
HAL Id: hal-01287838
https://hal.science/hal-01287838v1

Preprint submitted on 14 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Power Modeling and Exploration of Dynamically
Reconfigurable Multicore Designs

Robin Bonamy, Sébastien Bilavarn, Daniel Chillet, Olivier Sentieys

To cite this version:
Robin Bonamy, Sébastien Bilavarn, Daniel Chillet, Olivier Sentieys. Power Modeling and Exploration
of Dynamically Reconfigurable Multicore Designs. 2013. �hal-01287838�

https://hal.science/hal-01287838v1
https://hal.archives-ouvertes.fr

Research Article © 2013 1

Power Modeling and Exploration of Dynamically
Reconfigurable Multicore Designs
ROBIN BONAMY1, SÉBASTIEN BILAVARN2,*, DANIEL CHILLET1, AND OLIVIER
SENTIEYS1

1CAIRN, University of Rennes 1, CNRS, IRISA
2LEAT, University of Nice Sophia Antipolis, CNRS
*Corresponding author: bilavarn (at) unice (dot) fr

This paper exhaustively explores the potential energy efficiency improvements of Dynamic and
Partial Reconfiguration (DPR) on the concrete implementation of a H.264/AVC video decoder.
The methodology used to explore the different implementations is presented and formalized.
This formalization is based on pragmatic power consumption models of all the tasks of the
application that are derived from real measurements. Results allow to identify low energy /
high performance mappings, and by extension, conditions at which partial reconfiguration can
achieve energy efficient application processing. The improvements are expected to be of 57%
(energy) and 37% (performance) over pure software execution, corresponding also to 16% energy
savings over static implementation of the same accelerators for 10% less performance.

1. INTRODUCTION

Minimizing power consumption and extending battery life are
major concerns in popular consumer electronics like mobile
handsets and wireless handheld devices. Silicon chips embed-
ded in these products face challenging perspectives with the
rise of processing heterogeneity introduced to address heat and
power density problems. Efficient methodologies and tools are
thus necessary to help the mapping and execution of applica-
tions on such complex platforms considering high demands for
performance at less energy costs.

In the context of mobile devices, the video decoding is known
as part of intense computation, and this leads to important im-
pact on energy consumption. Considering this context and the
need of methodology to help the designers of such systems, it
is essential that a subset of relevant solutions can be quickly
identified and evaluated from early steps of development. This
process usually relies on high level modeling and estimations to
help analyzing many complex interactions between a variety of
implementation choices. Performance models of FPGAs have
been widely addressed but power consumption has been less
investigated in comparison, especially regarding Dynamic and
Partial Reconfiguration (DPR).

DPR is a feature introduced to further improve the flexibility
of reconfigurable based hardware accelerators. It exploits the

ability to change the configuration of a portion of a FPGA while
other parts are still running. By sharing the same area for the
execution of different sequential tasks, DPR allows reducing
the size of active programmable logic required for a given ap-
plication, [1, 2]. Therefore, improving the area efficiency also
results in decreasing static power consumption which is directly
linked to the number of transistors in the chip. The counterpart
is that an additional part of power is needed to switch from
a current configuration to the next one. Thus, this DPR cost
needs to be properly assessed and analyzed in order to check
if there is an actual power consumption benefit at the complete
system level, for a given application. This paper investigates
the exploitation of this on a relevant case study addressing the
implementation of a H.264/AVC video decoder in search of the
best global energy efficiency at the complete system level. From
this concrete example, we define a pragmatic formalisation of
the problem that can be used to analyze any mapping combina-
tion of dynamic hardware and software tasks, and to provide
reliable evaluations of execution time, area, power and energy.
In particular, all components of power consumption, based on
real implementation and power measurements, are considered
to define the models and compute the estimations which include
the overheads of task level DPR utilization. It is thus shown in
the results how this can lead to verify more systematically the
improvements of DPR and potential of partial reconfiguration

Research Article © 2013 2

for energy efficient video processing. These results take into ac-
count of the reconfigurable overhead in terms of performances
and power consumption.

The paper firstly presents state of the art techniques in the
field of DPR acceleration in Section 2, with a special emphasis on
energy analysis and optimisation. Then Section 3 details formal
models for application, platform and dynamic reconfiguration
underlying the mapping analysis of the H.264/AVC decoder.
The automatic analysis of different mappings and scheduling of
hardware and software application tasks is described in Section 4.
Then, a result analysis of the full video application deployment
is presented along with estimation values that are discussed in
Section 5. Finally, we conclude the paper and suggest future
directions for research.

2. DYNAMIC PARTIAL RECONFIGURATION AND EN-
ERGY EFFICIENCY

Embedded systems have to cope with numerous challenges such
as limited power supply, space and heat dissipation. Extensive
research efforts are currently carried out in order to address these
problems. Reconfigurable architectures and FPGAs have been
attractive in embedded systems due to their flexibility, allowing
faster development at lower costs than Application Specific In-
tegrated Circuits (ASICs). However, the energy efficiency and
the maximum frequency of reconfigurable hardware are also
impaired by their flexible interconnect do not allow to reach the
power performance level of custom ASICs [3, 4].

Dynamic and Partial Reconfiguration is a feature that became
effective fairly recently and brings new opportunities to improve
processing efficiency. Firstly, DPR allows a better use of hard-
ware resources by sharing and reusing reconfigurable regions
(PRRs) during execution, thus less area and energy consumption
are expected. A variety of other techniques can be associated
to this inherent DPR capability. For instance, it is possible to
clear the configuration data of a PRR (referred to as blank con-
figuration in the following) when it is unused which leads to
decrease the share of static power associated with PRRs [5]. As
an important part of power consumption also comes from clock
signals, some techniques investigated the use of dynamic recon-
figuration to reduce clock related impacts. A low overhead clock
gating implementation based on dynamic reconfiguration has
been proposed in [6], achieving 30 % power reductions com-
pared to standard FPGA clock-gating techniques based on LUTs.
Another approach has been developed to modify the parameters
of clock tree routing at run time reconfiguration to moderate
clock propagation in the whole FPGA and decrease dynamic
power [7]. Finally, self-reconfiguration also permits online modi-
fication of clock frequency with low resource overhead by acting
directly on clock management units from the reconfiguration
controller [8].

Dynamic and partial reconfiguration faces the difficult prob-
lem of task placement, both spatially on reconfigurable regions
and temporally in terms of scheduling. Therefore DPR demands
specific requirements to support this type of execution. It is
generally the responsibility of a task scheduler, like [9], to decide
online which resource will support the execution of a task. The
question becomes even more critical when addressing context
saving issues related to the preemption and relocation of hard-
ware tasks as discussed for example in [10]. In terms of power,
scheduling must state when task reconfiguration occurs such as
to avoid unnecessary idle consumption prior to execution [11].
It is also responsible for choosing to use blank configurations

or not while ensuring this decision actually leads to an overall
energy gain [12].

