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JUMP FILTERING AND EFFICIENT DRIFT ESTIMATION FOR
LÉVY-DRIVEN SDE’S

ARNAUD GLOTER, DASHA LOUKIANOVA AND HILMAR MAI

Abstract. The problem of drift estimation for the solutionX of a stochastic differential equation
with Lévy-type jumps is considered under discrete high-frequency observations with a growing
observation window. An efficient and asymptotically normal estimator for the drift parameter
is constructed under minimal conditions on the jump behavior and the sampling scheme. In
the case of a bounded jump measure density these conditions reduce to n∆3−ε

n → 0, where n

is the number of observations and ∆n is the maximal sampling step. This result relaxes the
condition n∆2

n → 0 usually required for joint estimation of drift and diffusion coefficient for
SDE’s with jumps. The main challenge in this estimation problem stems from the appearance
of the unobserved continuous part Xc in the likelihood function. In order to construct the
drift estimator we recover this continuous part from discrete observations. More precisely, we
estimate, in a nonparametric way, stochastic integrals with respect to Xc. Convergence results
of independent interest are proved for these nonparametric estimators. Finally, we illustrate the
behavior of our drift estimator for a number of popular Lévy–driven models from finance.

1. Introduction

The class of solutions of Lévy-driven stochastic differential equations (SDE’s) has recently at-
tracted a lot of attention in the literature due to its many applications in various area such as
finance, physics and neuroscience. Indeed, it includes important examples taken from finance such
as the well-known Barndorff-Nielsen-Shephard model, the Kou model and the Merton model (cf.
Barndorff-Nielsen and Shephard [2001], Kou [2002] and Merton [1976]) as well as the stochastic
Morris-Lecar neuron model (cf. for example Ditlevsen and Greenwood [2013]) from neuroscience to
name just a few. Consequently, statistical inference for these models has recently become an active
domain of research.

In this work we aim at estimating the unknown drift parameter θ ∈ Θ ⊂ Rd based on discrete
observations Xθ

t0 , . . . , X
θ
tn of the process Xθ given by

(1) Xθ
t = Xθ

0 +

ˆ t

0

b(θ,Xθ
s ) ds+

ˆ t

0

σ(Xθ
s ) dWs +

ˆ t

0

γ(Xθ
s−) dLs, t ∈ R+,

where W = (Wt)t≥0 is a one-dimensional Brownian motion and L a pure jump Lévy process with
Lévy measure ν.

We consider here the setting of high frequency observations with a growing time window, i.e.
for the discrete sample Xθ

t0 , . . . , X
θ
tn with 0 ≤ t0 ≤ . . . ≤ tn we assume that the sampling step

∆n := max{ti − ti−1 : 1 ≤ i ≤ n} tends to 0 and tn → ∞ as n → ∞. It is well known that due
to the presence of the diffusion part, one can only estimate the drift consistently if tn → ∞. A

Key words and phrases. Lévy-driven SDE, efficient drift estimation, maximum likelihood estimation, high fre-
quency data, ergodic properties.
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crucial point for applications in the high frequency setting is to impose minimal conditions on the
sampling step size ∆n. This will be one of our main objectives in this paper.

The topic of high frequency estimation for discretely observed diffusions without jumps is well
developed by now. See for example Yoshida [1992], Kessler [1997] and references therein for joint
estimation of drift and diffusion coefficient. Less results are known when a jump component is
added to the process. In the case of high frequency estimation for diffusion with an additional jump
component Masuda [2013] investigates Gaussian quasi-likelihood estimators of a joint drift-diffusion-
jump part parameter. Shimizu and Yoshida [2006] define a contrast-type estimation function,
for joint estimation of drift, diffusion and jump parts when the jumps are of compound Poisson
type. Shimizu [2006] generalizes these results to include more general driving Lévy processes. The
LAN property for drift and diffusion parameters is studied in Tran [2014] via Malliavin calculus
techniques. In all these papers joint estimation is considered under conditions on the sampling
scheme and the Lévy measure, which, in the case of a bounded jump measure density, is at best
n∆2

n → 0.
It is important to note here that the principles of the estimation of the drift, diffusion or jump

law parameters are of completely different nature. The estimation of the volatility is feasible on
a compact interval, whereas the estimation of the drift and the jump law requires a growing time
window. Also due to the Poisson structure of the jump part the estimation of the jump parameter
can be well separated from those of the drift and the diffusion part. In this work we focus therefore
on the estimation of the drift parameter only and construct a consistent, asymptotically normal
and efficient estimator, under conditions on the jump behavior and the sampling scheme, which, in
the case of bounded jump measure density reduce to n∆3−ε

n → 0.
A natural approach to estimate the unknown drift parameter would be to use a maximum

likelihood estimation, but the likelihood function based on the discrete sample is not tractable in
this setting, since it depends on the transition densities of X which are not explicitly known. On
the contrary, the continuous-time likelihood function is explicit. Our aim is to approximate this
function from discrete data and hence define some contrast function. The main difficulty is that
the continuous-time likelihood involves the continuous part Xc of X that is unobservable under
discrete sampling. Intuitively, this tells us that the continuous part Xc has to be recovered, hence
the jumps of X have to be removed in order to obtain an approximation of the continuous likelihood
function.

The question of estimation of the continuous part of an Itô-semimartingale appears naturally in
many statistical inference questions (cf. for example Mancini [2011] and Bibinger and Winkelmann
[2015]) and constitutes in itself an interesting nonparametric problem. In this article we study
the question of estimation of stochastic integrals with respect to the continuous part of X from a
discrete sample of X. Propositions 6 and 7 give explicit rates of convergence for our estimators of
these quantities. Besides being of independent interest these results constitute the main tool for
the asymptotic analysis of our drift estimators.

The technique we use in order to recover stochastic integrals with respect to the continuous
part of X consists in comparing the increments of X with a threshold vn, suggested by the typical
behavior of a diffusion path. This approach will be called jump filtering in the sequel. Similar
ideas of thresholding were also used in Shimizu and Yoshida [2006], Mancini [2011], Mai [2014] and
Bibinger and Winkelmann [2015]. In this article we have paid particular attention to the study of
the joint law of the biggest jump and of the total contribution of the other jumps in each sampling
interval (Lemma 16), which permits us to improve existing conditions on the sampling scheme in
the drift estimation problem.
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The drift estimator is then constructed by applying a jump filter to the discretized likelihood
function and maximizing the resulting criterion function to obtain what will be called the filtered
MLE (FMLE). To study the properties of the FMLE we first focus on the MLE obtained from
continuous observations and show that this MLE is asymptotically normal (Theorem 13) with
explicit asymptotic variance. We then prove the LAN property which gives by Hàjek-Le Cam’s
convolution theorem that the continuous MLE is efficient (Theorem 14). We show in the next
step that the FMLE attains asymptotically the same distribution as the MLE based on continuous
observations, which proves the efficiency of the FMLE (Theorems 3, 4). The last step is mainly
based on our results for the jump filter (Propositions 6 and 7).

The consistency of the FMLE is obtained without further assumptions on the sampling scheme.
The asymptotic normality necessitates some additional conditions on the rate at which ∆n goes
to 0 that depend on the behavior of the Lévy measure ν near zero. In the case where ν has a
bounded Lebesgue density these conditions reduce to n∆3−ε

n → 0 for some ε > 0. We believe that
this condition is unavoidable, because it is already necessary in the Euler discretization scheme
of the stochastic integral with respect to Xc (Lemma 10). It is in accordance with the condition
n∆3

n → 0 of Florens-Zimrou [1989] in the case of drift estimation for continuous diffusions, hence
our result can be seen as a generalization of Florens-Zimrou [1989] to the presence of jumps.

In the literature on joint estimation of drift and diffusion parameters for models with diffusion
and jump part the condition n∆2

n → 0 is usually required (cf. Masuda [2013], Shimizu and Yoshida
[2006] and Shimizu [2006]). The same condition on the sampling scheme appears for joint estimation
in the case of continuous diffusions in Yoshida [1992]. Hence, our work shows that by focusing on
drift estimation the condition n∆2

n → 0 can be relaxed in the presence of jumps as well.
As will be seen in Section 5 many popular models lead to explicit estimators, which do not

require the knowledge of the diffusion coefficient and that perform well in numerical examples.
The structure of the paper is as follows. In Section 2 the problem setting and the main assump-

tions of this work are introduced. Section 3 contains the construction of the drift estimator from
discrete observations together with the main results. In Section 4 we discuss the approximation of
the continuous martingale part and prove the convergence of the jump filter. Section 5 is devoted to
applications to popular parametric jump diffusion models and some numerical examples. Finally,
in Section 6 and 7 we prove the main results and the convergence of the jump filter respectively,
and Section 8 contains some auxiliary results that are frequently used in the sequel.

2. Model, assumptions and ergodicity

Let Θ be a compact subset of Rd and Xθ a solution to (1) which can be rewritten as

Xθ
t = Xθ

0 +

ˆ t

0

b(θ,Xθ
s ) ds+

ˆ t

0

σ(Xθ
s ) dWs +

ˆ t

0

ˆ
R
γ(Xθ

s−)zµ(ds, dz), t ∈ R+,

where W = (Wt)t≥0 is a one-dimensional Brownian motion and µ is the Poisson random measure
on [0,∞) × R associated with the jumps of the Lévy process L = (Lt)t≥0 with Lévy-Khintchine
triplet (0, 0, ν) such that

´
R |z|dν(z) <∞. The initial condition Xθ

0 , W and L are independent. We
assume without loss of generality that 0 ∈ Θ and b(0, ·) ≡ 0.

2.1. Assumptions. We suppose that the functions b : Θ × R → R, σ : R → R and γ : R → R
satisfy the following assumptions:

Assumption 1. The functions σ(x), γ(x) and for all θ ∈ Θ, b(θ, x) are globally Lipschitz. Moreover,
the Lipschitz constant of b is uniformly bounded on Θ.
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Under Assumption 1 equation (1) admits a unique non-explosive càdlàg adapted solution pos-
sessing the strong Markov property, cf. Applebaum [2009](Theorems 6.2.9. and 6.4.6).

Assumption 2. For all θ ∈ Θ there exists a constant t > 0, such that Xθ
t admits a density pθt (x, y)

with respect to the Lebesgue measure on R; bounded in y ∈ R and in x ∈ K for every compact K ⊂ R.
Moreover, for every x ∈ R, and every open ball U ∈ R there exists a point z = z(x, U) ∈ supp(ν)
such that γ(x)z ∈ U.

The last Assumption was used in Masuda [2007] to prove the irreducibility of the process Xθ.
See also Masuda [2009] for other sets of conditions, sufficient for irreducibility.

