
Research Article © 2012 1

Hardware Acceleration of Real-Life Applications:
from Theory to Implementation
SÉBASTIEN BILAVARN1,*, TAHENI DAMAK2, AND ROBIN BONAMY3

1LEAT, University of Nice Sophia Antipolis, CNRS
2LETI, National Engineering School of Sfax, Tunisia.
3CAIRN, University of Rennes 1, CNRS, IRISA
*Corresponding author: bilavarn (at) unice (dot) fr

There has been a lot of research to support the benefits of reconfigurable hardware acceleration
in high performance low power System-on-Chips. Despite numerous advances made over the
last two decades, especially in code generation support, reconfigurable system-on-chips still face
application programming challenges. As the full automated synthesis of real-world applications
such as digital video coding is still not supported for complexity reasons, acceleration is likely
to occur as an execution of software code and dedicated hardware involving large amounts of
data communication. These overheads alter significantly the benefits of hardware acceleration
and usually requires important hardware expertise. In these conditions, a bottleneck lies in the
fast implementation of optimised on-chip bus interfaces, indeed this time consuming hardware
(and software) development process reflects critically on performance, but also on development
and debug efforts. This paper proposes a design flow for reconfigurable hardware accelera-
tion in which a specific topology for C/C++ function arguments is set to help the generation
of on-chip bus compliant interface, on top of High Level Synthesis (HLS). We show how struc-
turing data arguments allows the definition of a generic bus wrapper interface for accelerators
produced by HLS. We additionally illustrate the effectiveness of this approach on the practical
implementation example of a full H264/AVC profile video decoder in recent FPGA-embedded
systems considering PLB and AXI bus protocols.

1. INTRODUCTION

Reconfigurable System-on-Chips (RSoC) have been drawing
attention to for a while. Indeed the possibility to offload soft-
ware processing using hardware acceleration has the potential
to bring orders of magnitude in performance improvements
and energy savings for classes of application code. Today, par-
tial and run-time reconfiguration offers even higher flexibility
and adaptability to manage Quality of Service and energy con-
straints. However, the realisation of this still has to face many
challenges. While very significant advances have been made,
research historically focussed on the successive hardware design
issues. Many works started with the architecture level moti-
vated by the search of sensitive speedups combined with energy
efficiency. Research in hardware compilers, also called high-
level or behavioral synthesis, has quickly followed and led to

many advances with industry successes. While a range of tech-
nologies are available now to address specification, modelling,
exploration, simulation, verification, compilation and synthesis,
they provide a path from high-level specification to low level
implementation. However, even if those tools allow to greatly
accelerate and secure the design of systems including dedicated
hardware, some of the aspects throughout the design flow still
need to be addressed. HLS tools are limited by the complexity of
the input descriptions they actually support. Therefore, multiple
hardware modules communicating with processors are likely to
be employed to address real-life applications. Global accelera-
tion is thus altered to a large extent by the costs of moving large
datasets to and from the accelerators, that can sometimes lead in
total acceleration inefficiency without optimising data-transfer
efficiency. In particular, the need to provide accelerators with a

Research Article © 2012 2

system bus compliant interface adds very important hardware
and software development costs. This communication interface
problem, and additionaly, the variety of tools and standards
involved now in typical hardware software methodologies are
probably important reasons why complete RSoC design flows
remain quite overlooked by system designers and often difficult
to extend (platform specific).

In the following study, we address the seamless develop-
ment of dedicated hardware accelerators in embedded system
design flows. We rely on a cooperation of reference CAD soft-
ware including Mentor Graphics (Catapult, Precision Synthesis,
Modelsim) and Xilinx tools (XPS EDK) to define an effective
design flow and investigate more specifically the problem of
elaborating a bus compliant accelerator interface. We propose a
topology for C function arguments that can cope with a generic
bus wrapper interface for HLS generated accelerators. We show
additionally an application of the proposed methodology for
two popular embedded bus interfaces (PLB, AXI), providing up
to 3.8 speedup on a full H.264/AVC decoder application.

The paper is organized as follows. First, we present a survey
of notable contributions relevant to reconfigurable hardware
acceleration. We then introduce a case study to help under-
standing more clearly the issues with bus compliant interface
development. The design methodology is then detailed with
an emphasis on the accelerator bus interface hardware and soft-
ware developments. Finally, we present application results on
different accelerated functions that come from a representative
H.264/AVC video standard.

2. RELATED WORK

Over the last two decades, there has been a variety of works ad-
dressing the potential of reconfigurable computing performance.
Typical applications are in the field of embedded systems but
growing interest also emerged in the domain of High Perfor-
mance Computing. Cray XD1 and XT families [2], the Intel
QuickAssist Technology Accelerator Abstraction Layer [3] or
Celoxica accelerated trading solutions [4] are a few notable ex-
amples. Early research in Reconfigurable Computing focused
on how to combine the benefits of processor software execu-
tion with FPGA hardware acceleration or coprocessing potential.
The motivations were initially to benefit from the performance
and flexibitility that come with the reconfiguration ability. Early
codesign methods addressed the joint hardware software devel-
opment problem, sometimes associated with techniques for the
development of complete programming code. The technology
took a step forward with the concept of coarse-grained archi-
tectures [5]. Coarse grained resources are multiple bit wide
datapaths or complex dedicated operators implemented in sili-
con (hardwired multipliers, embedded memory blocks, ALUs).
Their use in Reconfigurable Processing Units (RPUs), Reconfig-
urable Datapath Units (rDPUs) or even FPGAs, allows reducing
the interconnect overheads and the associated power. This has
led to diverse architecture propositions among which we can
cite Chameleon [6], MorphoSys [7], DART [8], Morpheus [9] for
academic research projects, PACT XPP [10], or more recently
Recore [11] [12] and DRC [13] in the industry. The two major
FPGA vendors, Xilinx and Altera, have integrated these con-
cepts in their devices with DSP blocks (multipliers), block RAMs
(embedded memories) and even hard IP processors.

System-on-Chips including embedded processors and recon-
figurable accelerators offer an interesting opportunity for system
designers to develop high performance systems. However, a

complete tool chain from system to implementation is required.
Complete design flows for these systems have been an issue
for a long time. Early approaches like Garp [14] addressed the
code generation problem in an application to FPGAs. Garp ad-
dressed the acceleration of loops in general purpose programs
and the problem of automating the generation of efficient hard-
ware configurations. The technique, based on a specific synthe-
sis approach, is derived from software compilation algorithms
rather than hardware synthesis techniques, that are built from
the internal representation of their tool (dataflow graph). Garp
provides interesting results but relies on instruction level paral-
lelism which does not exploit the full acceleration potential of
FPGAs. High-level synthesis of hardware accelerators has the
potential for higher performance addressing loop and function
level parallelism. The main problem then is raised by the com-
plexity of compiling high-level code into hardware. Because of
this, it has been a very active field of research especially in the
past twenty years.