Another important element in DPR optimization is related
to hardware implementation and parallelism. Parallelism has
the potential to decrease the execution time of an hardware im-
plementation up to several orders of magnitude. A technique to
exploit this potential is to apply code transformations such as
those available in High Level Synthesis (HLS) tools. Previous
works reported two times energy reductions between sequential
and unrolled loops of a hardware matrix multiplication imple-
mentation [13]. This parallelism exploitation is especially rel-
evant for DPR since it can help the adaptation of a better area
power performance tradeoff at run time.

However, all these opportunities add many dimensions to
the DPR implementation problem for which there are currently
few design analysis support, especially concerning energy and
power consumption. It is thus extremely difficult to i) identify
the most influential parameters in the design and ii) understand
the impact of their variations in search of energy efficiency. In the
following, we detail the deployment analysis of a H.264/AVC
decoder on a representative performance execution platform
(multicore with DPR), and in the most energy efficient way. To
support this, we present first a formal model of application,
platform and mapping to allow a more systematic exploration
and evaluation of their associated impacts. Relevant power and
energy models of DPR represent another essential condition
to provide early reliable evaluations. The power and energy
models that are used in the proposed exploration are based
on actual measurements of the DPR process which are further
described in [14]. Finally, a greedy exploration heuristic is made
out of this base and described in details. It is shown in the result
analysis how a set of relevant energy and performance tradeoffs
can be identified and compared against characteristic solutions
(best performance, static hardware, full software execution, etc.).

3. PROBLEM MODELING

Previous work addressed a detailed study of DPR energy mod-
eling which led to identify significant parameters of dynamic
reconfiguration (FPGA and PRRs idle power, DPR control) [14].
This section fully extends the model to support a full and realis-
tic platform (hardware, software execution units), application
(hardware, software tasks) and mapping characterization which
is defined from a set of actual power values measured on real
platforms reported in section B and C.

A. Target platform model
As previously stated, the target platform is a heterogeneous
architecture that can be composed of processors and dynami-
cally reconfigurable accelerators. Each type of execution unit is
formalized by a set of specific parameters that captures all the
information needed for deployment exploration. These parame-
ters can be broadly classified in three categories that are listed
in Table 1: platform topology, execution units and dynamic and
partial reconfiguration characterization.

A.1. Platform topology

Execution Units (EU) are divided in two categories: a number
Ncore of software execution units, processor cores, and NPRR

hardware execution units, which are the partially reconfigurable
regions of the FPGA. Therefore, the total number of hardware
and software execution units NEU in the architecture is Ncore +
NPRR, and the jth execution unit of the architecture is tagged

Research Article © 2013 3

Table 1. Parameters used for heterogeneous architecture formalization

Variable Range Definition

Ncore ∈N∗ Number of software execution units

NPRR ∈N∗ Number of hardware execution units

NEU = NPRR + Ncore Total number of execution units

EUj ∀j = 1, ..., NEU The jth execution unit

SoC = {EUj} A platform is a set of execution units

N f req
j ∈N∗ Number of frequencies for software EUj

Fj,k ∀k = 1, ..., N f req
j The kth frequency of software EUj

Pempty
j,k ∈ R+ Empty power consumption for software EUj at Fj,k

Prun
j,k ∈ R+ Running power consumption for software EUj at Fj,k

Ncell
j ∈N∗ Number of logic cells for hardware EUj

Nbram
j ∈N∗ Number of RAM blocks for hardware EUj

Ndsp
j ∈N∗ Number of DSP blocks for hardware EUj

Pempty
j ∈ R+ Empty power consumption for hardware EUj

T1cell ∈ R+ Time required to reconfigure one logic cell

E1cell ∈ R+ Energy required to reconfigure one logic cell

by EUj with j ∈ [1, NEU]. In this abstract representation, a
heterogeneous SoC platform is represented by the set of all its
execution units {EUj} and this composition is considered fixed
at run-time.

A.2. Execution units

The size of a hardware unit EUj is characterized in terms of

logic resources with parameters Ncell
j , Nbram

j and Ndsp
j to ensure

realistic resource representation. The cell terminology refers to
the main configurable resource of the programmable logic (e.g.
Xilinx Slices, Altera Logic Elements).

Concerning the power model, a distinction is made between
different components of each EUj. The empty power consump-

tion, Pempty
j or Pempty

j,k , reflects the power consumed when no
application task is loaded, respectively for PRRs and cores (at
frequency Fj,k). It is worth noting concerning PRRs that a task
configured on it accumulates two contributions: Pidle

i,k when the
task is idle, and Prun

i,k when it is running, which are both imple-
mentation dependent and therefore described in the Section B.3.
The characterization of Pempty

j is additonally useful to consider
PRR blanking opportunities in the analysis of task deployments.
For software units, Prun

j,k is the power of a core EUj running at Fj,k
(full load). The energy of a software task can then be computed
from Prun

j,k and the corresponding execution time.

A.3. Dynamic and partial reconfiguration

Taking into account the cost of dynamic and partial reconfigura-
tion involves two types of overhead: delay and energy. As the
reconfiguration delay is mainly dependent on the speed of the re-
configuration controller and size of the configuration bitstream,
it can be efficiently described by parameter T1cell representing
the time needed to configure one logic cell and reflects the per-
formance of the reconfiguration controller. Power is addressed
in a similar way by parameter E1cell reflecting the energy needed
to configure one logic cell. As configuration depends mostly on
the number of logic cells composing a PRR in practice, delay
and energy overheads are fairly easy to compute.

B. Application power and mapping model

Different features of the application tasks need to be known for
exploration and estimation. These characteristics are formalized
by a set of parameters that are exposed in Table 2 and that can be
classified in three categories: task graph, task implementations
and task execution characterization.

B.1. Task graph

A task-dependency graph G is used to reflect execution concur-
rency in the mapping problem. The dependencies between tasks
are enumerated by an adjacency matrix representation which is
convenient to process by an analysis algorithm. The adjacency
matrix is a NT × NT matrix used to represent dependencies be-
tween tasks. Considering a row i, the value in each column is 1
if Ti is dependent on the task represented by the column index,
otherwise this value is 0. This adjacency matrix is asymmetric
and -1 values are used to represent an inverted edge direction
of the graph (Figure 1). In addition, the adjacency matrix is
completed with another information called the task equivalence
matrix Teq

i1,i2, which is used to indicate the identicalness of two
or more tasks, meaning that they have the same execution code
or bitstream. This is useful to minimize execution units and
improve their utilization rate, which is an important condition
for DPR efficiency as it will be pointed out in the results.

T1

T2

T3

T4

1 2 3 4

1 � -1 -1 0

2 1 � 0 -1

3 1 0 � -1

4 0 1 1 �

Fig. 1. Simple graph task example and it’s associated adja-
cency matrix.