Assumption 3 (Ergodicity). (i): For all q > 0,
´
|z|>1

|z|qν(dz) <∞.
(ii): For all θ ∈ Θ there exists a constant C > 0 such that xb(θ, x) ≤ −C|x|2, if |x| → ∞.
(iii): |γ(x)|/|x| → 0 as |x| → ∞.
(iv): |σ(x)|/|x| → 0 as |x| → ∞.
(v): ∀θ ∈ Θ, ∀q > 0 we have E|Xθ

0 |q <∞.

Assumption 2 ensures together with Assumption 3 the existence of unique invariant distribution
πθ, as well as the ergodicity of the process Xθ, as stated in Lemma 1 below.

Assumption 4 (Jumps). (i): The jump coefficient γ is bounded from below, i.e. infx∈R |γ(x)| :=
γmin > 0 (wlog we suppose γmin ≥ 1).

(ii): the Lévy measure ν satisfies
´

0<|z|≤1
|z|ν(dz) <∞,

(iii): the Lévy measure ν is absolutely continuous with respect to the Lebesgue measure,
(iv): the jump coefficient γ is upper bounded, i.e. supx∈R |γ(x)| := γmax <∞.

Note that the integrability condition given by the Assumption 4 (ii) is automatically satisfied in
the finite activity case ν(R) < ∞. This condition insures that the trajectories of the driving Lévy
process L are a.s. of finite variation and hence the integral with respect to L in (1) can be defined
as a deterministic Lebesgue-Stieltjes integral. The third and the fourth point of the Assumption 4
are technical and need in the infinite activity case.

The following assumption insures the existence of the likelihood function.

Assumption 5 (Non-degeneracy). There exists some α > 0, such that σ2(x) ≥ α for all x ∈ R.

Assumption 6 (Identifiability). For all θ 6= θ′, (θ, θ′) ∈ Θ2,ˆ
R

(b(θ, x)− b(θ′, x))2

σ2(x)
dπθ(x) > 0

We can see (cf. Proposition 17) that this last assumption is equivalent to

(2) ∀θ 6= θ′, (θ, θ′) ∈ Θ2, b(θ, .) 6= b(θ′, .).

For f : Θ→ R denote by ∇θf : Θ→ Rd the gradient column vector and by ∂2
θf :=

(
∂2
θi,θj

f
)

1≤i,j≤d

the Hessian matrix of f . We define |θ| as the Euclidian norm of θ ∈ Rd, and |∂2
θf | :=

√∑n
i,j=1 |∂2

θi,θj
f |2

as the Euclidian norm of the Hessian matrix of f . The following assumption is used to insure the
uniform in θ convergence needed in the proofs of consistency and asymptotic normality:

Assumption 7 (Hölder-continuity of drift). (i): For all x ∈ R, b(., x) is Hölder-continuous
with respect to θ ∈ Θ:

∀θ, θ′, |b(θ, x)− b(θ′, x)| ≤ K(x)|θ − θ′|κ,
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where 0 < κ ≤ 1 and K : R→ R+ is at most of polynomial growth.
(ii): For all x ∈ R, b(., x) is twice continuously differentiable with respect to θ and ∇b(., x)

and ∂2b(., x) are Hölder-continuous with respect to θ ∈ Θ :

∀θ, θ′, |∇b(θ, x)−∇b(θ′, x)| ≤ K1(x)|θ − θ′|κ1

∀θ, θ′, |∂2
θb(θ, x)− ∂2

θb(θ
′, x)| ≤ K2(x)|θ − θ′|κ2

where 0 < κ1, κ2 ≤ 1 and K1,K2 : R→ R+ are at most of polynomial growth.

We also need the following technical assumption:

Assumption 8. The functions b, σ,∇θb, ∂2
θb are twice continuously differentiable with respect to x.

The functions σ′, σ′′ as well as the functions

x 7→ sup
θ∈Θ
|∂
i+jb(θ, x)

∂ix∂jθ
|

are sub-polynomial for all 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2.

Define the asymptotic Fisher information by

(3) I(θ) =

(ˆ
R

∂θib(θ, x)∂θj b(θ, x)

σ2(x)
πθ(dx)

)
1≤i,j≤d

.

Assumption 9. For all θ ∈ Θ, I(θ) is non-degenerated.

2.2. Ergodic properties of solutions. In all our statistical analysis an important role is played
by ergodic properties of solutions of equation (1). The following lemma is a generalization of a
result of Masuda [2007]. It states conditions for the existence of an invariant measure πθ such that
an ergodic theorem holds and moments of all order exist. A proof is given in Section 8.

Lemma 1. Under assumptions (1) to (4), for all θ ∈ Θ, Xθ admits a unique invariant distribution
πθ and the ergodic theorem holds:

(1) for every measurable function g : R→ R satisfying πθ(g) <∞, we have a.s.

lim
t→∞

1

t

ˆ t

0

g(Xθ
s )ds = πθ(g).

(2) For all q > 0, πθ(|x|q) <∞.
(3) For all q > 0, supt∈RE[|Xθ

t |q] <∞ and supt∈RE[|Xθ
t− |

q] <∞.
(4) Moreover,

lim
t→∞

1

t

ˆ t

0

E[|Xθ
s |q]ds = πθ(|x|q).

3. Construction of the estimator and main results

We define a discrete approximation to the continuous time likelihood function by employing a
jump filtering technique and hence obtain an approximate maximum likelihood estimator. We prove
that this drift estimator attains asymptotically the same performance as the maximum likelihood
estimator based on continuous observations under suitable assumptions on the jump behavior of
the driving Lévy process L.
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3.1. Construction of the estimator. Let Xθ be given by (1). We denote by P θ the law of Xθ

on the Skorokhod space D[0,∞) of real-valued càd làg functions, and P θt its restriction on D[0, t).
From now on we denote the true parameter value by θ?, an interior point of the parameter space Θ
that we want to estimate. We shorten X for Xθ? and P,E, π for respectively P θ

?

, Eθ
?

, πθ
?

. Suppose
that we observe a finite sample

(4) Xt0 , . . . , Xtn ; 0 = t0 ≤ t1 ≤ . . . ≤ tn.
Every observation time point depends also on n, but to simplify our notation we suppress this
index. We will be working in a high-frequency setting, i.e.

∆n := sup
i=0,...,n−1

(ti+1 − ti)
n→∞−−−−→ 0.

We assume limn→∞ tn = ∞ and n∆n = O(tn) as n → ∞. Under Assumption 5, P θt and P 0
t are

mutually locally absolutely continuous for any θ ∈ Θ (cf. for example Jacod and Shiryaev [2003])
and the likelihood function is given by

(5) Lt(θ,X) =
dP θt
dP 0

t

(X) = exp

(ˆ t

0

σ(Xs)
−2b(θ,Xs) dX

c
s −

1

2

ˆ t

0

σ(Xs)
−2b(θ,Xs)

2 ds

)
.

We define the log-likelihood function as

(6) `t(θ) := lnLt(θ,X).

The crucial point here is the appearance of Xc in (5), since when X is observed discretely, its
continuous part remains unknown. To handle this problem we use a jump filter as described below.

For g : [0, tn] → R, set ∆n
i g = gti − gti−1

, i = 1, . . . n. In particular, ∆n
i X = Xti − Xti−1

,
∆n
i X

c = Xc
ti −X

c
ti−1

and ∆n
i Id = ti − ti−1. Let ε ∈ (0, 1/2) and denote

(7) vn = ∆1/2−ε
n , n ≥ 1.

Define a discrete, jump-filtered approximation `ntn of the log-likelihood function as follows.

(8) `ntn(θ) =

n∑
i=1

σ(Xti−1
)−2b(θ,Xti−1

)∆n
i X1|∆n

i X|≤vn −
1

2

n∑
i=1

σ(Xti−1
)−2b(θ,Xti−1

)2∆n
i Id.

The cut-off sequence (vn) is chosen in order to asymptotically filter the increments of X containing
jumps. The increments of the continuous martingale part are typically of the order ∆

1/2
n , which

leads to the definition (7). The challenge now is to find suitable conditions on ∆n, ε and ν to make
the likelihood (6) well approximated by its discretized and jump filtered counterpart (8) even in
the case of infinite activity. Of course we can choose ε arbitrarily small, which is a choice we have
in mind. Finally, we define an estimator θ̂n of θ? as

(9) θ̂n ∈ argmax
θ∈Θ

`ntn(θ)

and in the sequel we call it the filtered MLE (FMLE).

3.2. Main results. The following theorem gives a general consistency result for the FMLE θ̂n that
holds for finite and infinite activity without further assumptions on n, ∆n and vn.

Theorem 2 (Consistency). Suppose that Assumptions 1 to 8 hold, then the FMLE θ̂n is consistent
in probability:

θ̂n
P−→ θ?, n→∞.
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To obtain a central limit theorem for the estimation error we consider finite and infinite activity
separately, since we obtain different conditions on the relation of n, ∆n and the cut-off sequence
vn.

Theorem 3 (Asymptotic normality: finite activity). Assume that the Lévy process L has a finite
jump activity : ν(R) <∞. Suppose that Assumptions 1 to 3, 4(i) and 6 to 9 hold.

If n∆3−ε
n → 0,

√
n∆

1−ε/2
n

(´
|z|≤2vn

ν(dz)
)1−ε/2

→ 0 and
√
n∆

1/2
n

´
|z|<2vn

|z|ν(dz) → 0 as n →

∞, then we conclude that the FMLE θ̂n is asymptotically normal:

t1/2n (θ̂n − θ?)
L→ N(0, I−1(θ?)), n→∞,

where I is the Fisher information given by (3).
Furthermore, the FMLE θ̂n is asymptotically efficient in the sense of the Hàjek-Le Cam convo-

lution theorem.

Remark 1. If ν has a bounded Lebesgue density, the conditions of the Theorem 3 on the sampling
scheme and the jump behavior reduce to n∆3−4ε

n → 0.

The following theorem generalizes the results of Theorem 3 to driving Lévy processes of infinite
activity.

Theorem 4 (Asymptotic normality: general case). Assume that the Lévy process L has infinite
jump activity : ν(R) =∞. Suppose Assumptions 1 to 9 hold. If n∆3−ε

n → 0,

√
n∆n

(ˆ
|z|≤3vn/γmin

|z|ν(dz)

)1−ε/2

→ 0 and
√
n∆3/2−2ε

n

(ˆ
|z|≥3vn/γmin

ν(dz)

)1−ε/2

→ 0

as n→∞, then all conclusions of Theorem 3 hold.

Theorem 4 applies for both finite and infinite jump activity. Besides different conditions on the
sampling scheme and the behavior of ν near zero it uses that the Lévy measure ν admits a density,
which is not supposed in Theorem 3. In the case where ν admits a bounded Lebesgue density, all
the conditions on the ∆n and n of the Theorem 4 became n∆3−ε̃

n → 0 for some ε̃ > 0 as in the
Theorem 3.