The achievement and maturity of high-level synthesis have
finally led to the emergence of many C to FPGA tools. Impulse
C [15] is an example of such tools. It is based on a specific model
called CSP (Communicating Sequential Process), with its associ-
ated API, functions, librairies and datatypes. As a result, the C
code needs to be written in a particular structure in order to get
it converted to hardware efficiently. Celoxica [4] is another exam-
ple based on a specific specification language called Handel-C,
which is a subset of C with non-standard extensions to con-
trol hardware instantiation with parallelism. Like previously,
starting from ANSI C/C++/SystemC may imply more or less
adaptation, which can represent an impediment for the use of
these tools. The possibility of reusing code without tedious trans-
lation into another language or subset is a criteria that greatly
helps the adoption of a complex design methodology. An inter-
esting approach is the Nios II C-to-Hardware (C2H) Compiler
[16] which operates from pure ANSI C code. This tool provided
by Altera is able to automatically generate coprocessing from
original software application descriptions. The hardware accel-
eration flow is based on behavioral synthesis techniques like
parallel/speculative execution and loop pipelining, and many
good performance and power saving results have been reported.
However, the approach is stronlgly dependent on the tool chain,
processor and system bus associated (Nios II, Avalon intercon-
nect) which makes it difficult to target different technologies.
Catapult C [17] is an example of commercial tool from Calypto
Design Systems (formerly owned by Mentor Graphics) support-
ing high-level synthesis from C/C++/System C. It also provides
different tools for verification, exploration and analysis includ-
ing power consumption. The synthesis engine supports a variety
of optimisations (loop merging, unrolling, pipelining, memory
mapping, . . .) and inter block communication (RAM, FIFOs
interfaces, . . .). Forte Cynthesizer [18] is a similar tool using
SystemC for system level specification. Both of these tools have
long been considered as highly performing despite a few limita-
tions that are common to most HLS approaches, some of which
are discussed above. Recently, Xilinx included RTL synthesis
in its FPGA design flows with AutoPilot [19], a tool originally
developped by AutoESL Design Technologies. The resulting
Vivado Design Suite is considered among the most mature de-
sign and verification environments to enable high-level system
integration currently.

With the maturity reached generally by a diversity of HLS
tools, extensive surveys and descriptions have been recently
proposed on the subject [20] [21]. But despite the advances

Research Article © 2012 3

of high-level synthesis, it is also admitted that it does not re-
solve all the problems of efficient and abstract embedded design
flows. Indeed some issues received less attention, like for ex-
ample establishing interoperability between the large number
of technologies and EDA tools invoved now in total end-to-end
development flows. One of the problems lies in particular in the
development of bus compliant hardware and software interfaces.
Creating and verifying the top level design with all the kernels,
buffer memories and interface logic between them adds a lot to
the cost of moving a portion of the application to a hardware
accelerator. A very important amount of time has thus to be
spent on manual development of glue logic with the inevitable
verification, testbench generation and bug correction process. In
addition, data exchange with host memory is most of the time
a barrier for maximum accelerator performance. Complex and
sometimes specific optimisations of data movement increase the
difficulty to develop, even more to automate, the generation of
efficient bus interfaces.

Fewer works addressed this issue, probably because of the
inherent problems which originate from the use of multiple tech-
nologies and standards, especially for high level design envi-
ronments. A solution to the problem of automatic generation of
data-flow IPs interface has been proposed in [22] and simulated
for the Virtual Component Interface (VCI) standard. Another
approach described in [23] proposed a generic interface and
the corresponding hardware to abstract a CPU/RPU (Reconfig-
urable Processing Unit) dedicated communication channel. In
the following, we address a fully operational approach with a
generic bus wrapper interface defined against current popular
protocols (ARM AMBA AXI4, IBM PLB). Therefore we propose
a cooperation based methodology capable of handling the ac-
celerator interface problem with all other design aspects from
specification to implementation, verification and test. With the
help of this flow, we investigate how to efficiently generate fully
integrated accelerators from representative C/C++ specifica-
tions, including the generation of bus interface hardware and
software code. The following section details the formulation of
the problem on a concrete example.

3. PROBLEM STATEMENT

A. Case study
Generated IPs need to connect an on-chip system bus and per-

formance improvement is greatly affected by the speed of these
communications. Producing an efficient bus and protocol com-
pliant interface is also a time consuming and error prone hard-
ware development phase which frequently requires costly verifi-
cation and debug efforts, as well as non trivial optimisations that
are not easy to automate. In the following, we illustrate this with
the example of a matrix multiplication on a FPGA-embedded
PowerPC system.

The matrix multiplication is a highly parallelizable function
which equation is given below:

(A ∗ B)i,j =
n

∑
k=1

Ai,k ∗ Bk,j

Sizes of 32x32 elements are considered in the corresponding C
code given below:

void matrix_mult (unsigned char A[3 2] [3 2] ,
unsigned char B [3 2] [3 2] ,

unsigned char C[3 2] [3 2])
{

i n t i , j , k ;
/ / i n i t i a l i z a t i o n
for (i = 0 ; i < 3 2 ; i ++)

for (j = 0 ; j < 3 2 ; j ++)
C[i] [j] = 0 . ;

/ / m u l t i p l i c a t i o n
for (i = 0 ; i < 3 2 ; i ++)

for (k = 0 ; k < 3 2 ; k++)
for (j = 0 ; j < 3 2 ; j ++)

C[i] [k] += A[i] [j] * B [j] [k] ;
}

RTL can be quickly synthesized from this code by a HLS tool,
here a Catapult C Synthesis 2009a Release. Arrays in the C
function arguments result in a hardware interface that moves
the data between external and local memories. In a first naive
implementation, transfering the accelerator operands A[32][32],
B[32][32] and result C[32][32] to and from these memories is
made straightforward. The algorithm processes 8-bit data that
are sent through the 32-bit system bus without further consider-
ation.

