λ y,J j is absolutely continuous on I 1 and (λ y,J j ) ∈ L p (I 1 ), for 1 ≤ p < n/(n -1), with

(9.1) (λ y,J j ) L p (I 1 ) ≤ C(n, p, |I 1 |) max 1≤i≤n a i 1/i C n-1,1 (K) .
Let J, J 0 ∈ C y be arbitrary. By [START_REF] Parusiński | Regularity of roots of polynomials[END_REF]Lemma 3.6], (λ y j ) as well as (λ y,J 0 j ) belong to L p (J) and we have In particular, by (9.1),

∂ t λ( , y) L p (Ω y ) = (λ y 1 ) L p (Ω y ) ≤ C(n, p, K) max 1≤i≤n a i 1/i C n-1,1 (K) ,
and so, by Fubini's theorem,

V ∩K |∂ 1 λ(x)| p dx = V 1 ∩L Ω y |∂ 1 λ(t, y)| p dt dy ≤ C(n, p, K) max 1≤i≤n a i 1/i C n-1,1 (K) p V 1 ∩L
dy, and thus

∂ 1 λ L p (V ∩K) ≤ C(n, p, K) max 1≤i≤n a i 1/i C n-1,1 (K)
. The other partial derivatives ∂ i λ, i ≥ 2, are treated analogously. This implies (1.3), where W is the (finite) union of the boxes K.

Applications

In this section we present two applications of our main results, Theorems 1 and 2. First we improve upon a result due to Spagnolo [START_REF]Local and semi-global solvability for systems of non-principal type[END_REF] on local solvability of certain systems of pseudodifferential equations. Secondly, we obtain a lifting theorem for differentiable mappings into orbit spaces of finite group representations. 10.1. Local solvability of pseudodifferential equations. In [START_REF]Local and semi-global solvability for systems of non-principal type[END_REF] Spagnolo proved that the pseudodifferential n × n system

u t + iA(t, D x )u + B(t, D x )u = f (t, x), (t, x) ∈ I × U ⊆ R × R m , (10.1) 
where A ∈ C ∞ (I, S 1 (R m )) n×n , B ∈ C 0 (I, S 0 (R m )) n×n are matrix symbols of order 1 and 0, respectively, and A(t, ξ) is homogeneous of degree 1 in ξ for |ξ| ≥ 1, is locally solvable in the Gevrey class G s for 1 ≤ s ≤ n/(n -1) and semi-globally solvable in G s for 1 < s < n/(n -1) under the following assumptions: the eigenvalues of A(t, ξ) admit a parameterization τ 1 (t, ξ), . . . , τ n (t, ξ) such that each τ j (t, ξ) is absolutely continuous in t, uniformly with respect to ξ, i.e., |∂ t τ j (t, ξ)| ≤ µ(t, ξ)(1 + |ξ| 2 ) 1/2 , with µ( , ξ) equi-integrable on I, (A 1 ) and for each ξ the imaginary parts of the τ j (t, ξ) do not change sign for varying t and j, i.e., ∀ξ either Im τ j (t, ξ) ≥ 0, ∀t, j, or Im τ j (t, ξ) ≤ 0, ∀t, j.

(A 2 )
Theorem 1 implies that the assumption (A 1 ) is always satisfied. Indeed, this follows by applying Theorem 1 to the characteristic polynomial of the matrix (1 + |ξ| 2 ) -1/2 A(t, ξ) and noting that the entries of (1 + |ξ| 2 ) -1/2 A(t, ξ) and its iterated partial derivatives with respect to t are globally bounded in ξ, since A(t, ξ) is a symbol of order 1.

In particular, the scalar equation

(10.2) ∂ n t u + n j=1 a j (t, D x )∂ n-j t u = f (t, x),
where u, f are scalar functions and a j (t, D x ) is a pseudodifferential operator of order j with principal symbol a 0 j (t, ξ) smooth in t, is locally solvable in G s for 1 ≤ s ≤ n/(n -1) and semi-globally solvable in G s for 1 < s < n/(n-1) provided that the roots τ 1 (t, ξ), . . . , τ n (t, ξ) of (iZ) n + n j=1 a 0 j (t, ξ)(iZ) n-j = 0 satisfy assumption (A 2 ); cf. [40, Corollary 2]. A crucial tool in the proof is the technique of quasi-diagonalization for a Sylvester matrix, introduced by [START_REF] Jannelli | On the symmetrization of the principal symbol of hyperbolic equations[END_REF] for weakly hyperbolic problems and then refined by [START_REF] Spagnolo | Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity[END_REF].