Example 5 (tempered stable jumps). To illustrate the influence of the jump behavior of L on
the conditions on n and ∆n given in Theorem 4 let us consider the example of a tempered α-
stable driving Lévy process. Tempered stable processes have been popular in financial modeling to
overcome the limitations of the classical models based on Brownian motion alone (cf. Cont and
Tankov [2004]). The Lévy measure in this case has an unbounded and non-integrable density given
by

ν(dz) = C|z|−(1+α)e−λ|z|dz

with λ > 0 and a normalizing constant C > 0 that satisfies the conditions of Theorem 4 if 0 < α < 1.
The conditions on n, ∆n and ν in Theorem 4 can now be summarized as n∆2−α−ε̃

n → 0 for some
ε > 0. We observe that a higher Blumenthal-Getoor index α requires a faster convergence ∆n to
zero. This is in line with the intuition that when the intensity of small jumps increases (i.e. α
increases) more and more frequent observations are needed to have a sufficient performance of the
jump filter.
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4. Nonparametric estimation of Xc via jump filtering.

The estimation problem considered in this work leads naturally to the more fundamental problem
of approximation of the continuous martingale partXc from discrete observations of a jump diffusion
X. In this section we prove approximation results of this sort for integral functionals with respect
to Xc. Since we need both uniform and non-uniform versions for the drift estimation problem, both
settings will be discussed. The following proposition concerns the finite activity case. The cut-off
sequence vn and ε were defined in (7).

Proposition 6 (jump filtering: finite activity). Suppose that L is of finite activity and Assumptions
1 to 4 hold. Suppose that f : Θ× R→ R satisfies:

a) for all x ∈ R, f(., x) is Hölder continuous with respect to θ ∈ Θ :

∀θ, θ′, |f(θ, x)− f(θ′, x)| ≤ C(x)|θ − θ′|κ,

where 0 < κ ≤ 1 and C : R→ R+ is at most of polynomial growth;
b) for all θ ∈ Θ, f(θ, .) ∈ C2(R) and supθ∈Θ |f(θ, .)|, supθ∈Θ |f ′x(θ, .)| and supθ∈Θ |f ′′x (θ, .)| are

at most of polynomial growth.
Then the following statements hold:

(i) without any assumption on the way that ∆n → 0 as n→∞,

(n∆n)−1 sup
θ∈Θ

∣∣∣∣∣
ˆ tn

0

f(θ,Xs) dX
c
s −

n∑
i=1

f(θ,Xti−1
)∆n

i X1|∆n
i X|≤vn

∣∣∣∣∣ P−→ 0;

(ii) if n∆3−ε
n → 0,

√
n∆

1−ε/2
n

(´
|z|≤2vn

ν(dz)
)1−ε/2

→ 0 and
√
n∆

1/2
n

´
|z|≤2vn

|z|ν(dz)→ 0 as n→∞, then for any θ ∈ Θ,

(10) (n∆n)−1/2

∣∣∣∣∣
ˆ tn

0

f(θ,Xs) dX
c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X1|∆n

i X|≤vn

∣∣∣∣∣ P−→ 0.

The case of infinite activity is treated in the following proposition.

Proposition 7 (jump filtering: infinite activity). Suppose that L is of infinite activity and As-
sumptions 1 to 4 hold. Suppose that f : Θ × R → R satisfies the assumptions of Proposition 6.
Then,

(i) statement (i) of Proposition 6 holds;
(ii) if n∆3−ε

n → 0,

√
n∆n

(ˆ
|z|≤3vn/γmin

|z|ν(dz)

)1−ε/2

→ 0 and
√
n∆3/2−ε

n

(ˆ
|z|≥3vn/γmin

ν(dz)

)1−ε/2

→ 0

as n→∞, then for any θ ∈ Θ, the convergence (10) holds.

The proofs of both propositions are based on the following three lemmas. Lemma 8 and 9
describe the approximation of the discretized stochastic integral with respect to Xc by the jump
filter in the cases of finite and infinite activity, respectively. To prove the propositions 6 and 7 we
also need a convergence result for the Euler scheme in order to approximate the stochastic integral
with respect to Xc by the corresponding discrete sum. This will be done in Lemma 10.
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Lemma 8 (jump filtering error: finite activity). Assume that L is of finite activity and f : Θ×R→
R is such that supθ∈Θ |f(θ, x)| is sub-polynomial. Under Assumption 1 to 4, we obtain

(i)

sup
θ∈Θ
|
n∑
i=1

f(θ,Xti−1)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)
| = OL1(n∆3/2−ε/2

n ).

(ii) for all θ ∈ Θ, if n∆3−ε
n → 0 as n→∞,

n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)

= oP

(√
n∆n

)

+OL1

n∆5/2−ε
n + n∆3/2−ε/2

n

(ˆ
|z|≤2vn

ν(dz)

)1−ε/2

+ n∆n

ˆ
|z|≤2vn

|z|ν(dz)

 .

The next lemma extends the uniform bound to the case of infinite activity.

Lemma 9 (jump filtering error: infinite activity). Assume that L is of infinite activity and f :
Θ× R→ R is such that supθ∈Θ |f(θ, x)| is sub-polynomial.

(i) Under Assumption 1 to 4, we obtain

sup
θ∈Θ
|
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)
| =

OL1

n∆n

(ˆ
|z|≤3vn

|z|ν(dz)

)1−ε/2

+ n∆3/2−ε
n

(ˆ
|z|≥vn/γmin

ν(dz)

)1−ε/2


(ii) for all θ ∈ Θ, if n∆3−ε
n

(´
|z|≥3vn/γmin

ν(dz)
)2−ε

→ 0, as n→∞, then
n∑
i=1

f(θ,Xti−1)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)

= oP

(√
n∆n

)
+ oL1

(
n∆2−ε

n (

ˆ
|z|≥3vn/γmin

ν(dz))1−ε/2

)
+OL1

(
n∆n(

ˆ
|z|≤3vn/γmin

|z|ν(dz))1−ε/2

)
.

The approximation of the stochastic integral is treated in the following lemma.

Lemma 10 (Euler scheme). Suppose that f : Θ× R→ R satisfies the following assumptions:
a) for all x ∈ R, f(., x) is Hölder continuous with respect to θ ∈ Θ :

∀θ, θ′, |f(θ, x)− f(θ′, x)| ≤ K(x)|θ − θ′|κ;

where 0 < κ ≤ 1 and K : R→ R+ is at most of polynomial growth;
b) for all θ ∈ Θ, f(θ, .) ∈ C2(R) and supθ∈Θ |f(θ, .)|, supθ∈Θ |f ′x(θ, .)| and supθ∈Θ |f ′′x (θ, .)| are

at most of polynomial growth.
Under Assumptions 1 to 4, we obtain

(i) as n→∞,

sup
θ∈Θ

(n∆n)−1

∣∣∣∣∣
ˆ tn

0

f(θ,Xs) dX
c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X

c

∣∣∣∣∣ P−→ 0;
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(ii) if n∆3−ε
n → 0, then, as n→∞,

∀θ ∈ Θ, (n∆n)−1/2

∣∣∣∣∣
ˆ tn

0

f(θ,Xs) dX
c
s −

n∑
i=1

f(θ,Xti−1
)∆n

i X
c

∣∣∣∣∣ P−→ 0.

We have now collected all the tools to prove the convergence of the jump filter approximation
towards integral functionals with respect to the continuous martingale part as stated in Proposition
6 and 7.

Proof of Proposition 6. We decompose the difference as follows:

(11)

∣∣∣∣∣
ˆ tn

0

f(θ,Xs) dX
c
s −

n∑
i=1

f(θ,Xti−1
)∆n

i X1|∆n
i X|≤vn

∣∣∣∣∣ ≤∣∣∣∣∣
ˆ tn

0

f(θ,Xs) dX
c
s −

n∑
i=1

f(θ,Xti−1
)∆n

i X
c

∣∣∣∣∣+
∣∣∣∣∣
n∑
i=1

f(θ,Xti−1
)∆n

i X
c −

n∑
i=1

f(θ,Xti−1
)∆n

i X1|∆n
i X|≤vn

∣∣∣∣∣
We first prove (i). By Lemma 10, the first term on the right hand side of (11) divided by n∆n goes
to zero uniformly, without any condition on ∆n. Combining it with (i) of the Lemma 8 we get the
result.

We now prove (ii). For the first term of (11) divided by (n∆n)1/2 we use (ii) of the Lemma 10.
Moreover, the (ii) of the Lemma 8, gives, for any θ ∈ Θ,

(n∆n)−1/2
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)

= oP (1)+

OL1

√n∆2−ε
n +

√
n∆1−ε/2

n

(ˆ
|z|≤2vn

ν(dz)

)1−ε/2

+
√
n∆1/2

n

ˆ
|z|≤2vn

|z|ν(dz)

 P−→ 0

under conditions (ii) of the proposition.
�

Proof of Proposition 7. We use the decomposition (11)
and prove first the statement (i). Using the Lemma 10 the first term of (11) divided by n∆n

goes to zero uniformly without any condition on ∆n.

Lemma 9 together with the Assumption 4 (ii) and the fact that vn = ∆
1/2−ε
n gives

(n∆n)−1 sup
θ
|
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆iX|≤vn

)
| =

OL1

(ˆ
|z|≤3vn

|z|ν(dz)

)1−ε/2

+ ∆1/2−ε/2
n

(ˆ
|z|≥vn/γmin

ν(dz)

)1−ε/2
 =

OL1

(ˆ
|z|≤3vn

|z|ν(dz)

)1−ε/2

+
∆

1/2−ε/2
n

v
1−ε/2
n

(ˆ
|z|≥vn/γmin

|z|ν(dz)

)1−ε/2
 P−→ 0.

Hence statement (i) is proved.
Now we prove statement (ii). For any θ ∈ Θ, under the condition n∆3−ε

n → 0, the second statement
of Lemma 10 gives the convergence to 0 of the first term in the decomposition (11), divided by
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√
n∆n. The convergence to 0 of the second term of (11), divided by

√
n∆n, immediately follows

from Lemma 9 and the conditions of (ii). �

When discretizing the likelihood function, we need the following lemma, whose proof can be
found in the Section 8.

Lemma 11. Suppose that Assumptions 1–4 are satisfied . Suppose that f : Θ×R→ R is such that
∀θ ∈ Θ, f(θ, .) ∈ C1(R) and supθ∈Θ |f ′(θ, .)| is sub-polynomial. Then we obtain:

(i) as n→∞,

sup
θ∈Θ

∣∣∣∣∣
ˆ tn

0

f(θ,Xs) ds−
n∑
i=1

f(θ,Xti−1
)∆n

i Id

∣∣∣∣∣ = OL1(n∆3/2
n );

(ii) if n∆3−ε
n

n→∞−−−−→ 0, then

(n∆n)−1/2|
ˆ tn

0

f(θ,Xs) ds−
n∑
i=1

f(θ,Xti−1
)∆n

i Id|
P−→ 0.