B.2. Task implementations

From previous representation, it is also required to describe the
possible implementations for each task. As we aim to explore

Research Article © 2013 4

Table 2. Parameters used for application formalization

Variable Range Definition

NT ∈N∗ Number of tasks of the application

Ti ∀i = 1, ..., NT The ith task of the application

G = {Ti} Task-dependency graph

Teq
i1,i2 ∈ {0, 1} ∀i1, i2 = 1, ..., NT Tasks equivalence matrix

Nimp
i ∈N∗ Number of implementations of Ti

Ti,k ∀k = 1, ..., Nimp
i The kth implementation of Ti

Ii,j,k ∈ {0, 1} Defines if Ti,k is instantiable on EUj

Ci,j,k ∈ R+ Execution time of Ti,k

Ei,j,k ∈ R+ Energy consumption of Ti,k on EUj

Pidle
i,k ∈ R+ Idle power consumption of Ti,k

Prun
i,k ∈ R+ Running power consumption of Ti,k

combinations of mappings to the execution units, various imple-
mentations of the same task can be described. Different software
(CPU core, frequency) and hardware (PRR) implementations
can be specified to reflect several power performance tradeoffs
in the exploration. The total number of possible hardware and
software implementations for task Ti is Nimp

i , and Ti,k is used to

represent the kth implementation of task Ti with k ∈ [1, Nimp
i].

B.3. Task execution

First, a variable Ii,j,k is used to express if Ti,k can be executed
using EUj (0 false, 1 true). When task Ti is running on a software
execution unit (EUj at frequency Fj,k), the corresponding exe-
cution time and energy consumption are defined by Ci,j,k and
Ei,j,k. Energy can be derived from the power characterization of
a CPU core: Ei,j,k = Prun

j,k ∗ Ci,j,k.

Fig. 2. Power contributions of an execution unit.

A slightly different model applies for hardware tasks (Figure
2). When the kth implementation of a hardware task is mapped
to a PRR, it comes with a part of idle power. This contribution
is referenced by Pidle

i,k for the kth implementation of task Ti. The
remaining power contribution Prun

i,k is added when the task is
running. Therefore, the total power of PRR EUj when Ti,k is

configured and running is Pidle
i,k + Pempty

j + Prun
i,k .

C. Model assesment

We apply previous modeling on the H.264 decoder in a way
to evaluate the extent of the formalization defined and show
the actual setting of model parameters from a clear measure-
ment process. This characterization example is based on a dual
CortexA8/Virtex-6 LX240T potential platform. Further details
of the specification graph and functions of the video decoder are
given in Section 5.

C.1. Power measurement procedure

The FPGA device which is addressed in the following of this
study is a Xilinx Virtex-6 LX240T. All measurements to set up
the different parameters of the models are thus made on a Xilinx
ML605 platform, including a built-in shunt resistor that can let
us monitor the current through the FPGA core.

1VVCC IN T

Shunt

5m

Virtex-6

Vcore

GND

+

-

×100

ML605

Fig. 3. Current measurement schematics on ML605 Board
using a high-precision amplifier.

Figure 3 shows the experimental setup for power measure-
ments. We use the Virtex core shunt with a high-precision ampli-
fier to handle current and power measurements that are logged
with a digital oscilloscope. This setup allows to measure dy-
namic variations of current and power consumptions as low as
milliamps and milliwatts during the execution of the device.

C.2. Platform

A first issue is to determine a set of relevant PRRs in terms of
number (NPRR) and size (Ncell

j , Nbram
j , Ndsp

j). We do not handle
this partitioning in our approach and rely on the methodology of
[15] which defines a systematic approach to achieve this. Then,
the empty power of PRRs (Pempty

j) can be derived from the empty
power per logic cell, which is the power that can be measured
when the full FPGA is powered but does not contain any config-
uration (at voltage and internal temperature constant), averaged
by the number of cells. For instance, the Virtex-6 device used has
a measured empty power of 1.57W (at 1V, 35°C) for a capability
of 37680 slices, which leads to a parameter of 41.7 µW/slice. It is
then easy to derive the empty power of a PRR from its size. The
configuration of a task on a PRR also adds contributions that
are implementation dependent (Pidle

j,k , Prun
i,k), the determination

of these parameters is thus described in the following section.
Empty and running power of CPU cores come from similar

measurements. It is worth noting here that the model let the
specification of different types of cores and frequencies (Fj,k). A

Research Article © 2013 5

software implementation can be associated to a core frequency
k in this case. Pempty

j,k and Prun
j,k are the consumptions measured

respectively when the core is idle (no application task) and run-
ning (assuming 100% CPU load). As an illustration, these values
are 24mW and 445mW for an OMAP3530 based platform operat-
ing at 600MHz [16].

The power model used for DPR reconfiguration is the Coarse
Grained DPR estimation model detailed in [14]. In the example
of Section B, this model is calibrated for an optimized recon-
figuration controller called UPaRC [17] supporting 400 MB/s
at an average power of 150 mW. The minimum reconfig-
uration region in a Virtex-6 device (one cell = one slice) is
one frame, where one frame is 324 bytes and contains two
slices [18]. In these conditions, the corresponding T1cell is
(324B / 400MB/s) / 2 = 0.41 µs. In addition, the related E1cell

is T1cell × 150 mW = 61.5 nJ. From these values, it is convenient
to derive reconfiguration delay and energy for PRRs of different
shapes and sizes.

C.3. Application

In the formalism of Table 2, hardware and software task map-
ping parameters can be settled by defined implementations and
measures. Classical profiling can be used to set out software
execution time Ci,j,k and derive the associated energy cost Ei,j,k
from the power Prun

j,k of the executing core at frequency k (e.g.
E1,1,1 = 445mW ∗ 5ms = 2.23mJ for T1 on core EU1 in Table 5).

As for hardware tasks, they are fully generated using an
ESL (Electronic System Level) methodology described in [19].
Hardware mapping parameters are derived from measurements
made possible by full accelerator implementation. Pidle

i,k is the
consumption measured when Ti,k is configured but not running.
This power is supposed to be independent from PRRs in our
model. Prun

i,k is the fraction of dynamic power added when Ti,k
is running (also supposed independent from PRRs), that can
be determined in practice by subtracting the consumption of a
configuration where Ti,k is running from the consumption of a
configuration where Ti,k is idle. Therefore, the total power of a
hardware task Ti is the sum of Pempty

j of a PRR and Pidle
i,k when

the task is idle, plus an additional contribution Prun
i,k when the

task is running. For example, the first hardware implementation
I5,4,2 of T5,2 on EU4 (PRR2) in Table 5 has a total energy cost
E5,4,2 computed from Pempty

4 of PRR2, Pidle
5,2 /Prun

5,2 of T5,2, and the
corresponding execution time C5,4,2:

E5,4,2 = (Pempty
4 + Pidle

5,2 + Prun
5,2) ∗ C5,4,2

= (137mW + 34.2mW + 11.47mW) ∗ 2.46ms
= 0.45mJ.