Figure 1 reports the speedup of the accelerator (plot labelled
min. spu) connected to the Processor Local Bus (PLB) running
at 100MHz over PowerPC execution at 400MHz. 17 hardware
solutions are generated in order to explore the full acceleration
potential considering loop level parallelism. The corresponding
acceleration on a Virtex5 device ranges from 6.96 to 14.67, which
looks quite beneficial. However, if we compare these values
against the maximum possible speedup where the overhead of
moving data is ideally considered negligible (plot labelled max.
spu in figure 1), we realize that we are far from the maximum
acceleration. Especially for high performance solutions (e.g.
solution labelled best_perf), only 32% of the maximum speedup
has been reached. In addition, underperforming data transfers
also limits the optimisation benefits that can be expected at
hardware level (loop unrolling here), as the range of acceleration
is 6.96 to 14.67 while it could be of 10.26 to 46.42 ideally. A lot
of the performance and processing efficiency are thus lost at
the expense of data exchanges between CPU and acceleration
hardware.

B. Data optimisation

Previous results pointed out the cost of moving data after fitting
an HLS IP with a system bus compliant interface and the need
of optimisation at this level. A first option is to use DMA. The
advantage of this option is that it is a purely hardware solution
almost applicable in any case and requires no change in the
original application code. It does require modification of the
wrapping software function to integrate DMA prior to running
the accelerator, but this can be predefined in a software template
(as described in section B.3). In the matrix example running on
a Virtex5/PowerPC/PLB platform, DMA reduces all overheads
caused by data transfers up to a factor of 7, 26. The plot labelled
DMA in figure 1 reports the ability of DMA to improve the
global speedup significantly from 9.63 to 35.24 which represents
now 78% of the maximum theoretical acceleration for the best
performance solution.

A second optimisation is to make efficient use of the available
bandwidth bus (here 32-bit). This is done typically by process-
ing array elements of the same width of the bus. The down-
side of this is that it may require more or less important code
modification, thus software rewriting and simulation, hardware
re-synthesis and re-verification. The following code illustrates

Research Article © 2012 4

Fig. 1. Slice vs. speedup tradeoffs for the matrix multiplication
on Virtex5/PowerPC, considering no data transfer optimisa-
tion (min. spu), data packing (pack), DMA (dma), data packing
with dma (pack+dma) and ideal maximum possible speedup
(max. spu).

the transformation operated on the matrix function:

void matrix_mult (unsigned i n t A[8] [3 2] ,
unsigned i n t B [8] [3 2] ,
unsigned i n t C [8] [3 2])

{
i n t i , j , k ;
unsigned char _A [3 2] [3 2] ,

_B [3 2] [3 2] ,
_C [3 2] [3 2] ;

/ / unpack i n p u t s
unpack_mat (A, _A) ;
unpack_mat (B , _B) ;
/ / i n i t i a l i z a t i o n
for (i = 0 ; i < 3 2 ; i ++)

for (j = 0 ; j < 3 2 ; j ++)
_C [i] [j] = 0 . ;

/ / m u l t i p l i c a t i o n
for (i = 0 ; i < 3 2 ; i ++)

for (k = 0 ; k < 3 2 ; k++)
for (j = 0 ; j < 3 2 ; j ++)

_C [i] [k] += _A[i] [j] * _B [j] [k] ;
/ / pack r e s u l t s
pack_mat (_C , C) ;

}

In this version, bytes have been packed by groups of four, so
the function operates now on 32-bit unsigned integers. The two
operands and result arrays thus fit exactly in three 256x32-bit
memories. Thanks to this, overheads caused by data transfers
are reduced to a factor of 4. The corresponding global accelerator
speedup resulting only from data packing ranges from 9.31 to
31.21, reaching 69% of the maximum theoretical speedup of
the best solution. If we combine both DMA and data packing
optimisations, data transfers are reduced 27 times and result in
between 10.1 and 42.23 speedups that is, 93% of the maximum
possible acceleration for the best_perf solution.

These results stress the impact on performance that inefficient
data communications through the system bus produce and the
consequent accelerator loss of efficiency. Mapping an IP to the
system bus is a process made complex because of the variety
of bus protocols, data topologies of function arguments and
related optimisations that can result in very different solutions
for each specific case. For instance, data packing is not applicable
when the function array arguments are integers and the system
bus is 32-bit wide. The challenges are thus to define a generic

Fig. 2. Generic bus wrapper interface to let a HLS generated
accelerator connect an on-chip bus.

solution that can comply with different topologies of function
arguments while keeping important acceleration benefits, which
means allowing a set of typical data level optimisations to be
applied. In addition, it should be possible to automate the bus
interface generation phase in a way to fully complement HLS in
the assisted generation of 100% operational IPs, removing the
need for very costly additional hardware and software interface
code synthesis and debug, which greatly limits HLS use and
efficiency in practice. In the following, we propose an accelerator
bus interface model that can comply with these constraints while
keeping substantial performance benefits for a range of realistic
and useful processing functions.

C. Generic bus wrapper interface

HLS tools generally produce RTL with different types of inter-
face. Their interface generating process makes it possible to map
the transfer of data that is implied by passing of C/C++ function
arguments to various hardware resources such as wires, regis-
ters, memories or streaming interfaces. Hardware acceleration is
more effective when it supports atonomous processing of signif-
icant data sets. Assuming function array arguments represent
data sets that are likely to be fetched from external memory, a
RAM based interface is thus well suited for data exchange, while
leaving room for typical high-speed optimisations (DMA, data
packing). Therefore a first requirement that helps the definition
of a generic bus wrapper interface is to map each array argument
to a distinct RAM and other arguments to registers. From there
the work consists of fitting the HLS generated interface with
the corresponding memory mapped resources, which process is
illustrated in figure 2.

Most HLS tools support the generation of standard memory
and register based interfaces. The function arguments result
in all necessary signals (data / address bus, read / write) to
control the corresponding RAM and registers in the output RTL.
Providing access to the RAMs (C_MEM_n) requires multiplexing
bus and accelerator data on a single RAM port in order to ensure
bus access only when processing no longer occurs. A similar
scheme is used for operand registers (REG_m). Two additional
registers for device control (REG_0) and state (REG_1) are used
among other to process accelerator start and done signals.

Defined this way, the bus interface model can be applied in a
large number of situations and makes it a lot easier to generate
both hardware and software code corresponding to the final bus
compliant IP and its driver. At the moment, hardware and soft-
ware wrapping steps are based on the use of templates but they

Research Article © 2012 5

Fig. 3. Accelerator design and integration methodology.

could be automated by the development of proper code gener-
ation tools. In the following, we describe the complete design
flow underlying accelerator development with the proposed bus
interface model.