5. Examples and numerical results

In this section we consider concrete applications of the drift estimator in popular jump diffusion
models and investigate the numerical performance in finite sample studies. We consider both
examples with finite and infinite jump activity.

In the first part we give explicit drift estimators for Ornstein-Uhlenbeck-type and CIR processes
and compare there performance in a Monte Carlo study for finite activity jumps. Then we apply our
method to a hyperbolic diffusion process with α-stable jump component of infinite jump activity.
We consider here for convenience only linear models in the drift parameter that lead to explicit
maximum likelihood estimators in order to avoid the need for numerical maximization techniques.
Note that the method developed in this work applies equally well to non-linear models by using
standard maximization methods on the discretized and jump-filtered likelihood function (8).

It turns out that our estimators can be applied even beyond the scope of our theoretical results.
To demonstrate this we include in Section 5.2 models that do not posses moments of all orders and
consider Lévy processes of unbounded variation in our simulations.

5.1. Finite activity. In this section we consider two different jump diffusion models with finite
activity jumps. The first model will consist of Ornstein-Uhlenbeck-type processes that recently
became popular in financial modeling (cf. for example Barndorff-Nielsen and Shephard [2001]).
In the second part we extend a Cox-Ingersoll-Ross model from finance (cf. Cox et al. [1985]) by
including jumps and investigate the finite sample behavior of the drift estimator and jump filter for
varying observation settings. The jump process L is of compound Poisson type in the case of finite
activity such that it can be written as

(12) Lt =

Nt∑
i=1

Zi, for t ≥ 0,

where (Nt)t≥0 is a Poisson process with intensity λ and (Zi)i∈N are i.i.d. real random variables
independent of N , with distribution ν/λ.
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5.1.1. Ornstein-Uhlenbeck-type processes. Suppose that we have given a discrete sample

(13) Xt0 , . . . , Xtn for ti = i∆n and i = 0, . . . , n,

of an Ornstein-Uhlenbeck-type (OU) process (Xt)t≥0 that is defined as a solution of the stochastic
differential equation

dXt = (θ2 − θ1Xt) dt+ σ dWt + dLt X0 = x,

where (Wt)t≥0 is a standard Brownian motion and (Lt)t≥0 a pure jump Lévy process. Our goal is
to estimate the unknown drift parameter θ = (θ1, θ2) ∈ R2. The volatility parameter σ > 0 might
be unknown and can be seen as a nuisance parameter. The jump component (Lt)t≥0 will be of
compound Poisson type, i.e. it can be written as in (12) with intensity λ and the jump heights Zi
are supposed to be iid with exponential distribution with rate 1.

From (8) and (9) we find that the FMLE for θ is the solution θ̂OU
n = (θ̂OU

1,n , θ̂
OU
2,n ) to the following

set of linear equations in θ1 and θ2.

θ1 =
θ2In(X, 1)−

∑n
i=1Xti∆

n
i X1|∆n

i X|≤vn

In(X2)
,

θ2 =

∑n
i=1 ∆n

i X1|∆n
i X|≤vn + θ1In(X, 1)

tn
,(14)

where we introduced the functional

(15) In(X, p) :=

n∑
i=1

Xp
ti∆

n
i Id for p ∈ R.

The FLME for the first component of θ results in

θ̂OU
1,n =

(
1− In(X, 1)2

In(X, 2)

)−1 In(X, 1)
∑n
i=1 ∆n

i X1|∆n
i X|≤vn − tn

∑n
i=1Xti∆

n
i X1|∆n

i X|≤vn

tnIn(X, 2)
.

The second component θ̂OU
2,n follows now easily by plugging θ̂OU

1,n into (14).
In Table 1 we give simulation results for θ̂OU

1,n . The given mean and standard deviation are each
based on 500 Monte Carlo samples of θ̂OU

1,n . In this example we choose vn = ∆
1/3
n in order to

approximate well the continuous martingale part that appeared in the likelihood function (5). We
compare different observation schemes and different jump intensities λ for true parameter values
given by θ1 = 2 and θ2 = 0. The drift estimator performs well over the whole range of settings
provide that the discretization distance ∆n is sufficiently small. We also give the average number
of jumps that were detected by the jump filter and observe that this number scales as expected
linearly in tn.

5.1.2. Cox-Ingersoll-Ross (CIR) processes with jumps. We define a CIR or square-root process
X = (Xt)t≥0 with jumps as a solution to the SDE

Xt = (θ1 − θ2Xt) dt+ σ
√
Xt dWt + dLt,

where θ1, θ2, σ > 0, (Wt) is a standard Brownian motion and (Lt) a pure jump Lévy process.
The two-dimensional drift parameter θ = (θ1, θ2) is unknown and will be estimated from discrete
observations of X as in (13).

The classical CIR process without jumps (e.g. Lt ≡ 0) has the property that it stays non-
negative at all times which makes it an interesting model for financial applications e.g. in interest
rate modeling (Vasicek model) and stochastic volatility models (Heston model). We consider here
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λ = 1 λ = 6
tn n mean std dev jumps filt mean std dev jumps filt

2 100 1.4 0.7 6.5 1.4 0.6 15.8
300 1.8 0.8 6.8 1.7 0.6 15.9
600 2.0 0.8 7.9 1.9 0.5 16.3
800 2.0 0.8 7.2 2.0 0.6 16.5

5 600 1.4 0.6 13.1 1.3 0.39 39.5
1200 1.8 0.6 13.6 1.7 0.39 40.4
4000 2.0 0.7 13.6 1.8 0.39 41.4
6000 2.1 0.7 12.4 1.9 0.37 41.5

10 600 1.2 0.26 19.1 1.3 0.21 67
2000 2.0 0.27 21.6 1.6 0.2 75

Table 1. Monte Carlo estimates of mean and standard deviation from 500 samples
of θ̂OU

1,n for an OU process with compound Poisson jumps with intensity λ and true
parameter θ1 = 2.

therefore a jump component (Lt) of compound Poisson type that exhibits only positive jumps such
that X will stay non-negative. In fact, we take a driving Lévy process (Lt) as in (12) with intensity
λ = 1 and exponentially distributed jumps with rate η > 0, e.g. Zi ∼ Exp(η).

The filtered maximum likelihood estimator for θ is this model can be easily derived from (8) and
(9). It is given as the solution θ̂CIR

n = (θ̂CIR
1,n , θ̂

CIR
2,n ) to the following set of linear equations in the

parameters θ1 and θ2.

θ1 =
θ2tn −

∑n
i=1X

−1
ti ∆n

i X1|∆n
i X|≤vn

In(X,−1)
, θ2 =

θ1tn −
∑n
i=1 ∆n

i X1|∆n
i X|≤vn

In(X, 1)
,(16)

where In(X, p) for p ∈ R was defined in (15). We obtain for θ̂CIR
2,n the FMLE

θ̂CIR
2,n = (In(X,−1)In(X, 1)− tn)

−1

(
n∑
i=1

X−1
ti ∆n

i X1|∆n
i X|≤vn − In(X,−1)

n∑
i=1

∆n
i X1|∆n

i X|≤vn

)
.

The first component θ̂CIR
1,n follows now immediately by plugging θ̂CIR

2,n into (16).
To obtain Monte Carlo estimates of mean and standard deviation of θ̂CIR

n we simulate discrete
samples of X on an equidistant grid as in the previous example. We take vn = ∆

1/3
n in order to

approximate the continuous martingale part of X. In Table 2 we report the results for θ̂CIR
2,n from

1000 Monte Carlo samples each. The results are given for different tn, n and σ for true parameter
values θ1 = 0.1 and θ2 = 2. We find that θ̂CIR

2,n performs well as long as the discretization step size
∆n is fine enough such that a high-frequency approximation becomes valid.

5.2. Infinite activity. In this section we investigate estimation of the drift when the driving Lévy
process is of infinite jump activity. This is of course a more challenging problem with regards to the
approximation of the continuous martingale part i.e. the jump filtering problem, since we have to
distinguish a diffusion component from a process that jumps infinitely often in finite time intervals.
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σ = 0.25 σ = 0.5
tn n mean std dev jumps filt mean std dev jumps filt

5 200 1.7 0.22 6.8 1.7 0.28 8.0
400 1.9 0.12 5.1 1.8 0.2 6.6
800 2.0 0.09 4.5 1.9 0.17 5.6

10 500 1.7 0.15 12 1.7 0.21 15
1000 1.9 0.08 9.7 1.8 0.14 12
1500 1.9 0.06 9.5 1.9 0.13 11

20 1000 1.8 0.13 25 1.6 0.16 30
2000 1.9 0.06 19 1.8 0.11 24
3000 2.0 0.04 19 1.9 0.09 22

Table 2. Monte Carlo estimates of mean and standard deviation of θ̂CIR
2,n for a

CIR process with Gaussian component and compound Poisson jumps with intensity
λ = 1 and true drift parameter θ2 = 2.

5.2.1. Hyperbolic diffusions with jumps. In this section we apply the drift estimator to hyperbolic
diffusion processes with jumps. They are defined as solutions (Xt)t≥0 of the following SDE:

dXt = − θXt

(1 +X2
t )1/2

dt+ σ dWt + dLt, X0 = x.

Here, the drift parameter θ > 0 and the diffusion coefficient σ > 0 are unknown and we aim
at estimating θ form discrete observations Xt0 , . . . , Xtn of X, where ti = i∆n for ∆n > 0 and
i = 0, . . . , n. The driving Lévy process (Lt)t≥0 will be an α-stable process with Lévy-Khintchine
triplet (0, 0, ν) such that the Lévy measure is of the form ν(dx) = dx/|x|1+α.

From (5) we obtain an explicit pseudo MLE for θ in this model class given by

θ̂hyp
t = −

´ t
0

Xs
(1+X2

s )1/2
dXc

s´ t
0

X2
s

(1+X2
s )ds

.