Actually, by Theorem 1, the above conclusions hold provided that the matrix symbol

A(t, ξ) is just of class C n-1,1 in time t.
Theorem 4. The pseudodifferential n × n system (10.1), where A ∈ C n-1,1 (I, S 1 (R m )) n×n , B ∈ C 0 (I, S 0 (R m )) n×n , and A(t, ξ) is homogeneous of degree 1 in ξ for |ξ| ≥ 1, is locally solvable in the Gevrey class G s for 1 ≤ s ≤ n/(n -1) and semi-globally solvable in G s for 1 < s < n/(n -1) provided that the eigenvalues τ 1 (t, ξ), . . . , τ n (t, ξ) of A(t, ξ) satisfy (A 2 ).

Proof. Theorem 1 implies (A 1 ) provided that A(t, ξ) is C n-1,1 in t. Then the proof in [START_REF]Local and semi-global solvability for systems of non-principal type[END_REF] yields the result. 10.2. Lifting mappings from orbit spaces. Let G be a finite group and let ρ : G → GL(V ) be a representation of G on a complex finite dimensional complex vector space V . By Hilbert's theorem, the algebra C[V ] G of G-invariant polynomials on V is finitely generated. We consider the categorical quotient V / /G, i.e., the affine algebraic variety with coordinate ring C[V ] G , and the morphism π : V → V / /G defined by the embedding C

[V ] G → C[V ].
Since G is finite, V / /G coincides with the orbit space V /G. Let σ 1 , . . . , σ n be a system of homogeneous generators of C[V ] G with positive degrees d 1 , . . . , d n . Then we can identify π with the mapping of invariants σ = (σ 1 , . . . σ n ) : V → σ(V ) ⊆ C n and the orbit space V /G with the image σ(V ).

Let

U ⊆ R m be open, k ∈ N. Consider a mapping f ∈ C k-1,1 (U, σ(V )), i.e., f is of Hölder class C k-1,1 as mapping U → C n with the image f (U ) contained in σ(V ) ⊆ C n . We say that a mapping f : U → V is a lift of f over σ if f = σ • f .
It is natural to ask how regular a lift of f can be chosen. This question is independent of the choice of generators of C[V ] G , since any two choices differ by a polynomial diffeomorphism. This and similar problems were studied in [START_REF]Lifting smooth curves over invariants for representations of compact Lie groups[END_REF], [START_REF] Kriegl | Lifting smooth curves over invariants for representations of compact Lie groups. II[END_REF], [START_REF]Lifting smooth curves over invariants for representations of compact Lie groups. III[END_REF], [START_REF]Lifting mappings over invariants of finite groups[END_REF], [START_REF] To | Lifting smooth curves over invariants for representations of compact Lie groups. III[END_REF], [START_REF] Losik | A generalization of Puiseux's theorem and lifting curves over invariants[END_REF], [START_REF]Lifting quasianalytic mappings over invariants[END_REF], [START_REF]Lifting differentiable curves from orbit spaces[END_REF].

V σ G v v U f / / f 7 7 σ(V ) / / C n V /G
The subject of this paper, i.e., optimal regularity of roots of polynomials, is just a special case of this problem: let the symmetric group S n act on C n by permuting the coordinates. Then C[C n ] Sn is generated by the elementary symmetric polynomials σ j (z) =

i 1 <•••<i j z i 1 • • • z i j , C n / S n = σ(C n ) = C n ,
and f : U → σ(C n ) amounts to a family of complex monic polynomials P f with coefficients (-1) j f j , j = 1, . . . , n, in view of Vieta's formulas. Lifting f over σ precisely means choosing the roots of P f .

As an application of our main Theorems 1 and 2 we obtain the following lifting result for finite groups. Following Noether's proof of Hilbert's theorem we associated a suitable polynomial and use the regularity result for its roots.