4. ACCELERATION METHODOLOGY

A. Overview
Elaborate set of tools is available to permit the full prototyping
of complex heterogeneous System-on-Chips like multiprocessor
systems embedded with standard programmable logic blocks
or recent FPGA-based platforms. The methodology used here
is built around relevant tools involved in this kind of develop-
ment. Xilinx provides the prototyping environment to bring a
proof of concept on fully operating applications. ML605 and
ML507 evaluation boards have been used for this purpose with
an Embedded Development Kit 13.3 Release for all related de-
velopments. In addition, High-Level Synthesis is considered as
we aim to automate the design flow as much as possible. At
the time of this work, a Mentor Graphics Catapult C Synthesis
2009a Release has been used, in association with Precision RTL
Synthesis for lower level synthesis. Verification and simulation
steps are based on C code for software and Mentor Modelsim
for hardware (see section C). The resulting design flow is illus-
trated in figure 3. Top-to-bottom steps represent application
and architecture development at different levels (System, Reg-
ister transfers, Logic), while transverse verification processes
are present to every life cycle stage of the system to check the
correctness of transformations against the top C reference model.

At the system level, the design entry point is an executable
functional description written in standard ANSI C or C++. The
first step is to identify critical pieces of code that can best benefit
from hardware acceleration. Since not all functions will end
up going faster in hardware than in software, a first level of
exploration occurs here which is done typically using perfor-
mance analysis tools. For the time consumming pieces of code
highlighted, a qualitative inspection is necessay to evaluate the
suitability of these functions to hardware implementation and
HLS. Relevant inputs to HLS are data intensive workloads and
kernels of computations like those present in multimedia ap-
plications (image and video processing), scientific computing
and digital signal processing (filters, transforms) and regular

processing loops. As pointed out in section 3, narrow focus on
the processing aspect is not enough since performance bottle-
necks lie in the communication of data between memory and
the IP. This has also to be taken in consideration when selecting
potential hardware functions. Therefore inspecting their po-
tential acceleration considering data communication overheads
gives a better picture of the full application speedup. When an
acceptable global speedup corresponding to a set of hardware
functions is found, accelerator related development takes place.
It starts from a C code and ends up with a dedicated accelerator
that can be connected to the system bus. This process repre-
sents the critical part of the development effort, it is described
in greater details in section B.

HLS is considered here for faster automated development.
Code rewriting will occur in most cases before proceeding to
HLS, mainly for two reasons. First, RTL synthesis tools are not
able to support all features of the C language. Second, HLS gen-
erated hardware must comply with the data topology defined
previously. These points are further detailed in section B. When
a C function for hardware acceleration is HLS and interface data
compliant, the whole application C code is re-validated against
the reference code. Then, automatically correct by construction
RTL can be produced. Resource and loop parallelism are usu-
ally examined at this level leading to the exploration of various
tradeoffs in terms of area, power and performance.

From a RTL solution available at this stage, the accelerator
interface needs to be refined into a memory mapped interface
that will let it connect to the on-chip system bus. Wrapping
is based on the generic model proposed in section C and the
process is exposed in detail in section B.2. Upon completion, the
wrapped accelerator is generated by logic synthesis resulting
into an operational hardware module which is fully compliant
with the target bus protocol. On the software part, a driver for
the accelerator must also be produced. The topology of func-
tion arguments underlying the generic bus wrapper interface
allows the definition of a generalizable driver template for the
IPs, which is further discussed in section B.3. In addition, the
original application code must be adapted to replace the original
software functions by calls to their corresponding accelerators,
but also to setup data packing / unpacking before and after
processing. At the end, we get a platform dependent C code
of the whole application that can be compiled and run on the
target.

At this step, all the necessary material is available to gen-
erate the full hardware and software code. Platform depen-
dent C code can be compiled to a binary for hardware / soft-
ware co-execution of the accelerated application. A gate level
netlist is produced by logic synthesis (Mentor Precision) from
the wrapped RTL IP. The resulting bus compliant hardware is
then used in Xilinx Platform Studio (XPS) to specify the full
platform, and XPS handles the generation of all related low level
files (bitstream and binaries). The full application is therefore
executed and verified on real prototypes, based on Xilinx evalu-
ation boards and associated debug tools. The following section
focusses more specifically on the development of hardware ac-
celerators.

B. Accelerator development

There are three main steps involved in accelerator develop-
ment. The first one is accelerator design, here using High-Level
Synthesis and associated exploration features. Then the result-
ing RTL is wrapped as an IP to be connected to the system bus,

Research Article © 2012 6

and finally the initial function is replaced by a software wrapper
function that calls the accelerator. Each step is further detailed
in the following.

B.1. HLS and data compliance

This section focuses on the process of writing input C code
complying with both HLS and interface data constraints.

The need to rewrite code prior to RTL synthesis comes firstly
from the use of a high-level software language for the input
functions. There are indeed sometimes no trivial correspon-
dance between software specific constructs and hardware im-
plementation. A typical example is that of video inter-frame
processing which requires a large frame buffer that can only be
implemented in external memory. Such functionality is usually
specified using pointers to the pixel frame buffer that HLS is not
able to process, because it depends on external elements over
which these tools have no control (external memory, memory
controller, system bus). This implies to think the software func-
tion data with in mind the hardware constraints of moving data
from external to local accelerator’s memories. It often results in a
significant modification of the original application code which is
impossible to automate as the transformations depend on each
individual case, may be complex and impact more or less the
whole code. In extreme cases, complete application re-design is
needed to cope with HLS and memory constraints (e.g. removal
of functions processing frame buffer data in external memory
via pointers).

Secondly, hardware function arguments must cope with the
interface data constraints defined previously to ease the gen-
eration of a bus compliant interface. In that matter, input and
output data must be explicitly expressed in C function parame-
ters, preferably using arrays and variables to provide a natural
correspondance with hardware in terms of memories and regis-
ters.

Finally, previous study on matrix multiplication has stressed
the need for data transfer optimisation. Typical techniques be-
ing data packing and DMA, function arguments must then be
modified accordingly. In particular, packing and unpacking
techniques can lead to more or less modifications of the origi-
nal function and attention must be paid to packing/unpacking
overheads against acceleration benefits.

The corresponding requirements on function interface data
are summarized in the following:

• Input and output data are explicitly expressed in function
parameters as standard arrays and variables that can be
mapped to memory and register resources. Processing of
global shared variables must be removed. Pointers are
supported by some tools provided their use is restricted to
inner function processing.