Via discretization and jump filtering this leads to the following drift estimator based on discrete
observations:

θ̂hyp
n = −

n∑
i=1

Xti

(1 +X2
ti)

1/2
∆n
i X1|∆n

i X|≤vn

(
n∑
i=1

X2
ti

(1 +X2
ti)

)−1

To assess the performance of θ̂hyp
n in Monte Carlo experiments we simulate discrete trajectories of

X via a Euler scheme with sufficient small step size.
In Table 3 we give estimated mean and standard deviation of θ̂hypn from 500 Monte Carlo samples

each for different observation length tn and number of observations n. We consider two different
values for the index of stability α and give also the number of jumps that have been detected by the
jump filter. It turns out that θ̂hypn performs remarkably well over the whole range of different setting
even in the case α = 1 of infinite variation jumps that is not covered by our theoretical results,
since we have assumed that

´
R |x|ν(dx) < ∞. It might therefore be reasonable to expect that the

convergence results presented here can be extended to jumps processes with Blumenthal-Getoor
index α ≥ 1.
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α = 0.5 α = 1
tn n mean std dev jumps filt mean std dev jumps filt

5 600 1.7 0.53 26 1.6 0.62 37
1200 1.9 0.54 27 1.8 0.60 40
1500 1.9 0.57 26 1.9 0.66 41

10 1000 1.6 0.33 51 1.5 0.40 71
2000 1.8 0.34 53 1.7 0.38 79
4000 1.9 0.35 50 1.9 0.43 85

20 2000 1.6 0.23 104 1.6 0.27 142
4000 1.8 0.24 106 1.7 0.28 158
8000 1.9 0.23 101 1.9 0.30 170

Table 3. Monte Carlo estimates of mean and standard deviation from 500 samples
of θ̂hyp

n for a hyperbolic diffusion process with Gaussian component and α-stable
jumps and true drift parameter θ = 2

6. Proofs of main results

6.1. MLE for continuous observations. Let θ̄t be the true MLE maximizing the log-likelihood
function given by (6) and based on continuous observations :

(17) θ̄t ∈ argmax
θ∈Θ

`t(θ).

Before moving to discrete observations we prove here some asymptotic results for θ̄t. This is a first
step in order to prove the asymptotic results for the FMLE.

Theorem 12. Suppose that Assumptions 1–6 and 7(i) are satisfied. Then

lim
t→∞

θ̄t = θ? P − a.s.

Proof. Denote

(18) ˜̀
t(θ) :=

ˆ t

0

(b(θ,Xs)− b(θ?, Xs))

σ(Xs)
dWs −

1

2

ˆ t

0

(b(θ,Xs)− b(θ?, Xs))
2

σ2(Xs)
ds.

Using (1) and the fact that the observed trajectory corresponds to the true value of parameter
θ?, we can easily see that

`t(θ) = ˜̀
t(θ) +

1

2

ˆ t

0

b(θ?, Xs)

σ(Xs)
dWs +

1

2

ˆ t

0

b2(θ?, Xs)

σ2(Xs)
ds.

The difference between `(θ) and ˜̀
t(θ) does not depend on θ, hence also

(19) θ̄t ∈ argmax
θ∈Θ

˜̀
t(θ).

For θ ∈ Θ, define

Mt(θ) :=

ˆ t

0

(b(θ,Xs)− b(θ?, Xs))

σ(Xs)
dWs.
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The process (Mt(θ), t ≥ 0) is a continuous local martingale, with quadratic variation given by

At(θ) :=< M(θ) >t=

ˆ t

0

(b(θ,Xs)− b(θ?, Xs))
2

σ2(Xs)
ds.

Note that

(20) ˜̀
t(θ) = −1

2
At(θ) +Mt(θ),

Recall that π, given by the Lemma 1 is an invariant distribution of X and denote

(21) ˜̀(θ) = −1

2
π

(
(b(θ, .)− b(θ?, .))2

σ2(.)

)
Using Assumptions 5, 7(i) and Lemma 1(2), we see that for all θ ∈ Θ, ˜̀(θ) ∈ R. Hence, using the
Lemma 1(1) for all θ ∈ Θ,

lim
t→∞

− 1

2t
At(θ) = ˜̀(θ) P − a.s.

Moreover, using again Assumptions 5 and 7(i) we can see that the family

(22) {1

t
At(θ)}t>0 is equicontinuous P − a.s.

Indeed,
1

t
|At(θ)−At(θ′)| ≤ C|θ − θ′|κ

1

t

ˆ t

0

K2(Xs)ds,

where C = 2[Diam(Θ)]κ and K given by the Assumptions 7(i) is sub-polynomial. Using ergodic
theorem, which holds thanks to the Lemma1, 1

t

´ t
0
K2(Xs)ds converges almost surely to some finite

limit. Hence (22) follows. As a consequence,

(23) lim
t→∞

sup
θ∈Θ

∣∣∣∣− 1

2t
At(θ)− ˜̀(θ)

∣∣∣∣ = 0 P − a.s.

Denote
At(θ, θ

′) :=< Mt(θ)−Mt(θ
′) >t .

Using Assumptions 5 and 7(i), for all (θ, θ′) ∈ Θ2,

At(θ, θ
′) ≤ |θ − θ′|2κVt,

where Vt :=
´ t

0
(K

2(Xs)
σ2(Xs)

∨ 1)ds → ∞, if t → ∞. Therefore all assumptions of the Theorem 2 in

Loukianova and Loukianov [2005] are satisfied. As a conclusion, the family {Mt(θ)
At(θ)

; θ ∈ Θ, t ≥ 0}
satisfies the Uniform Law of Large Numbers on any compact K ∈ Θ not containing θ?, i.e.

lim
t→∞

sup
θ∈K

∣∣∣∣Mt(θ)

At(θ)

∣∣∣∣ = 0

We deduce, using (23), that

lim
t→∞

sup
θ∈K

∣∣∣∣Mt(θ)

t

∣∣∣∣ = 0

and hence, P − a.s.

(24) sup
θ∈K
|t−1 ˜̀

t(θ)− ˜̀(θ)| → 0.
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We can now derive the a.s. consistency of θ̄t following classical Wald’s method. We refer for instance
to Theorem 5.7 in Van der Vaart [1998] for a simple presentation of Wald’s approach, and stress out
the fact that all convergences and hence consistency holds P -a.s. in our setting. Indeed, observe
that

(25) ˜̀(θ) ≤ 0, ˜̀(θ) = 0 ⇐⇒ θ = θ?

and hence

(26) sup
θ: d(θ,θ?)≥ε

˜̀(θ) < ˜̀(θ?)

is trivially satisfied in our case. We deduce from (24) and (26) that P -a.s. for all ε > 0,

lim
t→∞

sup
d(θ,θ?)≥ε

1

t
˜̀
t(θ) < ˜̀(θ?)

and hence for t > t(ω) large enough

sup
d(θ,θ?)≥ε

˜̀
t(θ) < ˜̀

t(θ
?)

and finally for t > t(ω),
d(θ̄t, θ

?) < ε,

which means the a.s. consistency. �

Recall that I is the Fisher information given by (3).
The next result is a central limit theorem for the estimation error. It is important for us in the

sequel, since the asymptotic variance serves as a benchmark for the case of discrete observations.

Theorem 13. Suppose that Assumptions 1–9 hold. Then the MLE θ̄t is asymptotically normal:

t1/2(θ̄t − θ?)
L→ N (0, I−1(θ?)) as t→∞.

Proof. Due to Assumptions 5 and 7, Theorem 2.2 in Hutton and Nelson [1984] and Theorem 1 in
Loukianova and Loukianov [2005] for all t > 0 the criterion function ˜̀

t(θ,X) is twice continuously
differentiable in θ.

From (18) the score function can be written as ∇θ` = ∇θ ˜̀= (∂θ1
˜̀
t, . . . , ∂θd

˜̀
t)
T where

(27) ∂θi
˜̀
t(θ) = −

ˆ t

0

(b(θ,Xs)− b(θ?, Xs))∂θib(θ,X)

σ2(Xs)
ds+

ˆ t

0

∂θib(θ,Xs)

σ(Xs)
dWs,

for i = 1, . . . , d. A Taylor expansion around θ̄t yields

(28)
ˆ 1

0

1

t
∂2
θ

˜̀
t(θ

? + s(θ̄t − θ?))ds×
√
t(θ̄t − θ?) = − 1√

t
∇θ ˜̀

t(θ
?).

Hence, to obtain a CLT for the estimation error t1/2(θ̄t − θ?) we will first show the convergence of
the right hand side in (28). The equation (27) gives for θ = θ?

∇θ ˜̀
t(θ

?) =

ˆ t

0

∇θb(θ?, Xs)

σ(Xs)
dWs

such that the central limit theorem for multidimensional local martingales Küchler and Sørensen
[1999] gives

(29) t−1/2∇θ ˜̀
t(θ

?) = t−1/2

ˆ t

0

∇θb(θ?, X)

σ(Xs)
dWs

L→ N (0, I).
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In the next step we prove the convergence of
ˆ 1

0

1

t
∂2
θ

˜̀
t(θ

? + s(θ̄t − θ?))ds.

From (27) we see that for (i, j) ∈ {1, . . . , d},

∂2
θiθj

˜̀
t(θ) = −

ˆ t

0

(b(θ,Xs)− b(θ?, Xs))∂
2
θi,θj

b(θ,Xs)

σ2(Xs)
ds−

ˆ t

0

∂θib(θ,Xs)∂θj b(θ,Xs)

σ2(Xs)
ds

+

ˆ t

0

∂2
θiθj

b(θ,Xs)

σ(Xs)
dWs

:= U1
t (θ) + U2

t (θ) + U3
t (θ).(30)

Using the ergodic theorem, P -a.s.

1

t
U1
t (θ)→ U1

∞(θ) := −
ˆ
R

(b(θ, x)− b(θ?, x))∂2
θiθj

b(θ, x)

σ2(x)
π(dx);

1

t
U2
t (θ)→ U2

∞(θ) := −
ˆ
R

∂θib(θ, x)∂θj b(θ, x)

σ2(x)
π(dx) = −Ii,j(θ).

Moreover, using Assumption 7 and 8 and the same argument which were used to prove the equicon-
tinuity (22) we obtain that the families of functions (θ 7→ U1

t

t (θ))t≥0 and (θ 7→ U2
t

t (θ))t≥0 are almost
surely equicontinuous. Finally, the uniform law of large numbers for local martingales Loukianova
and Loukianov [2005] together with Assumptions 5 ,7 and 8 gives that P -a.s.

sup
θ∈Θ

t−1|U3
t (θ)| = sup

θ∈Θ
t−1|
ˆ t

0

∂2
θb(θ,Xs)

σ(Xs)
dWs|→0

Using (30) and the four last displays we obtain P -a.s.

(31) sup
θ∈Θ

∣∣∣t−1∂2
θ

˜̀
t(θ)− (U1

∞(θ)− I(θ))
∣∣∣→0

Using this uniformity together with a.s. convergence θ̄t → θ? we get P -a.s.

sup
s∈[0,1]

∣∣∣t−1∂2
θ

˜̀
t(θ

? + s(θ̄t − θ?))− (−I(θ?))
∣∣∣→0

and

(32) t−1

ˆ 1

0

∂2
θ

˜̀
t(θ

? + s(θ̄t − θ?))ds→− I(θ?).