This view is actually integrated in a more global framework
for power modeling and analysis called Open-PEOPLE [20]. In
particular, the open power platform supports remote measure-
ments and therefore let the definition of previous parameters
reducing the need for equipment, devices and the usually com-
plex monitoring procedures associated. The following section
shows how using previous models developed from a set of acu-
rate and concrete measurements can help defining relevant and
reliable deployment exploration analysis.

4. DEPLOYMENT ANALYSIS

Based on previous modeling and formalization, more method-
ological approaches can be defined to explore the mapping space
and provide relevant evaluations. Execution time, area (in terms

of programmable logic resources), energy and power profiles
can be computed from the full characterization of the system
available, including description and power models of execution
units, SoC platform, Hw/Sw implementations of tasks, Dynamic
Partial Reconfiguration and Partial Reconfigurable Regions. Fig-
ure 4 depicts the exploration methodology used for this energy
efficiency study, and is further detailed in the following.

A. Exploration inputs
A.1. System description

The estimation flow starts with descriptions of application tasks
and execution resources (Figure 4-1-). Tasks dependencies are
specified using the aforementioned task-dependency graph (G,
NT , Ti, Teq

i1,i2), which is further processed using graph traversal
techniques. Platform resource information like the size, number
of PRRs and CPUs must be considered to determine different
possible allocations. We assume here that the definitions of PRRs
have been done so far (Section C.2). Hw/Sw implementations
of tasks and SoC platform characteristics required to compute
power estimations come from specific libraries that are described
in the following.

A.2. SoC libraries

Power consumption and execution time of tasks for each possi-
ble execution unit are described in Tasks Implementation libraries
(Figure 4-2-). For hardware tasks, these settings can be esti-
mated by hardware dedicated power estimators, like the Xilinx
Power Estimator [?], and execution time can be derived from
timing reports produced by high level synthesis. Energy of soft-
ware tasks can also be based on measurements or derived from
data released by processor manufacturers. However for the sake
of precision, power and execution times in the following come
from real implementation and measurement for both hardware
and software tasks (Section C.3).

Specific power and energy models are used to estimate the
overheads resulting from PRR reconfigurations. These mod-
els have enough accuracy to estimate the latency, energy, and
power profile of a reconfiguration from the characteristics of the
reconfiguration controller, PRR and tasks involved [14].

Another aspect in the estimation model is the power con-
sumed by a hardware task present on a PRR, but not in use (idle
power). An idle task power model is used to compute this contri-
bution from sizes of tasks and PRRs. An improvement here is to
configure a PRR with an empty task to reduce the associated idle
power. This possibility is included in the mapping exploration
process (Figure 4-8-).

Finally, device parameters such as the size, process technol-
ogy and external adjustments like voltage and frequency are
also present in SoC Parameters. This type of information is not
currently used in the computation of estimations. Since previous
libraries have been derived from measurements on a specific
device (Virtex-6), we kept these characteristics in a way to derive
implementations and models for different technologies.

B. Ordered execution lists
Scheduling and allocation must be known in order to compute
performance and energy estimations. We use information de-
rived from the task-dependency graph to define a preliminary
order for the execution of tasks. This is the role of the Ordered
Execution List (OEL), which is a list of tasks similar to the task
graph except that it sequentially determines which tasks must be
launched for a time slot (τn). Each time slot corresponds to the
end of a task and the beginning to, at least, one other task. The

Research Article © 2013 6

Ordered Execution List

System description

Hardware
Implementation

Software
Implementation

Results

SoC librairies

HW/SW mapping

Dynamic Partial
Reconfiguration Cost

 time + energy cost

Execution Cost
 time + energy +
resource cost

Auxiliary power drain
- Hardware idle tasks
- Static power
- Idle power

Partial Reconfiguration Model
- bitstream size
- reconfiguration controller energy efficiency
- reconfiguration controller performance

Resources
-CPUs
-PRRs

Application
-Tasks
-Task-dependency graph
-Tasks equivalence

Idle Tasks Power Model

Blanking ?

yes

Dynamic Partial
Reconfiguration Cost

 time + energy cost

Exhaustive energy
time and area

exploration

Most energy efficient
HW/SW execution order

and implementation

Fastest execution time
HW/SW execution order

and implementation

Configuration
required?

Hardware

yes

no

Software

no

Exp_Golomb

MB_Header

Inv_CAVLC

Inv_Pred Inv_QTr

DB_Filter

Execution Cost
 time + energy +
resource cost

SoC power model
-static
-IO
-CPU idle
-clock tree

SoC Parameters

- technology
- frequency
- supply voltage

Execution time

E
n
e

rg
y

Are
a

Implementation
Exploration

N
core
N
PRR
N
EU
SoCN

T
T i T i1 ,i2

eq

Mapi , j , k ,τn

T
1slice

E
1slice

Pi , k
idle

P j
empty

N j

cell
N j

BRAM
N j

DSP

1

2

3

4

5

6

7

8

9

Tasks Implementation
librairies

N i
imp
C i , k Ei , k I i , j , k

G

τn=1

τn=2

τn=3

τn=4

τn=5

Fig. 4. Global exploration and power / performance estimation flow.

Table 3. OEL parameters used in exploration

Variable Range Definition

NOEL ∈N∗ Number of OELs extracted from G
NTS

n ∀n = 1, ..., NOEL Number of time slots in the nth OEL

τn = 1, ..., NTS
n Current time slot of the nth OEL

OELτn ,i ∈ {0, 1} Presence of Ti for τn

Research Article © 2013 7

OEL is a representation of a static task schedule which is useful
to derive at low complexity a number of feasible deployments.
This ensures keeping enough workstation capacity to process
the analysis of extensive task mappings along with fine complete
power characterizations.

However, one OEL is not always enough to cover the best
scheduling solution, especially if the application supports a lot
of parallel tasks. An example is shown in Figure 4-3- where tasks
Inv_Pred and Inv_QTr are executed in the same time slot, whereas
Inv_Pred could also be run in parallel with Inv_CAVLC. In such
a case, several OELs can be extracted from G and explored one
by one. The mapping definition process from an OEL depends
on the formal parameters of Table 3 and is further described in
the next section.

C. Mapping exploration
C.1. Implementation selection

For each task beginning at the current time slot τn, an imple-
mentation is selected from the list of possibilities (hardware or
software) available in the task implementation library (Figure 4-
4-). Mapk,i,j,τn is a variable which represents the implementation
choice by its value: 1 at τn when Ti,k is mapped on EUj. This
variable is also set under the following constraints:

- one task is mapped only once

∑
j,k,τn

Mapk,i,j,τn = 1 ∀i ∈ 1, ..., NT (1)

- one EU can run only one task at the same time

∑
i,k

Mapk,i,j,τn ≤ 1 (2)

∀j ∈ 1, ..., NEU , ∀τn ∈ 1, ..., NTS
n

For a mapping choice expressed by Map, estimations of
power and execution time are then computed subsequently.