Theorem 5. Let ρ : G → GL(V ) be a complex finite dimensional representation of a finite group G. Let σ 1 , . . . , σ n be a system of homogeneous generators of Then:

C[V ] G . Decompose V = i=1 V i into
(1) If c ∈ C k-1,1 (I, σ(V )), where I ⊆ R is a compact interval, then any continuous lift c ∈ C 0 (I, V ) of c is absolutely continuous and belongs to the Sobolev space W 1,p (I, V ) for every

1 ≤ p < k/(k -1). If C is a bounded subset of C k-1,1 (I, σ(V )), then C := {c ∈ C 0 (I, V ) : σ • c ∈ C} is bounded in W 1,p (I, V ) for every 1 ≤ p < k/(k -1). (2) If f ∈ C k-1,1 (U, σ(V )), where U ⊆ R m is open, and f ∈ C 0 (Ω, V ) is a continuous lift of f on a relatively compact open subset Ω U , then f belongs to the Sobolev space W 1,p (Ω, V ) for every 1 ≤ p < k/(k -1). If F is a bounded subset of C k-1,1 (U, σ(V )), then F := {f ∈ C 0 (Ω, V ) : σ • f ∈ F} is bounded in W 1,p (Ω, V ) for every 1 ≤ p < k/(k -1).
Note that there always exists a continuous lift c of c ∈ C 0 (I, σ(V )); see [START_REF] Losik | A generalization of Puiseux's theorem and lifting curves over invariants[END_REF]Theorem 5.1].

Proof. By treating the irreducible subrepresentations separately, we may assume without loss of generality that ρ is irreducible. Fix a non-zero vector v ∈ V such that |Gv| is minimal. Choose a G-invariant Hermitian inner product , on V , and associate to g ∈ G the linear form g : V → C defined by g (x) := x, gv . Choose a numbering of the left coset G/G v = {g 1 , . . . , g k }, where G v = {g ∈ G : gv = v} and k = |Gv|, and set i := g i for i = 1, . . . , k. Then the action of G on G/G v by left multiplication induces a permutation of the set {g 1 , . . . , g k }, and thus

a j := (-1) j 1≤i 1 <•••<i j ≤k i 1 • • • i j , j = 1, . . . , k, are G-invariant polynomials on V . So a j = p j • σ for polynomials p j ∈ C[C n ], and the polynomial P a ∈ C[V ] G [Z] given by P a(x) (Z) = Z k + k j=1 a j (x)Z k-j = k j=1 (Z -j (x)), x ∈ V, factors through the polynomial P p ∈ C[C n ][Z],
i.e., P a = P p•σ . Applying Theorem 1 to P p(c(t)) , t ∈ I, we find that t → i (c(t)) = c(t), g i v , i = 1, . . . , k, belongs to W 1,p (I) for each 1 ≤ p < k/(k -1). Since ρ is irreducible, the orbit Gv spans V and (1) follows. Analogously, (2) follows from Theorem 2.

As a consequence one obtains a similar result for polar representations of reductive algebraic groups, since the lifting problem can be reduced to the action of the corresponding generalized Weyl group which is finite; cf. [START_REF] Losik | A generalization of Puiseux's theorem and lifting curves over invariants[END_REF] or [START_REF]Lifting quasianalytic mappings over invariants[END_REF]. 10.3. Multi-valued Sobolev functions. In [START_REF] Almgren | Almgren's big regularity paper[END_REF] Almgren developed a theory of n-valued Sobolev functions and proved the existence of n-valued minimizers of the Dirichlet energy functional. See also [START_REF] Lellis | Q-valued functions revisited[END_REF] for simpler proofs.

An n-valued function is a function with values in the set of unordered n-tuples of points in R . The latter may be represented by the set Let us identify R 2 ∼ = C. The elementary symmetric polynomials induce a bijective mapping a : A n (C) → C n , where C n is the space of monic complex polynomials P a of degree n, a j n i=1 δ z i := (-1)

j i 1 <•••<i j z i 1 • • • z i j .
In other words, monic complex polynomials of degree n are in one-to-one correspondence with its unordered n-tuples of roots.

Our Theorems 1 and 2 provide a sufficient condition for an n-valued function U → A n (C) to belong to the Sobolev space W 1,p (U, A n (C)).

We shall use the following terminology. By a parameterization of an n-valued function f : U → A n (C) we mean a function ϕ : U → C n such that f (x) = n i=1 δ ϕ i (x) for all x ∈ U . If we denote by π the mapping π : C n → A n (C) which sends an ordered n-tuple (z 1 , . . . , z n ) to the corresponding unordered n-tuple n i=1 δ z i , then a parameterization of f amounts to a lift ϕ of f over π, i.e., f = π • ϕ. Note that π is a Lipschitz mapping with Lip(π) = 1. Theorem 6. Let U ⊆ R m be open and let f : U → A n (C) be continuous. If a • f ∈ C n-1,1 (U, C n ), then f ∈ W 1,p (V, A n (C)) for each relatively compact V U and each 1 ≤ p < n/(n -1), and