Finally, from the non-degeneracy of the Fisher information matrix I(θ?), (29), (32), and Slutsky’s
theorem, we deduce the asymptotic normality of the estimator. �

6.2. Local asymptotic normality and efficiency. To obtain an asymptotic efficiency result in
the sense of Hàjek-Le Cam’s convolution theorem we prove now the local asymptotic normality
property for the statistical experiment (Ω,F , (Ft),P). From this result we can then deduce later
on efficiency of the discretized estimator with jump filter (cf. Theorem 3 and 4).
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Theorem 14. Suppose that Assumptions 1 to 9 are satisfied. Then the family (P θ)θ∈Θ is locally
asymptotically normal. That is, for all h ∈ Rd, we have the convergence in distribution under P ,

(33) `t(θ
? +

h√
t
)− `t(θ?)

L→ −1/2h>I(θ?)h+N, as t→∞,

where N ∼ N (0, h>I(θ?)h). As a consequence the drift estimator θ̄t is asymptotically efficient in
the sense of the Hájek-Le Cam convolution theorem.

Proof.

`t(θ
? +

h√
t
)− `t(θ?) = −1

2

ˆ t

0

(b(θ? + h√
t
, Xs)− b(θ?, Xs))

2ds

σ2(Xs)

+

ˆ t

0

(b(θ? + h√
t
, Xs)− b(θ?, Xs))

σ(Xs)
dWs

= −1

2

ˆ 1

0

ˆ 1

0

(
1

t

ˆ t

0

h>(∇b(θ? + hu√
t
, Xs)∇b>(θ? + hu′√

t
, Xs)h

σ2(Xs)
ds

)
dudu′

+
1√
t

ˆ t

0

∇bT (θ?, Xs)h

σ(Xs)
dWs +Rt.

Where

Rt :=

ˆ t

0

(b(θ? + h√
t
, Xs)− b(θ?, Xs))

σ(Xs)
dWs −

1√
t

ˆ t

0

∇bT (θ?, Xs)h

σ(Xs)
dWs.

Using Assumption 7 and the ergodic theorem, for all fixed r > 0, r′ > 0 such that θ? + r ∈ Θ,
θ? + r′ ∈ Θ we obtain

lim
t→∞

1

t

ˆ t

0

h>∇b(θ? + r,Xs)∇b>(θ? + r′, Xs)h

σ2(Xs)
ds =

ˆ
R

h>∇b(θ? + r, x)∇b>(θ? + r′, x)h

σ2(Xs)
dπ(x)

P -a.s. and Assumption (8) and Lemma 1 imply that this last limit is finite. Moreover, using
Assumption 7 it can be shown that this convergence is uniform, hence for hu/

√
t→ 0 it gives that

P − a.s.

(34) lim
t→∞

ˆ 1

0

du

ˆ 1

0

du′
1

t

ˆ t

0

h>∇b(θ? + hu√
t
, Xs)∇b>(θ? + hu′√

t
, Xs)h

σ2(Xs)
ds

=

ˆ
R

h>∇b(θ?, x)∇b>(θ?, x)h

σ2(Xs)
dπ(x) = h>I(θ?)h.

Using Markov inequality

(35) P (|Rt| ≥ ε) ≤
V arRt
ε2

≤ ‖h‖
2

ε2

1

t

ˆ t

0

(
‖h‖√
t

)2κ

E

(
K2

1 (Xs)

σ2(Xs)

)
ds,

where K1 is a Holder constant of ∇b is supposed to be at most of polynomial growth. Using ergodic
theorem in mean, we obtain Rt → 0 in P probability.

Due to the CLT for martingales in Küchler and Sørensen [1999]

1√
t

ˆ t

0

∇b>(θ?, Xs)h

σ(Xs)
dWs → N (0, h>I(θ?)h)
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in distribution. Combining the latter equation with (34)–(35), we obtain (33). This implies together
with Theorem 13 that θ̄t is asymptotically efficient in the sense of the Hájek-Le Cam convolution
theorem. �

6.3. Proofs of Theorems 2, 3 and 4.

Proof of Theorem 2. Let ˜̀ : Θ→ R be given by (21) and define

(36) `(θ) = ˜̀(θ) +
1

2
π

(
b2(θ?, x)

σ2(x)

)
.

Under Assumptions 1 and 5 the last term in the right hand side of (36) is finite.We will apply
Wald’s method for proving consistency of M estimators (see for example Theorem 5.7 in Van der
Vaart [1998]). It follows from (25) that

(37) sup
θ; d(θ,θ?)≥ε

`(θ) ≤ `(θ?).

Therefore, it remains to prove that

lim
n→∞

sup
θ∈Θ
|t−1
n `ntn(θ)− `(θ)| = 0 in probability.

To obtain this last statement we decompose this difference as follows:

(38) sup
θ∈Θ
|`(θ)− t−1

n `ntn(θ)| ≤ sup
θ∈Θ
|`(θ)− t−1

n `tn(θ)|+ sup
θ∈Θ
|t−1
n (`tn(θ)− `ntn(θ))|.

Using respectively the Ergodic Theorem given by Lemma 1 (1) and the Law of Large Numbers
for continuous local martingales (? p.178) we see that a.s.

1

t

ˆ t

0

b2(θ?, Xs)

σ2(Xs)
ds→ π

(
b2(θ?, x)

σ2(x)

)
and

1

t

ˆ t

0

b(θ?, Xs)

σ(Xs)
dWs → 0

Using these two last display and (24) we see that the first term of the decomposition (38) tends
to zero P -a.s.. In order to show the convergence to zero in probability of the second term, we
decompose it as follows.

sup
θ∈Θ

∣∣t−1
n (`tn(θ)− `ntn(θ))

∣∣
≤ sup
θ∈Θ

t−1
n

∣∣∣∣∣
ˆ tn

0

σ(Xs)
−2b(θ,Xs) dX

c
s −

n∑
i=1

σ(Xti−1
)−2b(θ,Xti−1

)∆n
i X1|∆n

i X|≤vn

∣∣∣∣∣
+ sup
θ∈Θ

t−1
n

∣∣∣∣∣12
ˆ tn

0

σ(Xs)
−2b(θ,Xs)

2 ds− 1

2

n∑
i=1

σ(Xti−1)−2b(θ,Xti−1)2∆n
i Id

∣∣∣∣∣
= sup
θ∈Θ

t−1
n |A1

n(θ)|+ sup
θ∈Θ

t−1
n |A2

n(θ)|.

Hence, it remains to prove the convergence to zero of t−1
n |A1

n(θ)| and t−1
n |A2

n(θ)| uniformly in θ.
For t−1

n |A1
n(θ)| we apply Proposition 6 in the finite activity case and Proposition 7 in the case of

infinite activity, together with the fact that n∆n = O(tn). Indeed, using Assumption 7 and 8 we
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see that the function f(θ, x) = σ(x)−2b(θ, x)2 satisfies all assumptions of Propositions 6 or 7. For
the second term t−1

n |A2
n(θ)| we use Lemma 11. �

Proof of Theorem 3. A Taylor expansion around θ̂n yields

(39)
1

tn

ˆ 1

0

∂2
θ`
n
tn(θ? + s(θ̂n − θ?))ds× t1/2n (θ̂n − θ?) = − 1

t
1/2
n

∇θ`ntn(θ?).

For the right hand side we find that

(40)
1

tn
1/2
∇θ`ntn(θ?) =

∇θ`ntn(θ?)−∇θ`tn(θ?)
√
tn

+
∇θ`tn(θ?)√

tn
.

By (29) we have that under P

(41)
∇θ`tn(θ?)√

tn

L→ N(0, I(θ?)), n→∞.

The first term of the sum on the right hand side of (40) has the form

∇θ`ntn(θ?)−∇θ`tn(θ?)

t
1/2
n

= −t−1/2
n

(ˆ tn

0

σ(Xs)
−2∇θb(θ?, Xs) dX

c
s −

n∑
i=1

σ(Xti−1
)−2∇θb(θ?, Xti−1

)∆n
i X1|∆n

i X|≤vn

)

+ t−1/2
n

1

2

(ˆ tn

0

σ(Xs)
−2∇θb(θ?, Xs)

2 ds−
n∑
i=1

σ(Xti−1
)−2∇θb(θ?, Xti−1

)2∆n
i Id

)
.

By applying Proposition 6 for k = 1, . . . d with fk(θ?, x) = σ(x)−2∂θkb(θ
?, x), and using Assump-

tions 7– 8 we obtain that

t−1/2
n

(ˆ tn

0

σ(Xs)
−2∂θkb(θ

?, Xs) dX
c
s −

n∑
i=1

σ(Xti−1
)−2∂θkb(θ

?, Xti−1
)∆n

i X1|∆n
i X|≤vn

)
P−→ 0

as n→∞. Furthermore, Lemma 11 (ii) leads to

t−1/2
n

(ˆ tn

0

σ(Xs)
−2∂θkb(θ

?, Xs)
2 ds−

n∑
i=1

σ(Xti−1)−2∂θkb(θ
?, Xti−1)2∆n

i Id

)
P−→ 0,

as n→∞. Combining now the last three displays results in

∇θ`ntn(θ?)−∇θ`tn(θ?)

t
1/2
n

P−→ 0

such that (40) and (41) give

t1/2n ∇θ`ntn(θ?)
d→ N(0, I(θ?)), n→∞.
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To finish the proof it remains to show the convergence of the left hand side in (39). For (j, k) ∈
{1, . . . , d}2 and θ ∈ Θ,

t−1
n sup

θ∈Θ

∣∣∣(∂2
θjθk

`ntn(θ)− ∂2
θjθk

`tn(θ)
)∣∣∣

≤ t−1
n sup

θ∈Θ

∣∣∣∣∣
ˆ tn

0

σ(Xs)
−2∂2

θjθk
b(θ,Xs) dX

c
s −

n∑
i=1

σ(Xti−1)−2∂2
θjθk

b(θ,Xti−1)∆n
i X1|∆n

i X|≤vn

∣∣∣∣∣
+ t−1

n sup
θ∈Θ

∣∣∣∣∣
ˆ tn

0

σ(Xs)
−2∂θj b(θ,Xs)∂θkb(θ,Xs) ds−

n∑
i=1

σ(Xti−1
)−2∂θj b(θ,Xs)∂θkb(θ,Xs)∆

n
i Id

∣∣∣∣∣
+ t−1

n sup
θ∈Θ

∣∣∣∣∣
ˆ tn

0

σ(Xs)
−2∂2

θjθk
b(θ,Xs)b(θ,Xs) ds−

n∑
i=1

σ(Xti−1
)−2∂2

θjθk
b(θ,Xs)b(θ,Xs)∆

n
i Id

∣∣∣∣∣
= U1

n + U2
n + U3

n.

Proposition 6 together with Assumptions 7– 8 state that

(42) U1
n
P→ 0, as n→∞.