C.2. Partial reconfiguration cost

Reconfiguration is likely to occur when a task is mapped on
a hardware execution unit (PRR), except if this task is already
configured on this PRR (Figure 4-5-). In the situation where a re-
configuration is needed (Figure 4-6-), time and energy overheads
are computed respectively by:

Tcon f
j = T1cell × Ncell

j (3)

Econ f
j = E1cell × Ncell

j (4)

C.3. Task execution cost

Contributions of the actual execution of tasks (hardware and
software) are then added to previous cost estimation (Figure
4-7-). The execution time for the current implementation of
task Ti is given by Ci,j,k while the energy consumption for this
implementation is defined by Ei,j,k.

C.4. Blanking analysis

When a hardware resource is not used for some time, blanking is
an opportunity that can also be considered to save power (Figure
4-8-). However this technique comes with an added cost that has
to be estimated [12]. This is determined by comparing the energy
with and without blanking using the following expressions:

Eblanking
j = Econ f

j + Eempty
j

= Econ f
j + Pempty

j ∗ (Tidle
j − Tcon f

j) (5)

Eidle
i,j,k = Pidle

i,k ∗ Tidle
j (6)

where Tidle
j is the time during which EUj is idle, waiting for

a new task to begin. If Eblanking
j < Eidle

i,j,k then blanking is an
acceptable solution.

D. Auxiliary power drain

Auxiliary power contributions are also considered to fully char-
acterize the energy consumption (Figure 4-9-). These contribu-
tions are from the static leakage power and from the idle power
of the clock tree, both considered in PSoCidle. The portion of
power consumed by the execution units even when they are
not in use (Pempty

j,k) is also added. We consider that power of

a blank PRR is included in Pempty
j . However, hardware tasks

already configured and idle also lead to power drains that are
considered (Pidle

i,k)

E. Global cost characterization

At the end of an OEL analysis, energy contributions and exe-
cution times are added for each global mapping solution. An
exhaustive search is currently used to enumerate the possible de-
ployments of tasks on the execution units. This process consists
in generating progressively at each time slot different branches
for the OEL mapping. The end of a branch corresponds to a
global deployment solution with its associated estimation of en-
ergy, area (resources) and performance. Notable solutions mini-
mizing energy or performance are highlighted from a scatter plot
representation of the results to help comparing the mappings
explored (Figure 6). Scheduling and the corresponding power
profiles are computed as well to further analyze and implement
a particular solution, as illustrated in Figure 8. Next section
outlines these results that are derived from the application to a
parallelized accelerated H.264/AVC decoder.

5. APPLICATION STUDY AND RESULTS

As specified in the introduction section, the objective of this
paper is to verify if the DPR can improve the execution perfor-
mance (time, power and energy consumption) of the H.264/AVC
video decoder. This section presents the results obtained for the
exploration and show the different interesting mappings that
can be chosen by the designer to satisfy the design constraints.

This section first presents the application model, then the
platform used to explore the mapping and finally the results of
the exploration.

A. H.264/AVC decoder

The application which is considered in this validation study is
a H.264/AVC profile video decoder specification modified to
comply with parallel software (multicore) / hardware (reconfig-
urable) execution. An ESL design methodology [19] is used to
provide real implementations for the possible hardware func-
tions, which serve as an entry point to the exploration flow of
Section 4. The input specification code used is a version derived
from the ITU-T reference code [?] to better cope with hardware
design constraints.

The deblocking filter (DB_Filter), inverse CAVLC
(Inv_CAVLC), and inverse quantization and transform
block (Inv_QTr) contribute together to 76% of the global
execution time on a single CPU core. They represent the three
functionalities of the decoder that can be either software or
hardware executed.

Research Article © 2013 8

Fig. 5. H.264 decoder task flow graph.

In addition to these acceleration opportunities, we aim at ex-
ploring solutions mapped onto parallel architectures including
multicore CPUs. For this, we consider a multithreaded version
of the decoder exploiting the possibility of slice decomposition
of frames supported in the H.264/AVC standard. Indeed a slice
represents an independent zone of a frame, it can reference other
slices of previous frames for decoding; therefore decoding one
slice (of a frame) is independent from another (slice of the same
frame). This way, the decoder can process different slices of a
frame in parallel. We have thus considered a decomposition
of the image where two streams process two halves of a same
frame (Figure 5). The corresponding task graph is defined by G
as:

G = {Exp_Golomb, MB_Header, Inv_CAVLC1,

Inv_CAVLC2, Inv_QTr1, Inv_QTr2, Inv_Pred1,

Inv_Pred2, DB_Filter1, DB_Filter2}. (7)

This graph can be deployed using up to six accelerators and
two processors on the underlying platform. Accelerators are
fully generated from a reference C code at this level in a way to
derive precise performance, resource, and power information,
and to define relevant reconfigurable regions for DPR execution
(Table 4). Some functions are reported with two implementa-
tions (sequential and parallel resulting from HLS loop unrolling)
to account for the impacts of parallelism on energy efficiency.
Software tasks are characterized in a similar way by running
the code on CPU cores to derive execution times and energy,
possibly at the different supported frequencies (Table 5).

B. Target platform
The execution platform is based on two ARM CortexA8 cores
and an eFPGA, assuming a Virtex-6 device model supporting
DPR. Table 4 shows the corresponding platform parameters that
have been set as exposed in Section C.2. The method of [15] is
used to identify an optimal set of PRRs under performance and
FPGA layout constraints, considering all the hardware imple-
mentations of tasks previously considered. Three PRRs of 1200,
3280 and 2000 slices were found to reduce slice and BRAM count
from respectively 49% and 33% over a purely static implementa-
tion of all hardware tasks. Therefore this configuration is used
as a basic PRR setup in the following deployment analysis.

From Pempty
V6LX240T = 41.7 µW/slice measured previously on

the device, it is possible to derive the empty power consumption

for each defined PRR: Pempty
3 = 50 mW, Pempty

4 = 137 mW and

Pempty
5 = 83 mW. The empty power of CPU cores come from

similar measurements on an OMAP3530 based development
board: Pempty

j,k = 24 mW and Prun
j,k = 445 mW for a CortexA8 core

at Fj,k = 600MHz.
Additionally, the reconfiguration controller used is an opti-

mized IP called UPaRC supporting a reconfiguration speed of
400 MB/s for a power of Pcontroller = 150 mW [17]. This cor-
responds to T1cell = 0.41µs and E1cell = 61.5mJ (Section C.2)
from which reconfiguration time and energy of a PRR are easy
to compute.