∇(∆ • f ) L p (V ) ≤ C(m, n, p, K, ∆) 1 + max 1≤j≤n a j • f 1/j C n-1,1 (W ) ,
where K is any finite cover of V by open boxes m i=1 (α i , β i ) contained in U and W = K. Proof. We must show that ∆ • f is an element of W 1,p (V, R N ). Clearly, ∆ • f : U → R N is continuous. The set V can be covered by finitely many open boxes I = m i=1 (α i , β i ). Let e i be the ith standard unit vector in R m . Denote by I i the orthogonal projection of I onto the hyperplane e ⊥ i . For each y ∈ I i we have (α i , β i ) = {t ∈ R : y + te i ∈ I}. By Theorem 1, (α i , β i ) t → f (y + te i ) admits an absolutely continuous parameterization ϕ i,y such that ϕ i,y L p ((α i ,β i )) ≤ C(n, p, β i -α i ) max

1≤j≤n a j • f 1/j C n-1,1 (I) .
Thus, (α i , β i ) t → ∆(f (y + te i )) = ∆(π(ϕ i,y (t))) is absolutely continuous and

(∆ • π • ϕ i,y ) L p ((α i ,β i )) ≤ C(n, p, β i -α i , ∆) 1 + max 1≤j≤n a j • f 1/j C n-1,1 (I) ,
since ∆ • π is a Lipschitz mapping; cf. [START_REF] Marcus | Complete characterization of functions which act, via superposition, on Sobolev spaces[END_REF]. By Fubini's theorem, In particular, the roots of a polynomial P a of degree n with coefficients a j ∈ C n-1,1 (U ), j = 1, . . . , n, form an n-valued function λ ∈ W 1,p loc (U, A n (C)) for each 1 ≤ p < n/(n -1); in fact, it is well-known that λ : U → A n (C) is continuous (cf. [START_REF] Kato | Perturbation theory for linear operators[END_REF] or [START_REF] Rahman | Analytic theory of polynomials[END_REF]Theorem 1.3.1]).

I |∂ i (∆ • f )| p dx = I i β i α i |(∆ • π • ϕ i,
Theorem 6 implies that the push-forward (a -1 ) * : C n-1,1 (U, C n ) → 1≤p<n/(n-1)

W 1,p loc (U, A n (C)).
is a bounded mapping. We remark that much more is true in the case of real n-valued functions. In this situation the elementary symmetric polynomials induce a bijective mapping a : A n (R) → H n , where H n is a closed semialgebraic subset of R n , namely, the space of so-called hyperbolic polynomials of degree n. Then the mapping (a -1 ) * : C n-1,1 (U, H n ) → C 0,1 (U, A n (R)), is bounded. It is easy to see that a continuous function f : U → A n (R) admits a continuous parameterization, for instance, by ordering the components increasingly which defines a section θ of the projection π : R n → A n (R). Then we have a bounded mapping (θ • a -1 ) * : C n-1,1 (U, H n ) → C 0,1 (U, R n ).

All this essentially follows from Bronshtein's theorem [START_REF] Bronshtein | Smoothness of roots of polynomials depending on parameters[END_REF]; see [START_REF]A new proof of Bronshtein's theorem[END_REF]. 

_ ∆ 2 Φ / / A n (R) θ O O _ ∆ 1 R N 2 O O / / R N 1 O O
Every Lipschitz function φ : C → R induces a Lipschitz functions Φ : A n (C) → A n (R) by setting Φ( n i=1 δ z i ) := n i=1 δ φ(z i ) . In particular, by Theorem 6, the absolute values and real and imaginary parts of the roots of a monic polynomial P a of degree n with coefficients in C n-1,1 (U ) admit continuous parameterization in W 1,p loc (U, R n ) for each 1 ≤ p < n/(n -1); but not simultaneously!

5. 1 .

 1 Preparations for the splitting. Let I ⊆ R be a bounded open interval and let (5.1)

2 .

 2 Estimates for the derivatives of the coefficients. Let us replace (5.3) by the stronger assumption j ) L 1 (I) ≤ B|ã k (t 0 )| 1/k , (5.8) where (5.9) M = max 2≤j≤n (Lip I (ã (n-1) j

( 1 )

 1 If b(α) = 0, then no interval J ∈ I has left endpoint α and |J(t 1 )| → 0 as t 1 → α. If b(β) = 0, then no interval J ∈ I has right endpoint β and |J(t 1 )| → 0 as t 1 → β.