• All array parameters exploit data packing/unpacking tech-
niques (when applicable) to benefit from the full bandwidth
bus and reduce further the cost of moving data.

• In terms of HLS tool setup, each function array argument is
set to a distinc RAM and each function scalar (non array)
argument is set to a distinct register. HLS will then produce
all necessary signals for the corresponding resources in
the interface of the function RTL module. For instance,
Catapult options must be set to map each I/O array to a
distinct RAM single port, and it will generate a data and
address bus, R/W signals and enables in the interface of
the function RTL module.

• There may be other constraints resulting from other tools
in the design flow. For example, Xilinx Platform Studio has
a maximum memory and register capacity for user logic
resources. Thus the number of function array arguments
must not exceed the capacity of eight 256x32-bit single port
RAMs and the number of function scalar arguments must
not exceed the capacity of 4096 registers.

• Additionally, the HLS tool is set to provide start and done
signals in the interface of the function RTL module. These
signals are further processed with two dedicated registers
in the bus interface template.

From a function C code meeting previous guidelines, HLS can
generate a RTL module compatible with the bus wrapper inter-
face template. Next section describes the hardware wrapping
process.

B.2. Hardware wrapping

At this point, a RTL description satisfying all interface require-
ments is available. As exposed in section C, the bus wrapper
interface model encompasses registers, memories and mecha-
nisms to let their control either by the bus or by the accelerator.
As a matter of fact, previous guidelines ensured that the RTL in-
terface generated by HLS is exactly compatible with the signals
needed to drive memory mapped resources of the bus wrapper
interface. Connections are thus straightforward:

• RAM signals from the accelerator are mapped to the cor-
responding RAM single port signals in the bus wrapper
interface.

• Register signals from the accelerator are mapped to the
corresponding register signals in the bus wrapper interface.

• Two additional registers act as control and status registers.
They are used primarily to process start and done bits in the
respective registers.

A mechanism is employed to set automatically which of the
accelerator or the system bus will master the memories and
registers. The control signals from the bus and IP connect to mul-
tiplexers under the control of a busy signal (figure 2). The busy
signal is set for the entire processing duration, from start to done
signal assertions. When active, the accelerator drives memories
and registers, when inactive, the system bus drives memories
and registers. This ensures conflict free data accesses between
the accelerator and other devices (CPU, DMA). This mechanism
is implemented in the bus wrapper interface template, so the
user just has to insert the HLS generated RTL providing a few ad-
justments on the memory and register signals (number, bitwidth,
mapping). In practice, completing this is a matter of a hours
depending on the topology of the function arguments. Two bus
wrapper interface templates are currently available to support
PLB and AXI protocols.

B.3. Software wrapping

At this point, the application code has to be modified such
that the functions implemented in hardware can be replaced
by wrapper functions that call the accelerators instead of do-
ing computations in software. Additionally, extra code may
be needed to setup array function arguments before and after
accelerator processing when data packing techniques are used.
Driver functions have thus to be developped for proper acceler-
ation call and here again, the bus wrapper interface model helps
to define a generic template also extending its applicability in a

Research Article © 2012 7

maximum number of cases. Since a driver function will have the
same prototype as its corresponding original software function,
we refer to this step as software wrapping. The wrapper func-
tion template performs driver necessary actions in the following
order:

1. Sets DMA to write each input array to its corresponding
RAM.

2. Writes each input scalar to its corresponding register.

3. Sets the start bit in the control register (asserting start sig-
nal).

4. Polls the status register for hardware completion (based on
done signal value).

5. Reads each output scalar from its corresponding register.

6. Sets DMA to read each output array from its corresponding
RAM.

As for hardware wrapping, software wrapping is manual at
the moment. This process, however much less complex, can be
completed in a matter of minutes and could be automated easily.

C. Verification and simulation

Verification takes significant effort in hardware design cycles,
it is therefore essential to be able to check the correctness of the
transformations involved at each level. The right side of figure
3 points out the key steps where verification can be applied in
the design flow. Reference results are provided by the top level
application C code. Transformations of this reference code can
be simulated at each phase of accelerator development: HLS
RTL, wrapped RTL and logic level IP.

Simulations of HLS and logic synthesis outputs are not nec-
essarily mandatory as synthesis tools are expected to provide
correct by construction results. However, errors can arise in
practice when designs are quite complex, so hardware simu-
lations must be provided at these levels. Hardware wrapping
verification is necessary as well to check the correctness of an
accelerator when communicating data across the bus. Three
levels of hardware simulations are thus provided with stan-
dard HDL simulators (ModelSim) for which specific testbench
templates have been defined. The templates consist of HDL
code instantiating a function block and connecting its top level
signals to stimulus-dependent signals. These signals are pre-
set to send datasets to the accelerator’s memories, write scalar
operand data into registers and assert the start signal. After an
ajustable amount of time (depending on the assertion of the done
signal), signals are set to read the content of result memories and
registers.

For the hardware wrapping step in particular, these templates
relieve the user from knowing precisely the bus protocol and
generating complex bus related signals. The user is only left
with the task of setting the values of stimuli signals to the design.
These hardware simulation templates allow to check that the
outputs of accelerators match the original C function results.
Final system validation occurs at the end of the flow by compar-
ing the final platform dependent C code including accelerator
invocation against the results of the application reference code.

Fig. 4. H.264/AVC decoder block diagram and profiling.

5. APPLICATION STUDY AND RESULTS

A. H.264/AVC decoder

In this section, we present experiments and results of the pro-
posed acceleration methodology on a real-life application exam-
ple. The principal objective is to verify that accelerator speedups
are still relevant after adding bus interface logic. Incidentally, the
wide range of data processing and transfer characteristics reveals
conditions impacting the actual efficiency of hardware accelera-
tion and optimisation (considering HLS loop unrolling), espe-
cially when fitted with a bus compliant interface. The application
which is considered for this validation study is a H.264/AVC
profile video decoder. This example is also instructive to set high
processing functions exposing various coding styles and data
structures against HLS implementation.

The H.264 decoder used corresponds to the block diagram
of figure 4 which is a version derived from the ITU-T refer-
ence code [24] to comply with hardware design constraints and
HLS. From the original C++ code, a profiling step identifies four
main functionalities for acceleration that are in order of impor-
tance, the deblocking filter (24%), the inverse context-adaptive
variable-length coding (Inv. CAVLC 21%), the inverse quantiza-
tion (Inv. Quant. 19%) and the inverse integer transform (Inv.
Transf. 12%). To achieve better results, we have merged the
inverse quantization and integer transform into a single block. It
might be noted here that CAVLC was not added to this block be-
cause Catapult could not handle the complexity of the resulting
C code. Therefore, this results in three potential hardware func-
tions representing 76% of the total processing time, indicating a
maximum possible acceleration of 4, 17 for the entire decoder.