C. Application model parameters

Table 5 shows the application model parameters in details for
the H.264 decoder example. The decoder is composed of ten
tasks among which six can be run in hardware. All tasks are
characterized in terms of software and hardware mapping fol-
lowing the generation and measurement procedure of Section
C.3.

For each hardware task (T5, T6, T9, T10), two versions of dif-
ferent cost and performance tradeoffs are produced using HLS
loop level parallelism. Therefore, if we consider the example of
Inv_QTr1 (T5), three implementations T5,1, T5,2, T5,3 are possible
with respectively 5.10ms (CortexA8 600MHz), 2.46 ms (hard-
ware #1) and 1.97 ms (hardware #2 with loop unrolling). For
each of the two hardware implementations, three possible PRR
mappings are described along with the associated energy cost
(computed as shown in C.3). This realistic characterization of
different task implementations based on practical data improves
the reliability of estimations and exploration results, which are
addressed in the following.

D. Exploration results and analysis

Under previous conditions of application, SoC architecture and
dynamic reconfiguration, the primary output of the exploration
flow is plotted in Figure 6. It is worth noting first the very im-
portant quantity of solutions analyzed, over 1 million possible
mappings are evaluated for this design. This exploration ex-
ample is processed in a matter of seconds with an Intel Core i5
based workstation.

Six solutions are highlighted from the results: (i) full soft-
ware implementation using one CPU core (SW_1Core), (ii) full

Research Article © 2013 9

Table 4. Model parameters for a dual CortexA8/Virtex-6 LX240T potential platform.
Platform Ncore NPRR NEU Description

2 3 5 CortexA8/V6LX240T

Cores EUj Fj,k (MHz) Pempty
j,k /Prun

j,k (mW) Description

EU1 600 24/445 core #1
EU2 600 24/445 core #2

PRRs EUj Ncell
j ; Nbram

j ; Ndsp
j Pempty

j (mW) Description

EU3 1200; 8; 0 50 PRR #1
EU4 3280; 8; 0 137 PRR #2
EU5 2000; 8; 0 83 PRR #3

DPR Conf. Ctlr T1cell (µs) E1cell (nJ) Description
0.41 61.5 UPaRC

20 30 40 50 60 70 80 90
15

20

25

30

35

40

45

50

55

60

Execution Time (ms)

E
n
e
rg

y
 (

m
J
)

SW 1core

SW 2cores

LE static

BP static

BP DPR

LE DPR

S
lic

e
s

0

1000

2000

3000

4000

5000

6000

Fig. 6. Energy vs. execution time exploration results. Colors
represent the number of FPGA resources (slices) of a solution.

software execution using two cores (SW_2Cores), (iii) the low-
est energy solution using static accelerators (LE_Static), (iv) the
best performance solution using static accelerators (BP_Static),
(v) the lowest energy solution using dynamic reconfiguration
(LE_DPR) and (vi) the best performance solution using dynamic
reconfiguration (BP_DPR). Details of these characteristic solu-
tions are summarized in table 6. Since SW_1Core is almost twice
slower for the same energy compared to SW_2Cores, SW_2Cores
is considered as a reference result in the following to let the
comparison of relative improvements from hardware acceler-
ated solutions. To further help this analysis, exploration results
also output scheduling, allocation and power profiles that are
illustrated in figures 7 and 8 for BP_Static, LE_Static, BP_DPR
and LE_DPR.

We can firstly note that the four accelerated solutions per-
form better compared to the reference software execution, both
in terms of performance and energy. Hardware significantly im-
proves processing efficiency while offloading CPU cores which
results in 50% faster execution and 39% energy savings at the
global decoder application level. Dynamic reconfiguration in-
troduces a slight performance penalty due to reconfiguration
delays, however the best performance solution based on DPR is
only 2.6% slower than a static implementation. In terms of en-

ergy, the lowest energy solution using DPR is 57% more efficient
than the reference SW_2Cores and 16% more energy efficient
than a static implementation.

Inspecting the schedule and resources usage of figures 7 and
8 emphasizes the fact that performance solutions make use of
a maximum of resources, while low energy implementations
tend to use less execution units and improve their utilization
rate. For example, the energy of BP_Static is reduced by offload-
ing the execution of function CAVLC from the first CPU core
to PRR2, which results in an energy gain of 3.9 mJ (−15%) for
a performance penalty of 3.4 ms (+14%). The same applies for
DPR implementation BP_DPR in which Core1 and PRR3 can be
removed to save 5.9 mJ (−25%) while increasing execution time
by 5.5 ms (+22%). Minimizing the number of reconfigurations
(represented in red in the scheduling profiles) is also an impor-
tant factor impacting execution time and energy consumption.
In the DPR solutions of the decoder, the configuration of PRR2 is
kept to execute two consecutive instances of Inv_CAVLC, and the
same applies for the execution of DB_Filter on PRR1. However,
Inv_QTr is mapped to PRR1 for the first instance and to PRR2
for the second. Execution dependencies between DB_Filter and
Inv_QTr do not allow to save a reconfiguration of Inv_QTr with-
out a penalty on global execution time, impacting also energy.
The second instance of Inv_QTr is thus executed on PRR2.

In terms of DPR benefits over static implementation, the
H.264 decoder example shows that DPR brings 16% energy
improvement for 31% FPGA resource (slice) reduction and an
execution time increase of 10%. Energy gains come from the
reduction of the static area of the programmable logic and the
associated idle power, decreasing from 318 mW to 210 mW (34%).
These results help evaluating the practical benefits of dynamic
reconfiguration, considering also that there is room for improve-
ment on the H.264 decoder by moving more functions to hard-
ware.

Finally, it is also interesting to note that for this application,
none of the four hardware solutions highlighted exploits PRR
blanking. In the LE_DPR solution, hardware execution units are
not free for a sufficient period of time to compensate the energy
overheads implied by PRR reconfigurations. Therefore these
estimations provide a possible assessment to know whether or
not to use blanking in a design.

The end result from a potential platform made of two CPUs
and a FPGA fabric is a solution based on a single core execu-
tion with dynamic reconfiguration of six hardware accelerated
functions on two PRRs. The corresponding implementation rep-
resents 57% and 37% performance and energy improvements

Research Article © 2013 10

Table 5. Task parameters for an H.264/AVC decoder application.