  /h γh ) L p (Jγ ) , for all 1 ≤ p < (deg P b ) , for a constant C depending only on deg P b and p.8.6. L p -estimates on I. By Section 4.2, the coefficients c γh of P cγ are of the form c γh = bh/ γ γ θ h b-2/ γ γ b2 , . . . , b-deg P b / γ γ bdeg P b , h = 1, . . . , deg P cγ , and after Tschirnhausen transformation P cγ ; P cγ , see (4.b-deg P b / γ γ bdeg P b , h = 2, . . . , deg P cγ ,

  irreducible subrepresentations of G, and let k := max i=1,..., min v∈V i \{0} |Gv|.

A

  n (R ) := n i=1 δ x i : x i ∈ R , i = 1, . . . , n ,where δ x denotes the Dirac δ-measure δ x (E) = χ E (x) in R . It forms a complete metric space when endowed with the metricd n i=1 δ x i , n i=1 δ y i := min σ∈Sn n i=1 |x i -y σ(i) | 2 1/2 ,where S n is the group of permutation of {1, . . . , n}. Almgren proved that there is an integer N = N (n, ) and an injective mapping ∆ :A n (R ) → R N such that Lip(∆) ≤ 1 and Lip(∆ -1 | ∆(An(R )) ) ≤ C(n, ); moreover, there is a Lipschitz retraction of R N onto ∆(A n (R )).One can use this biLipschitz embedding to define n-valued Sobolev functions: for openU ⊆ R m and 1 ≤ p ≤ ∞ define W 1,p (U, A n (R )) := {f : U → A n (R ) : ∆ • f ∈ W 1,p (U, R N )}.For an intrinsic definition see [14, Definition 0.5 and Theorem 2.4].

  y ) | p dt dy, and the statement follows.

Remark 3 .

 3 Let Φ : A n (C) → A n (R) be a Lipschitz function. If f ∈ W 1,p (U, A n (C)), then Φ • f ∈ W 1,p (U, A n (R)) and it admits a parameterization θ • Φ • f ∈ W 1,p (U, R n ).This follows from the following diagram in which all vertical arrows are Lipschitz; the arrows in the lower row by Almgren's results, and θ is Lipschitz, since d(x, y) = |θ(x) -θ(y)| for z, w ∈ A n (R).

3 f/

 3 / A n (C)

  Coefficient estimates. We shall need the following estimates. (Here it is convenient to number the coefficients in reversed order.

	4.3.								
									, deg P b ;
	likewise for c j . Shrinking ρ slightly, we may assume that all partial derivatives of ψ i are
	separately bounded on B ρ (p). If bj denote the coefficients of the polynomial P b resulting
	from P b by the Tschirnhausen transformation, then, by (4.1),
	(4.3)	bi =	ãi/k k ψi	ã-2/k k	ã2 ,	ã-3/k k	ã3 , . . . ,	ã-n/k k	ãn , i = 2, . . . , deg P b ;
	for analytic functions ψi all partial derivatives of which are separately bounded on B ρ (p).

)

Lemma 3. Let m ≥ 1 be an integer and α ∈ (0, 1]. Let P

  6.2. Intervals of first and second kind. Assume that the polynomial (5.1) satisfies (5.2)-(5.3), (5.10), and (6.1)-(6.3). Suppose that t 1 ∈ I and ∈ {2, . . . , deg P b } are such that

	(6.7)	| b (t 1 )| 1/ = max 2≤i≤deg P b	| bi (t 1 )| 1/i = 0.
	By (5.6) and (6.3), for all t ∈ I and i = 2, . . . , deg P b ,
	(6.8)		

  k} is compact. For each point p ∈ K there exists ρ p > 0 such that P ã splits on the open ball B ρp (p); cf. Section 4.2. Choose a finite subcover of K by open balls B ρ δ (p δ ), δ ∈ ∆. Then there exists ρ > 0 so that for every p ∈ K there is a δ ∈ ∆ such that B ρ (p) ⊆ B ρ δ (p δ ). Fix a universal positive constant B satisfying First splitting. Fix t 0 ∈ (α, β) and k ∈ {2, . . . , n} such that (5.2) holds, i.e.,

	(8.3)	B < min	1 3	,	ρ 3n 2 2 n .
	8.3. (8.4)	|ã k (t 0 )| 1/k = max	

2≤j≤n |ã j (t 0 )| 1/j = 0 This is possible unless ã ≡ 0 in which case nothing is to prove. Choose a maximal open interval I ⊆ (α, β) containing t 0 such that we have (5.8), i.e., M |I| + n j=2
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