Lemma 11 (i) gives for k=2,3

(43) Ukn
P→ 0, as n→∞.

Combining (42) and (43) with consistency of θ̂ and θ̄ we getˆ 1

0

1

tn
|∂2
θ`
n
tn(θ? + s(θ̂n − θ?))− ∂2

θ`tn(θ? + s(θ̄tn − θ?))|ds
P→ 0,

and hence, using (32)
1

tn

ˆ 1

0

∂2
θ`
n
tn(θ? + s(θ̂n − θ?))ds

P→ −I(θ?)

as n→∞ such that the result follows. �

Proof of Theorem 4. By replacing in the previous proof Proposition 6 by Proposition 7 we obtain
the result for the infinite activity case. �

7. Proofs for jump filtering

In this section we prove the results that were used in the Section 4 to obtain the convergence
of the jump filter (cf. Proposition 6 and 7) to integral functionals with respect to the continuous
martingale part of X. We start by proving the Lemma 8 that shows the convergence of the jump
filter approximation to the continuous part in the finite activity case.

We recall some notations: µ denotes the Poisson random measure on [0,∞)×R associated with
the jumps of the Lévy process L, the intensity of this jump measure is ds × ν(dz). We define
µ̃ = µ − ds × ν(dz) as the compensated Poisson measure such that we have Lt =

´ t
0

´
R zµ(ds, dz).

In the specific situation where the Lévy process L has a finite intensity ν(R) <∞, we shall denote
by Nt =

´ t
0

´
R µ(ds, dz) the process that counts the number of jumps up to time t.

Proof of Lemma 8. For all n ∈ N∗, i ∈ N∗ we define the set where increments of X are small:

(44) Ki
n = {|∆n

i X| ≤ vn} ,
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the event that L and so also X do not jump:

(45) M i
n = {∆n

i N = 0} ,

and the event that an increment of the jump part is small:

(46) Di
n =

{∣∣∆n
i X

J
∣∣ ≤ vn

3

}
,

where we denoted by XJ the jump part of X given by

XJ
t =

ˆ t

0

ˆ
R\{0}

γ(Xs−)zµ(ds, dz), t ≥ 0.

We start by proving (i). Using the previously defined sets we introduce the following quantities.

G1
n(θ) :=

n∑
i=1

f(θ,Xti−1)
(
∆n
i X

J
)

1Ki
n∩(Mi

n)c ,(47)

G2
n(θ) :=

n∑
i=1

f(θ,Xti−1
) (∆n

i X
c) 1(Ki

n)c∩Din ,(48)

G3
n(θ) :=

n∑
i=1

f(θ,Xti−1
) (∆n

i X
c) 1(Ki

n)c∩(Din)c ,(49)

and decompose the difference to be estimated as follows:

(50)
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)

= G1
n(θ) +G2

n(θ) +G3
n(θ).

To prove the convergence of G1
n(θ) we decompose the set Ki

n ∩ (M i
n)c into three disjoint events

1Ki
n∩(Mi

n)c = 1{∆n
i N≥2}∩Ki

n
+ 1{∆n

i N=1,|∆n
i L|≥2vn/γmin}∩Ki

n

+ 1{∆n
i N=1,|∆n

i L|<2vn/γmin}∩Ki
n

(51)

Using Lemma 15 (3), the definition of vn and Markov’s inequality we can see that the second
indicator of this decomposition is on an event that has small probability. Indeed, for all p > 1,

P
(
{∆n

i N = 1, |∆n
i L| ≥ 2vn/γmin} ∩Ki

n

)
≤ P (|∆n

i X
c| ≥ vn) = O(∆p/2

n v−pn ) = O(∆εp
n ).

Then, using the L2–isometry for stochastic integral with respect to the compensated Poisson mea-
sure and the Jensen’s inequality, we get

E
∣∣∆n

i X
J
∣∣2 ≤ 2E

∣∣∣∣∣
ˆ ti

ti−1

ˆ
R\{0}

γ(Xs−)zµ̃(ds, dz)

∣∣∣∣∣
2

+ 2E

[ˆ ti

ti−1

ˆ
R\{0}

γ(Xs)zdsν(dz)

]2

≤ 2

ˆ ti

ti−1

ˆ
R\{0}

E[γ2(Xs)]z
2dsν(dz) + 2

ˆ ti

ti−1

ˆ
R\{0}

E[γ2(Xs)]|z|dsν(dz)

ˆ ti

ti−1

ˆ
R\{0}

|z|dsν(dz)

= O(∆n),

(52)
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where in the last line we have used Assumption 1, Assumption 3 (i), Assumption 4 (ii) and Lemma
1 statement (3). Using Hölder’s inequality twice and Lemma 1 statement (3) we get for all p > 0,

(53) E sup
θ∈Θ

∣∣∣∣∣
n∑
i=1

f(θ,Xti−1
)∆n

i X
J1{∆n

i N=1,|∆n
i L|≥2vn/γmin}∩Ki

n

∣∣∣∣∣ = O(n∆εp
n ).

For the third indicator function in (51) we observe that

E sup
θ∈Θ
|
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

J
)

1{∆n
i N=1,|∆n

i L|<2vn/γmin}∩Ki
n

≤
n∑
i=1

ˆ ti

ti−1

ˆ
|z|<2vn/γmin

E

[
sup
θ∈Θ
|f(θ,Xti−1

)γ(Xs)|
]
|z|dsν(dz)

= O(n∆n

ˆ
|z|<2vn/γmin

|z|ν(dz)),(54)

where we have used the sub-polynomial growth of γ, f and Lemma 1 statement(3).
For the first indicator in (51) we obtain by Hölder’s inequality with conjugated exponents, p, q,

such that p−1 + q−1 = 1, and q−1 = 1− ε/2,

E sup
θ∈Θ

∣∣∣∣∣
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)

1{∆n
i N≥2}∩Ki

n

∣∣∣∣∣
≤

n∑
i=1

E sup
θ∈Θ
|f(θ,Xti−1

)| (|∆n
i X

c|+ vn) 1{∆n
i N≥2}

≤
n∑
i=1

(
E sup
θ∈Θ
|f(θ,Xti−1

)|p(|∆n
i X

c|+ vn)p
)1/p

P (∆n
i N ≥ 2)1/q

= O(n(∆1/2
n + vn)∆2/q

n = O(n∆5/2−2ε
n ),(55)

where we have used that P (∆n
i N ≥ 2) = O(∆2

n).
From (53), (54) and (55) it follows that

(56) E sup
θ∈Θ
|G1

n(θ)| ≤ O(n∆n

ˆ
|z|≤2vn/γmin

|z|ν(dz)) +O(n∆5/2−2ε
n ).

To estimate G2
n(θ) note first that for any p > 1,

P
(
(Ki

n)c ∩Di
n

)
≤ P (|∆n

i X
c| > 2vn/3) = O(∆εp

n ).

Hence, by using Hölder’s inequality, sub-polynomial growth of f , (3) of Lemma 1 and (3) of Lemma
15 we obtain for any p > 1,

E sup
θ∈Θ
|G2

n(θ)| = E sup
θ∈Θ
|
n∑
i=1

f(θ,Xti−1
) (∆n

i X
c) 1(Ki

n)c∩Din | = O(n∆εp
n ).(57)
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To estimate G3
n(θ) note first that

P ((Di
n)c) = P (|∆n

i X
J | > vn/3)

≤ P (|
ˆ ti

ti−1

ˆ
|z|≥vn

γ(Xs−)zµ(ds, dz)| > vn/6) + P (|
ˆ ti

ti−1

ˆ
|z|<vn

γ(Xs−)zµ(ds, dz)| > vn/6)

≤ P (|
ˆ ti

ti−1

ˆ
|z|≥vn

γ(Xs−)zµ(ds, dz)| > 0) +
6

vn
E[|
ˆ ti

ti−1

ˆ
|z|<vn

γ(Xs)zdsν(dz)|]

≤ P (

ˆ ti

ti−1

ˆ
|z|≥vn

µ(ds, dz) ≥ 1) +
6

vn
E[|
ˆ ti

ti−1

ˆ
|z|<vn

γ(Xs)zdsν(dz)|]

= 1− exp

(
−
ˆ ti

ti−1

ˆ
|z|≥vn

dsν(dz)

)
+

6

vn
E[|
ˆ ti

ti−1

ˆ
|z|<vn

γ(Xs)zdsν(dz)|]

= O

(
∆n(

ˆ
|z|≥vn

ν(dz) +
1

vn

ˆ
|z|<vn

|z|ν(dz))

)
.

Hence, using Hölder’s inequality, the assumptions on f and (3) of Lemma 15 we obtain for any
q > 1 that

E sup
θ∈Θ
|G3

n(θ)| ≤ E
n∑
i=1

sup
θ∈Θ
|f(θ,Xti−1

)||∆n
i X

c|1{|∆n
i X|>vn,(Din)c} ≤ O(n∆1/2

n )P ((Di
n)c)1/q

≤ O(n∆1/2
n )∆1/q

n

(ˆ
|z|≥vn

ν(dz) +
1

vn

ˆ
|z|<vn

|z|ν(dz)

)1/q

.(58)

Finally, choosing q−1 = 1− ε/2, we get from (56), (57) and (58) that

E

[
sup
θ∈Θ

∣∣∣∣∣
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)∣∣∣∣∣
]
≤ O(n∆n

ˆ
|z|≤2vn/γmin

|z|ν(dz))

+O(n∆5/2−2ε
n ) +O(n∆3/2−ε/2

n )(

ˆ
|z|≥vn

ν(dz) +
1

vn

ˆ
|z|<vn

|z|ν(dz))1−ε/2

In particular, using the definition of vn, finiteness of ν and of its first moment we immediately get

E sup
θ∈Θ

∣∣∣∣∣
n∑
i=1

f(θ,Xti−1)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)∣∣∣∣∣ = O(n∆3/2−ε/2

n ),

hence (i) is proved.
To prove (ii) we decompose the approximation by the jump filter as follows:

(59)
n∑
i=1

f(θ,Xti−1)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)

= G1
n(θ) +A2

n(θ) +A3
n(θ),
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where G1
n(θ) is given by (47) and

A2
n(θ) :=

n∑
i=1

f(θ,Xti−1) (∆n
i X

c) 1(Ki
n)c∩(Mi

n)c(60)

A3
n(θ) :=

n∑
i=1

f(θ,Xti−1) (∆n
i X

c) 1(Ki
n)c∩Mi

n
.