Ti Ti,k Ii,j,k = 1 Ci,j,k(ms) Ei,j,k(mJ) Pidle
i,k /Prun

i,k (mW) Ncell
i,k ; Nbram

i,k ; Ndsp
i,k Description

T1 T1,1 I1,1,1 I1,2,1 5.00 2.23 24/445 – Exp_Golomb
T2 T2,1 I2,1,1 I2,2,1 4.92 2.19 24/445 – MB_Header
T3 T3,1 I3,1,1 I3,2,1 11.03 4.91 24/445 – Inv_CAVLC1

T3,2 I3,4,2 7.45 1.46 55.1/4.4 3118; 6; 0
T4 T4,1 I4,1,1 I4,2,1 11.03 4.91 24/445 – Inv_CAVLC2

T4,2 I4,2,4 7.45 1.46 55.1/4.4 3118; 6; 0
T5,1 I5,1,1 I5,2,1 5.10 2.27 24/445 –
T5,2 I5,3,2 2.46 0.24 34.2/11.47 1056; 7; 0
T5,2 I5,4,2 2.46 0.45 34.2/11.47 1056; 7; 0

T5 T5,2 I5,5,2 2.46 0.32 34.2/11.47 1056; 7; 0 Inv_QTr1
T5,3 I5,3,3 1.97 0.21 42.2/12.87 1385; 7; 0
T5,3 I5,4,3 1.97 0.38 42.2/12.87 1385; 7; 0
T5,3 I5,5,3 1.97 0.27 42.2/12.87 1385; 7; 0
T6,1 I6,1,1 I6,2,1 5.10 2.27 24/445 –
T6,2 I6,3,2 2.46 0.24 34.2/11.47 1056; 7; 0
T6,2 I6,4,2 2.46 0.45 34.2/11.47 1056; 7; 0

T6 T6,2 I6,5,2 2.46 0.32 34.2/11.47 1056; 7; 0 Inv_QTr2
T6,3 I6,3,3 1.97 0.21 42.2/12.87 1385; 7; 0
T6,3 I6,4,3 1.97 0.38 42.2/12.87 1385; 7; 0
T6,3 I6,5,3 1.97 0.27 42.2/12.87 1385; 7; 0

T7 T7,1 I7,1,1 I7,2,1 5.39 2.40 24/445 – Inv_Pred1
T8 T8,1 I8,1,1 I8,2,1 5.39 2.40 24/445 – Inv_Pred2

T9,1 I9,1,1 I9,2,1 17.49 7.78 24/445 –
T9,2 I9,3,2 1.57 0.14 33.4/6 686; 5; 0

T9 T9,2 I9,4,2 1.57 0.28 33.4/6 686; 5; 0 DB_Filter1
T9,2 I9,5,2 1.57 0.19 33.4/6 686; 5; 0
T9,3 I9,4,3 1.55 0.29 40.3/7.4 1869; 5; 0
T9,3 I9,5,3 1.55 0.20 40.3/7.4 1869; 5; 0
T10,1 I10,1,1 I10,2,1 17.49 7.78 24/445 –
T10,2 I10,3,2 1.57 0.14 33.4/6 686; 5; 0

T10 T10,2 I10,4,2 1.57 0.28 33.4/6 686; 5; 0 DB_Filter2
T10,2 I10,5,2 1.57 0.19 33.4/6 686; 5; 0
T10,3 I10,4,3 1.55 0.29 40.3/7.4 1869; 5; 0
T10,3 I10,5,3 1.55 0.20 40.3/7.4 1869; 5; 0

over a dual core software execution, which is also 16% more
energy efficient over a static hardware implementation of the
same accelerators with 10% less performance.

6. CONCLUSION AND PERSPECTIVES

Previous detailed results report different potential energy ef-
ficiency improvements on a representative video processing
application. DPR benefits are sensitive over pure software (dual
core) execution with 57% energy gains for 37% better perfor-
mance. There are comparatively less limited benefits against
static (no DPR) hardware acceleration with 16% energy gains,
but for 10% less performance (resulting from the overheads of
reconfiguring partial regions). In addition to these numbers, we
can derive a set of conditions that are essential for practical DPR
effectiveness. First, the cost of reconfiguration is high both in
terms of delay and energy. Thus all reconfiguration overheads
have to be minimized as much as possible, which means to sup-
port high speed reconfiguration control and to reach a schedule
minimizing the number of reconfigurations. Second, hardware

execution being to a very large extent significantly more energy
efficient than software, accelerated functions are likely to be
employed. On top of this, minimizing the number of regions
will improve the results, both because it reduces the inherent
power (especially the idle power), but also because it improves
usage of the available regions. Therefore, there is still room for
improving the H.264 decoder, in which only three functions are
considered for acceleration, as quality of results will grow when
increasing and sharing the number of hardware functions on a
limited number of regions.

From these considerations, a first perspective is to address
further energy gains with the definition of run-time scheduling
policies supporting energy-aware execution of dynamic hard-
ware and software tasks. Indeed exploration is likely to provide
overestimated performances at design time since it has to be
based on (static) worst case execution times. Therefore, there is
room for complementary energy savings by exploiting dynamic
slacks resulting from lesser execution times at run-time, and
these scheduling decisions can benefit from the same models
used for mapping exploration. Finally, another direction of re-

Research Article © 2013 11

Table 6. Highlights of exploration results.
Implementation results Energy(mJ) TEX(ms) CPUs; Slices; DSPs; BRAMs
SoftWare 1core 41.23 87.92 1; 0; 0; 0
SW 2cores(reference) 41.47 48.92 2; 0; 0; 0
Lowest Energy - static 21.40 (-48%) 27.93 (-43%) 1; 6480; 0; 18
Best Performance - static 25.30 (-39%) 24.49 (-50%) 2; 6480; 0; 18
Lowest Energy - DPR 17.94 (-57%) 30.62 (-37%) 1; 4480; 0; 16
Best Performance - DPR 23.84 (-43%) 25.13 (-49%) 2; 6480; 0; 24

search will be to build an Operating System, on this exploration
and scheduling base, to achieve efficient cooperation with exist-
ing processor level techniques (e.g. DVFS) and converge towards
an advanced heterogeneous power management scheme.

FUNDING INFORMATION

REFERENCES

1. James G. Eldredge and Brad L. Hutchings. 1996. Run-Time
Reconfiguration: A Method for Enhancing the Functional
Density of SRAM-based FPGAs. Journal of VLSI Signal Pro-
cessing 12, 1 (1996), 67–86.

2. Kashif Latif, Arshad Aziz, and Athar Mahboob. 2011. De-
ciding equivalances among conjunctive aggregate queries.
Computers & Electrical Engineering 37 (2011), 1043 – 1057.

3. Ian Kuon and Jonathan Rose. 2007. Measuring the gap be-
tween FPGAs and ASICs. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on 26 (2007), 203–215.

4. A. Amara, F. Amiel, and T. Ea. 2006. FPGA vs. ASIC for low
power applications. Microelectronics Journal 37 (2006), 669 –
677.

5. T. Tuan and B. Lai. 2003. Leakage power analysis of a 90nm
FPGA. In IEEE Custom Integrated Circuits Conference. DOI:
http://dx.doi.org/10.1109/CICC.2003.1249359

6. L. Sterpone, L. Carro, D. Matos, S. Wong, and F. Fakhar. 2011.
A new reconfigurable clock-gating technique for low power
SRAM-based FPGAs. In Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1–6.