The deblocking filter, inverse CAVLC, and inverse quanti-
zation and transform block constitute the entry points to the
accelerator design step of figure 3. Two Xilinx evaluation boards
(ML507 and ML605) are used for implementation and test. The
ML507 integrates a Virtex5 device and a PowerPC hard IP core
that can run at 400MHz, while the ML605 lets the possibility
to deal with two types of bus interfaces, PLB and AXI in a Vir-
tex6 device with MicroBlaze soft IPs. The three afore-mentioned
functions have been designed each in two versions to consider
both PLB and AXI protocols, with the corresponding accelera-
tors operating at the frequency of the system bus which is set
to 100MHz in all cases. In these conditions, we have measured
the accelerator speedups against each reference software code
executed on a 400MHz PowerPC for the Virtex5 and 100MHz
MicroBlaze for the Virtex6. The following sections analyse the ac-
celeration results and the relevance of the bus wrapper interface
for the hardware blocks identified.

Research Article © 2012 8

Fig. 5. Speedup improvement for the deblocking filter on Vir-
tex5/PowerPC (PLB) and Virtex6/MicroBlaze (PLB, AXI).

Fig. 6. Slice vs. speedup tradeoffs for the deblocking filter on
Virtex5/PowerPC (PLB) and Virtex6/MicroBlaze (PLB, AXI).

B. Deblocking Filter

The deblocking filter is a post-processing technique used to im-
prove the visual quality of decoded pictures by reducing the
edge effects resulting from macroblock processing. It runs on
the edges of each macroblock, in both horizontal and vertical
directions and for both luminance and chominance pixels. Each
edge is assigned a boundary strength which defines the level of
pixel correction to apply, stronger levels of filtering are assigned
where there is likely to be more distortion. These operations are
reflected into six pixel processing loops that can efficiently ben-
efit from loop unrolling optimisations. These optimisations do
not require any source code modifications, but only setting op-
tions in the HLS tool. In addition, as the RTL generated exposes
the same top level interface, the exact same hardware wrapper
can be re-used. Thanks to this, loop parallelism exploration is
easy to apply as it only requires iterations of HLS, logic synthesis
and platform generation which are fully automated steps.

Deblocking filter processing is a good fit to hardware accel-
eration requirements and yields good results. Plots labelled
min. spu in figure 5 reports hardware acceleration over soft-
ware execution using a basic bus interface without specific data
optimisation, up to 14 for Virtex6/MicroBlaze and 10 for Vir-
tex5/PowerPC. Figure 5 also reflects the improvements of the
bus wrapper interface (plots labelled opt. spu), with values
up to 138 for Virtex6/MicroBlaze and 55 for Virtex5/PowerPC.
Comparative speedups are increased on average by 9.3 for Vir-
tex6/MicroBlaze and 5.3 for Virtex5/PowerPC.

A total of eight solutions have been explored to check the im-
pacts of accelerator level optimisations after bus wrapping (loop
unrolling in this case). Eight cost-performance tradeoffs are re-
ported in figure 6 with respect to Virtex6/MicroBlaze (PLB, AXI)
and Virtex5/PowerPC (PLB) execution. Relatively few speedup
profits can be observed despite the sensitive increase of FPGA
resources (Slices). This is less noticeable for MicroBlaze. As it
is a lower performance processor, the ratio between software
and hardware execution time is increased and this amplifies the
differences between different hardware performances. However,
even for the Virtex6/MicroBlaze platform, increasing the FPGA
occupation by 2.7 only results in performance improvements
of 14.4%. We can also observe a clear limit on the maximum
achievable speedup for both platforms. This comes from the
incompressible quantity of data movement and from the bus
bandwidth which restrict the maximum possible speedup. This
is especially visible on Virtex5/PowerPC because the possible
speedups and range of acceleration are noticeably lower com-
pared to MicroBlaze, due to better processor performance. The
overhead caused by data transfers is also responsible for limiting
the efficiency of loop unrolling, and by extension of accelerator
level optimisations.

C. Quantization and Transform
In H.264 encoding, each residual macroblock, i.e. the difference
between the predicted macroblock and the actual macroblock, is
transformed and quantized prior to entropy coding. The process
is reversed at the decoder level and the transform coefficients are
rescaled (inverse quantized) and inverse transformed prior to
frame reconstruction. The transform is a scaled approximation
of the Discrete Cosine Transform to support integer arithmetic
that can better benefit from optimising hardware. Quantization
is thus used to reduce a range of transform coefficient values to
a single quantum value which results in a more compressible
stream. Quantization and integer transform expose properties
that have been deliberately designed to be well suited to imple-
mentation in hardware. But compared to the deblocking filter, it
comes with more instruction or operation level parallelism than
loop level parallelism.

Fig. 7. Speedup improvement for the inverse quantization
and transform block on Virtex5/PowerPC (PLB) and Vir-
tex6/MicroBlaze (PLB, AXI).

Acceleration results of nine solutions report maximum
speedups around 8 for Virtex6/MicroBlaze and 5 for Vir-
tex5/PowerPC for a basic bus interface implementation (plots
labelled min. spu in figure 7), and up to 142 and only 13 (respec-
tively) using the optimised bus wrapper interface (plots labelled

Research Article © 2012 9

Fig. 8. Slice vs. speedup tradeoffs for the inverse quantiza-
tion and transform block on Virtex5/PowerPC (PLB) and Vir-
tex6/MicroBlaze (PLB, AXI).

opt. spu). Apart from the effect of frequency, the acceleration
difference between Virtex6/MicroBlaze and Virtex5/PowerPC is
further accentuated because the MicroBlaze is also less efficient
at exploiting instruction parallelism than PowerPC (dual-issue,
superscalar architecture). Therefore, the acceleration over pro-
cessor execution looks fairly better due to MicroBlaze relative
low performance at processing inverse transform and quantize
functions. In these conditions, the improvements in accelerator
speedups resulting from the bus wrapper interface are 15.9 for
Virtex6/MicroBlaze and 2.3 for Virtex5/PowerPC in average.
Although the improvements seem less for Virtex5/PowerPC,
again due to better PowerPC processing efficiency for this piece
of code, the benefits still outperform non optimised bus mapping
by more than two orders of magnitude.

A total of nine cost-performance tradeoffs are reported in fig-
ure 8 for Virtex6/MicroBlaze (PLB, AXI) and Virtex5/PowerPC
(PLB) implementations. Here again, exploring loop parallelism
results in limited performance improvements, especially for so-
lutions with relative low speedup levels (e.g. Virtex5/PowerPC).
As for the deblocking filter, it is also visible that the maximum
acceleration is bound by data transfers on the bus which effect
is stressed by higher processor performance (PowerPC). Data
transfers also impact the benefits of accelerator level optimisa-
tions that reflect poorly on practical speedups.

D. Context-adaptive variable-length coding (CAVLC)
Context-adaptive variable-length coding (CAVLC) is an entropy
coding technique applied at the output of the quantization of
transform coefficient values. It consists of a loseless adaptive
compression algorithm where a symbol (transform coefficient) is
assigned a code of variable length depending on its probability
of occurence. As sequential CAVLC decoding algorithms com-
pare bit sequences of different lengths, they consist mainly of
conditional statements, bit level operations with relatively few
parallelism. Unlike two previous examples, it is a more difficult
exercise to reach efficient dedicated hardware implementations
of CAVLC processing using HLS. HLS performs well at extract-
ing operation and loop level parallelism but more poorly at
bit-wise and conditional processing.

As expected, the benefits of hardware acceleration reported
in figure 9 are lower, however speedup values are still relevant:
until 4 for Virtex6/MicroBlaze and 6 for Virtex5/PowerPC for a
basic interface (plots labelled min. spu), up to 11 and 7 (respec-
tively) for the optimised bus interface (plots labelled opt. spu).

Fig. 9. Speedup improvement for the inverse CAVLC on Vir-
tex5/PowerPC (PLB) and Virtex6/MicroBlaze (PLB, AXI).

In this case, less effective HLS solutions reflect in weaker accel-
eration results. Comparison of the bus wrapping scheme over a
non optimised interface (opt. spu vs. min. spu) shows that there
is an improvement in all cases, which is of 2.6 for MicroBlaze
and 1.3 for PowerPC in average on the respective accelerators.

For this function, the lack of inherent parallelism that can
be exploited by HLS is clearly visible in the results of loop par-
allelism exploration. Figure 10 shows that there is almost no
difference between the eight solutions derived from loop un-
rolling. An important characteristic of CAVLC to consider here
is that the amount of data processed is significantly less than for
both previous functions (1088 bytes for deblocking filter, 1632
bytes for inverse quantization and transform and 148 bytes for
CAVLC). Relative speedup limitation of this function is thus
coherent with asumptions of section C defining an accelator
interface for data-intensive functions. If the quantity of data
processing is reduced, the benefits of hardware acceleration de-
clines because the acceleration potential generally grows with
the volume of data operations. This consideration impacts the
effectiveness of hardware level optimisations as well, which are
proving to be quite limited in this case.

E. H.264/AVC decoder global acceleration

Global accelerations of the full H.264/AVC decoder considering
previous accelerators have been computed and reported in ta-
ble 1. For each hardware function, we have selected the fastest
and the slowest solution from the different implementations
explored with HLS, except for CAVLC where there is only one
Pareto optimal solution. We have then combined these hard-
ware implementations (considering also the remaining software
functions) in order to highlight maximum and minimum perfor-
mance solutions at the full Hw/Sw application level. The range
of performance is computed for both basic and optimised bus
wrapper interfaces, and for Virtex6/MicroBlaze (PLB, AXI) and
Virtex5/PowerPC (PLB) platforms.

The bus wrapper interface significantly improves the overall
application execution with global speedups around 3.8 (MicroB-
laze) and 3.3 (PowerPC), performing better than a basic interface
(2.7 - 2.8) and better approaching the maximum theoretical ac-
celeration of 4, 17. Compared to previous results on individual
accelerators, we observe very little difference between minimum
and maximum performance of the global application, which
reflects even lesser benefit of loop paralellism exploration. Con-
sidering a full Hw/Sw implementation thus reduces further
the already limited profits of accelerator related optimisations

Research Article © 2012 10

Fig. 10. Slice vs. speedup tradeoffs for the inverse CAVLC on
Virtex5/PowerPC (PLB) and Virtex6/MicroBlaze (PLB, AXI).

Table 1. H.264/AVC decoder global acceleration

H.264/AVC decoder

max perf solution min perf solution

basic bus wrap. int. speedup slices speedup slices

V5/PPC/PLB 2.77 6386 2.77 4846

V6/MB/PLB 2.87 6386 2.85 4846

V6/MB/AXI 2.87 6372 2,87 4860

max perf solution min perf solution

opt. bus wrap. int. speedup slices speedup slices

V5/PPC/PLB 3.35 6386 3.27 4846

V6/MB/PLB 3.8 6386 3.79 4846

V6/MB/AXI 3.8 6372 3.79 4860

(excluding data transfers) and this effect naturally grows with
the share of software execution.

6. CONCLUSION AND PERSPECTIVES

This work described a method to improve the automation of re-
configurable hardware acceleration, based in particular on code
transformations at the interface level to cope with practical bus
interface generation constraints. The proposed approach has
been proven to be fully operational while reducing significantly
the design effort. Results have shown the ability of the pro-
posed data argument topology and the associated bus wrapper
interface to provide accelerator performances approaching the
maximum global speedup in different conditions, and consid-
ering realistic processing examples, different bus protocols and
performance class of processors.

This methodology already had contributions in the context
of several research efforts. It has been used in a collaborative
platform project for the modelling of power consumption in
heterogeneous multicore systems [25], in which it served for the
definition of high level power models of reconfigurable accel-
erators derived from actual power measures of HLS generated
designs [26]. The acceleration methodology is also very helpful
for the exploitation of dynamic and partial reconfiguration. It
has been used to quickly provide realistic hardware implemen-
tations and characteristics whithout which design space analysis
would not not be possible, for example to explore the sizing

of reconfigurable regions [27][28] or to provide reliable energy
estimations of dynamically reconfigurable mappings [29]. Fi-
nally, an important issue in the perspective of heterogeneous,
accelerator based multicore systems is to address the runtime
management of concurrent hardware and software tasks, to fully
exploit the potential of hardware acceleration with dynamic re-
configuration in terms of energy and power related constraints.