7. Qiang Wang, Subodh Gupta, and Jason H. Anderson. 2009.
Clock power reduction for virtex-5 FPGAs. In Proceedings
of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays. 13–22.

8. Katarina Paulsson, Michael Hubner, and Jurgen Becker.
2009. Dynamic power optimization by exploiting self-
reconfiguration in Xilinx Spartan 3-based systems. Micro-
processors and Microsystems 33 (2009), 46 – 52.

9. T.T.-O. Kwok and Yu-Kwong Kwok. 2006. Practical design of
a computation and energy efficient hardware task scheduler
in embedded reconfigurable computing systems. In Proceed-
ings IEEE 20th International Symposium on Parallel and Dis-
tributed Processing, IPDPS.

10. H. Kalte and M. Porrmann. 2005. Context saving and restor-
ing for multitasking in reconfigurable systems. In Proceedings
IEEE International Conference on Field Programmable Logic and
Applications. 223–228. DOI:http://dx.doi.org/10.1109/FPL.2005.
1515726

11. Ping-Hung Yuh, Chia-Lin Yang, Chi-Feng Li, and Chung-
Hsiang Lin. 2009. Leakage-aware task scheduling for par-
tially dynamically reconfigurable FPGAs. ACM Transactions
on Design Automation of Electronic Systems, TODAES 14, 4
(2009), 1–26. DOI:http://dx.doi.org/10.1145/1562514.1562520

12. Shaoshan Liu, Richard Neil Pittman, and Alessandro Forin.
2010. Energy reduction with run-time partial reconfiguration.

In Proceedings ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. 292–292.

13. Robin Bonamy, Daniel Chillet, Olivier Sentieys, and
Sébastien Bilavarn. 2011. Parallelism Level Impact on Energy
Consumption in Reconfigurable Devices. ACM SIGARCH
Computer Architecture News 39 (2011), 104–105.

14. Robin Bonamy, Sébastien Bilavarn, Daniel Chillet, and
Olivier Sentieys. 2014. Power Consumption Models for the
Use of Dynamic and Partial Reconfiguration. Microprocessors
and Microsystems, Elsevier (2014).

15. François Duhem, Fabrice Muller, Robin Bonamy, and
Sébastien Bilavarn. 2015. FoRTReSS: a flow for design space
exploration of partially reconfigurable systems. Design Au-
tomation for Embedded Systems, Springer Verlag , (2015).

16. J. Kriegel, F. Broekaert, A. Pegatoquet, and M. Auguin. 2010.
Power optimization technique applied to real-time video ap-
plication. In Proc. 13th Sophia Antipolis Microelectronics Forum
(SAME). Sophia Antipolis, France, University Booth.

17. R. Bonamy, H-M. Pham, S. Pillement, and D. Chillet. 2012.
UPaRC - Ultra Fast Power aware Reconfiguration Controller.
In Design, Automation & Test in Europe Conference & Exhibition
(DATE).

18. Xilinx, Inc. 2010. UG360 – Virtex-6 FPGA Configuration User
Guide (v3.1). Technical Report.

19. Taheni Damak, Imen Werda, Sébastien Bilavarn, and Nouri
Masmoudi. 2013. Fast Prototyping H.264 Deblocking Filter
Using ESL tools. Transactions on Systems, Signals & Devices,
Issues on Communications and Signal Processing 8, 3 (Dec. 2013),
345–362.

20. E. Senn, D. Chillet, O. Zendra, C. Belleudy, R. Ben Atital-
lah, A. Fritsch, and C. Samoyeau. 2012. Open-People: an
Open Platform for Estimation and Optimizations of energy
consumption. In Design and Architectures for Signal and Im-
age Processing Conference (DASIP 2012), 23/10/2012, Karlsruhe,
Germany.

http://dx.doi.org/10.1109/CICC.2003.1249359
http://dx.doi.org/10.1109/FPL.2005.1515726
http://dx.doi.org/10.1109/FPL.2005.1515726
http://dx.doi.org/10.1145/1562514.1562520

Research Article © 2013 12

0 5 10 15 20 25

CPU1
CPU2
PRR1
PRR2
PRR3

Execution Time(ms)

R
e
s
o
u
rc

e
s

ExGolomb MBHeader

 CAVLC

 Inv.QTr.

Inv.Pred

DBFilter

 CAVLC

 Inv.QTr.

 Inv.Pred

 DBFilter

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Execution Time (ms)

P
o
w

e
r

(m
W

)

0 5 10 15 20 25 30

CPU1
CPU2
PRR1
PRR2
PRR3

Execution Time(ms)

R
e
s
o
u
rc

e
s

ExGolomb MBHeader

 CAVLC

 Inv.QTr.

 Inv.Pred

 DBFilter

 CAVLC

 Inv.QTr.

 Inv.Pred

 DBFilter

0 5 10 15 20 25 30
0

200

400

600

800

1000

Execution Time (ms)

P
o
w

e
r

(m
W

)

Fig. 7. Scheduling and power profile of BP_Static (left) and LE_Static (right) solutions.

0 5 10 15 20 25 30

CPU1
CPU2
PRR1
PRR2
PRR3

Execution Time(ms)

R
e
s
o
u
rc

e
s

ExGolomb MBHeader

 CAVLC

 Inv.QTr.

 Inv.Pred

 DBFilter

 CAVLC

 Inv.QTr.

 Inv.Pred

 DBFilter

0 5 10 15 20 25 30
0

500

1000

1500

Execution Time (ms)

P
o
w

e
r

(m
W

)

0 5 10 15 20 25 30 35

CPU1
CPU2
PRR1
PRR2
PRR3

Execution Time(ms)

R
e
s
o
u
rc

e
s

ExGolomb MBHeader

 CAVLC

 Inv.QTr.

 Inv.Pred

 DBFilter

 CAVLC Inv.QTr.

 Inv.Pred

 DBFilter

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

Execution Time (ms)

P
o
w

e
r

(m
W

)

Fig. 8. Scheduling and power profile of BP_DPR (left) and LE_DPR (right) solutions.

	Introduction
	Dynamic Partial Reconfiguration and Energy Efficiency
	Problem modeling
	Target platform model
	Platform topology
	Execution units
	Dynamic and partial reconfiguration

	Application power and mapping model
	Task graph
	Task implementations
	Task execution

	Model assesment
	Power measurement procedure
	Platform
	Application

	Deployment analysis
	Exploration inputs
	System description
	SoC libraries

	Ordered execution lists
	Mapping exploration
	Implementation selection
	Partial reconfiguration cost
	Task execution cost
	Blanking analysis

	Auxiliary power drain
	Global cost characterization

	Application study and results
	H.264/AVC decoder
	Target platform
	Application model parameters
	Exploration results and analysis

	Conclusion and perspectives