ACKNOWLEDGMENTS

The authors would like to thank the Centre of Integrated Mi-
croelectronics of Provence-Alpes-Côte d’Azur [1] for providing
CAD software and support in the use of many advanced design
tools.

REFERENCES

1. CIM PACA, Centre of Integrated Microelectronics of
Provence-Alps-Côte d’Azur, France, www.arcsis.org

2. Cray Inc., Cray XR Reconfigurable Processing Blade,
www.cray.com

3. Intel Corp., Intel QuickAssist Technology, www.intel.com
4. Celoxica Accelerated Trading Solutions, www.celoxica.com
5. J. M. Rabaey, Reconfigurable processing: The solution to low-

power programmable DSP, in Proc. 1997 IEEE Intl. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP ’97), Vol.
1, Los Alamitos, CA: IEEE Computer Society Press, 1997, pp.
275-278.

6. G.J.M. Smit, A.B.J. Kokkeler, P.T. Wolkotte, P.K.F. Hölzen-
spies, M.D. van de Burgwal, and P.M. Heysters, The
Chameleon Architecture for Streaming DSP Applications,
EURASIP Journal on Embedded Systems, 2007 . p. 78082.
ISSN 1687-3955

7. G. Lu , Hartej Singh , M.H. Lee , N. Bagherzadeh , F. Kurdahi
, E. M. C. Filho, The MorphoSys Parallel Reconfigurable
System, Proceedings of 5th Euro-Par Conference, Toulouse,
France, Sep 99.

8. S. Pillement, O. Sentieys, and R. David, DART: a functional-
level reconfigurable architecture for high energy efficiency,
EURASIP Journal on Embedded Systems, Reconfigurable
Computing and Hardware/Software Codesign, Volume 2008,
January 2008.

9. A. Grasset, P. Millet, P. Bonnot, S. Yehia, W. Putzke-Roeming,
F. Campi, A. Rosti, M. Huebner, N. S. Voros and D. Rossi, H.
Sahlbach, R. Ernst, The MORPHEUS Heterogeneous Dynam-
ically Reconfigurable Platform, Special Issue on High Perfor-
mance and Embedded Architecture and Compilation, Inter-
national Journal of Parallel Programming, Volume 39, Num-
ber 3, 328-356,

10. PACT XPP Technologies, www.pactxpp.com
11. Recore Systems, www.recoresystems.com
12. M.D. van de Burgwal, P.T. Wolkotte, and G.J.M. Smit, Non-

Power-of-Two FFTs: Exploring the Flexibility of the Montium
TP, International Journal of Reconfigurable Computing: Vol-
ume 2009, Article ID 67804.

13. DRC Coprocessor, www.drccomputer.com
14. T.J. Callahan, J.R. Hauser, J. Wawrzynek, The Garp architec-

ture and C compile, IEEE Computer 33 (4) (2000) 62-69.
15. D. Pellerin and S. Thibault, Practical FPGA Programming

in C, Prentice Hall, ISBN: 0131543180, 2010.
16. Altera Corporation, Automated Generation of Hardware

Accelerators With Direct Memory Access From ANSI/ISO
Standard C Functions, White paper, www.altera.com, may
2006.

Research Article © 2012 11

17. D. Burnette, An ESL methodology for functional verifica-
tion between untimed C++ and RTL using SystemC, Mentor
Graphics, 2008

18. J. Sanguinetti and D. Pursley, High-level modelling and
Hardware Implementation with General Purpose Languages
and High-level Synthesis, Ninth IEEE/DATC Electronic De-
sign Processes Workshop, April 2002.

19. J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers and
Z. Zhang, High-Level Synthesis for FPGAs: From Prototyp-
ing to Deployment, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Volume 30, Num-
ber 4, pp. 473-491, April 2011.

20. P. Coussy, D.D. Gajski, M. Meredith, A. Takach, An introduc-
tion to high-level synthesis. IEEE Design & Test of Computers
26(4):8-17, 2009.

21. W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, D. Stroobandt,
An overview of today’s high-level synthesis tools, Design
Automation for Embedded Systems, August 2012.

22. A. Fraboulet and T. Risset, Master Interface for On-chip
Hardware Accelerator Burst Communications, Journal of
VLSI Signal Processing Systems, Volume 49 Issue 1, pp. 73-
85, October 2007.

23. J.P. Diguet, G. Gogniat, J.L. Philippe, Y. Le Moullec, S.
Bilavarn, C. Gamrat; K. Ben Chehida, M. Auguin, X. Fornari
and P. Kajfasz, EPICURE: A partitioning and co-design frame-
work for reconfigurable computing, Journal of Microproces-
sors and Microsystems, Special Issue on FPGA’s, Edited by
Morris Chang and Dan Lo, Volume 30, Issue 6, pp. 367-387,
2006.

24. ISO/IEC 14496-10, Advanced Video Coding for Generic Au-
diovisual Services, ITU-T Recommendation H.264, Version 4,
2005.

25. Open-PEOPLE - Open-Power and Energy optimisation
PLatform and Estimator, http://www.open-people.fr/.

26. R. Bonamy, D. Chillet, O. Sentieys and S. Bilavarn, Paral-
lelism Level Impact on Energy Consumption in Reconfig-
urable Devices, International Workshop on Highly-Efficient
Accelerators and Reconfigurable Technologies (HEART
2011), London, United Kingdom, June 2-3, 2011.

27. FoRTReSS - Flow for Reconfigurable
archiTectures in Real-time SystemS,
https://sites.google.com/site/fortressdesignsuite/.

28. F. Duhem, F. Muller, W. Aubry, B. Le Gal, D. Négru, and
P. Lorenzini. Design space exploration for partially recon-
figurable architectures in real-time systems. under revison,
Journal of Systems Architecture (JSA), Elsevier.

29. R. Bonamy, D. Chillet, S. Bilavarn and O. Sentieys, Power
Consumption Model for Partial and Dynamic Reconfigu-
ration, 2012 International Conference on ReConFigurable
Computing and FPGAs, ReConFig 2012, December 5-7, 2012,
Cancun, Mexico.

	Introduction
	Related work
	Problem statement
	Case study
	Data optimisation
	Generic bus wrapper interface

	Acceleration methodology
	Overview
	Accelerator development
	HLS and data compliance
	Hardware wrapping
	Software wrapping

	Verification and simulation

	Application study and results
	H.264/AVC decoder
	Deblocking Filter
	Quantization and Transform
	Context-adaptive variable-length coding (CAVLC)
	H.264/AVC decoder global acceleration

	Conclusion and perspectives