Observe that

A2
n(θ) =

n∑
i=1

f(θ,Xti−1
)∆n

i X
c1(Mi

n)c −
n∑
i=1

f(θ,Xti−1
)∆n

i X
c1{|∆n

i X|≤vn}∩(Mi
n)c .(61)

We first show that after suitable renormalization the first term of this decomposition converges to
zero in probability. Let ei := f(θ,Xti−1)∆n

i X
c1(Mi

n)c . Denote Fi = σ{(Ws)0<s≤ti , (Ls)0<s≤ti , X0},
then

E[ei|Fi−1] = f(θ,Xti−1)E

[ˆ ti

ti−1

σ(Xs)dWs1(Mi
n)c |Fi−1

]

+ f(θ,Xti−1
)E

[ˆ ti

ti−1

b(θ?, Xs)ds1(Mi
n)c |Fi−1

]
Observe that (Ws)s≥0 remains a Brownian motion with respect to the filtration that is enlarged by
σ(L), since L and W are independent. Therefore,

E

[ˆ ti

ti−1

σ(Xs)dWs1(Mi
n)c |Fi−1

]
= E

[
1(Mi

n)cE

[ˆ ti

ti−1

σ(Xs)dWs|Fi−1 ∨ σ(L)

]
|Fi−1

]
= 0

and so

|E[ei|Fi−1]| ≤ |f(θ,Xti−1)|
ˆ ti

ti−1

E
[
|b(θ?, Xs)| 1(Mi

n)c |Fi−1

]
ds.(62)

Recall that
P
(
(M i

n)c
)

= 1− P (∆n
i N = 0) = O(∆n).

Using Hölder inequality, Lipshitz continuity of b(θ?, .), the continuity of its Lipshitz constant given
by the Assumption 1 and Lemma 15 (2) we can write for p, q such that p−1 + q−1 = 1, p ≥ 2 and
C > 0,

E
[
|b(θ?, Xs)| 1(Mi

n)c |Fi−1

]
≤ (E [|b(θ?, Xs)|p |Fi−1])

1/p
∆1/q
n

≤ C
(
E[|b(θ?, Xs)− b(θ?, Xti−1)|p|Fti−1 ] + |b(θ?, Xti−1)|p

)1/p
∆1/q
n

≤ C
((
E
[
|Xs −Xti−1

|p|Fti−1

])1/p
+ |b(θ?, Xti−1

)|
)

∆1/q
n

≤ C∆1/q
n

(
∆1/p
n (1 + |Xti−1

|p)1/p + |b(θ?, Xti−1
)|
)
.(63)

Using the fact that b(θ?, .) and supθ∈Θ |f(θ, .)| are sub-polynomial and choosing again 1/q =
1− ε/2, (which also guarantees p > 2,) we obtain

(64) |E[ei|Fi−1]| ≤ h(|Xti−1
|)∆2−ε/2

n ,
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where h is a polynomial function. Finally this implies that under the condition n∆3−ε
n → 0,

(65) E

[
n∑
i=1

∣∣∣∣E [ ei√
n∆n

|Fi−1

]∣∣∣∣
]

= O(n1/2∆3/2−ε/2
n )→ 0.

Next, we bound the moment of order two of ei.
By Hölder’s inequality with 1/q = 1− ε/2, 1/p = 1− 1/q, we have

E[e2
i ] ≤ E

[
f(θ,Xti−1

)2p(∆n
i X

c)2p
]1/p

P
[
(M i

n)c
]1/q(66)

≤ ∆nP
[
(M i

n)c
]1−ε/2

= O(∆2−ε/2
n ),

where in the last line we used again Hölder’s inequality, the sub-linear growth of f , together with
Lemma 15 (3). Hence,

(67) E

[∣∣∣∣∣
n∑
i=1

E

[(
ei√
n∆n

)2

|Fi

]∣∣∣∣∣
]

=

n∑
i=1

E

[(
ei√
n∆n

)2
]

= O(∆1−ε/2
n )→ 0.

Under (65) and (67) we obtain from Lemma 9 in Genon-Catalot and Jacod [1993] that

(68)
1√
n∆n

n∑
i=1

f(θ,Xti−1
)∆n

i X
c1(Mi

n)c =

n∑
i=1

ei√
n∆n

P−→ 0

if n∆3−ε
n → 0. Recall that the second term in the decomposition (61) of A2

n is given by
n∑
i=1

f(θ,Xti−1)∆n
i X

c1Ki
n∩(Mi

n)c .

We will now bound this term in L1. We use again the decomposition (51) of Ki
n ∩ (M i

n)c. We find
that by computations similar to (55) and (53) respectively, we have

E

∣∣∣∣∣
n∑
i=1

f(θ,Xti−1
)∆n

i X
c1{∆n

i N≥2}∩Ki
n

∣∣∣∣∣ = O(n∆5/2−2ε
n ),(69)

E

∣∣∣∣∣
n∑
i=1

f(θ,Xti−1)∆n
i X

c1{∆n
i N=1,|∆n

i L|≥2vn/γmin}∩Ki
n

∣∣∣∣∣ = O(n∆εp
n )(70)

Moreover, we have that P (∆n
i N = 1, |∆n

i L| < 2vn/γmin) = P (
´ ti
ti−1

´
|z|<2vn/γmin

µ(ds, dz) = 1) ≤
∆n

´
|z|<2vn

ν(dz), where we used γmin ≥ 1. From this, we can easily get
(71)

E

∣∣∣∣∣
n∑
i=1

f(θ,Xti−1
)∆n

i X
c1{∆n

i N=1,|∆n
i L|<2vn/γmin}∩Ki

n

∣∣∣∣∣ = O

n∆3/2−ε/2
n

(ˆ
|z|<2vn

ν(dz)

)1−ε/2
 .

From (61), (68), (69)–(71), we deduce that if n∆3−ε
n → 0,

(72) A2
n(θ) = oP (

√
n∆n) +OL1

n∆5/2−2ε
n +

(ˆ
|z|<2vn

ν(dz)

)1−ε/2

n∆3/2−ε/2
n

 .

It follows immediately from Lemma 15 (3) that for any p > 1,

P ((Ki
n)c ∩M i

n) ≤ P (|∆n
i X

c| > vn) = O(∆εp
n ).
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Hence, using again Hölder’s inequality and Lemma 15 (3) again, we see that for any p > 1,

(73) E
∣∣A3

n(θ)
∣∣ = E

∣∣∣∣∣
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)

1(Ki
n)c∩Mi

n

∣∣∣∣∣ = O(n∆εp
n ).

Finally, from (56), (72), (73) we obtain that for any θ ∈ Θ, if n∆3−ε
n → 0,

n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)

=

oP (
√
n∆n) +OL1

n∆5/2−2ε
n +

(ˆ
|z|<2vn

ν(dz)

)1−ε/2

n∆3/2−ε/2
n + n∆n

ˆ
|z|≤2vn

|z|ν(dz)

 .

This proves (ii). �

Proof of Lemma 9. We start by proving (i). In the infinite jump activity case, the Lévy process has
infinite number of jumps on all compact intervals. Hence, it is impossible to introduce the events
that the process had no jump, one jump, or more than two jumps on (ti−1, ti] as it was done in the
proof of Lemma 8.

Here, we define the event on which all the jumps of L are small :

(74) N i
n = {|∆Ls| ≤ 3vn/γmin; ∀s ∈ (ti−1, ti]} ,

where ∆Ls := Ls − Ls−. Using the sets Ki
n and Di

n from (44), we define

(75) B1
n(θ) :=

n∑
i=1

f(θ,Xti−1)
(
∆n
i X

J
)

1Ki
n∩(Nin)c ; B2

n(θ) :=

n∑
i=1

f(θ,Xti−1)
(
∆n
i X

J
)

1Ki
n∩Nin ;

and decompose the difference as follows

(76)
n∑
i=1

f(θ,Xti−1)
(
∆n
i X

c −∆iX1|∆n
i X|≤vn

)
= B1

n(θ) +B2
n(θ) +G2

n(θ) +G3
n(θ),

where G2
n(θ) and G3

n(θ) are defined in (48)–(49). We start by studying the convergence of B1
n(θ).

Let T ∗i ∈ (ti−1; ti] such that |∆LT∗i | = max {|∆Ls|; s ∈ (ti−1; ti]}. Remark that T ∗i is well defined,
as from Assumption 4 (iii) there is, almost surely, a unique time at which the Lévy process admits
a jump with maximal size. We introduce the event

(77) Ain =

 ∑
ti−1<s≤ti;s6=T∗i

|∆Ls| ≤
vn
γmax

 ,

where γmax is defined in Assumption 4 (iv).
To estimate B1

n(θ) we make the decomposition

Ki
n ∩ (N i

n)
c

= Ki
n ∩ (N i

n)
c ∩Ain ∪ Ki

n ∩ (N i
n)
c ∩ (Ain)c.

Note that

Ki
n ∩ (N i

n)
c ∩Ain

⊂ {|∆n
i X

c + γ(XT∗i −)∆LT∗i +
∑
s6=T∗i

∆Xs| ≤ vn; |γ(XT∗i −)∆LT∗i | > 3vn; |
∑
s6=T∗i

∆Xs| ≤ vn}

⊂ {|∆n
i X

c| ≥ vn} .
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Hence, using (3) from Lemma 15 we get for all p > 1 :

(78) P (Ki
n ∩ (N i

n)
c ∩Ain) ≤ P (|∆n

i X
c| ≥ vn) = O(∆p/2

n v−pn ) = O(∆εp
n ).

Together with (52), which is still true in the infinite activity case, Hölder’s inequality, sub-polynomial
growth of f and (3) from Lemma 1 this gives for any p > 1 that

(79) E sup
θ∈Θ
|
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

J
) (

1Ki
n∩(Nin)c∩Ain

)
| = O(n∆εp

n ).

Using Hölder inequality, sub-polynomial growth of f , Lemma 1 (3), and Lemma 16, we get for
1/p+ 1/q = 1 and some C > 0,

E sup
θ∈Θ
|
n∑
i=1

f(θ,Xti−1
)
(
∆n
i X

c −∆n
i X1|∆n

i X|≤vn
)

1Ki
n∩(Nin)c∩(Ain)c |

≤
n∑
i=1

(
E sup
θ∈Θ
|f(θ,Xti−1

)|p(|∆n
i X

c|+ vn)p
)1/p (

P ((N i
n)
c ∩ (Ain)c)

)1/q

≤ Cn(∆1/2
n + vn)

(
∆2
n

vn

ˆ
|z|≥3vn/γmin

ν(dz)

)1/q

≤ Cnvε/2n ∆2−ε
n

(ˆ
|z|≥3vn/γmin

ν(dz)

)1−ε/2

, choosing 1/q = 1− ε/2.(80)

From (79) and (80), we get

E sup
θ∈Θ
|B1
n(θ)| = o

n∆3/2−ε/2
n

(ˆ
|z|≥vn/γmin

ν(dz)

)1−ε/2
 .(81)

To estimate B2
n(θ) we use the bound

n∑
i=1

E|f(θ,Xti−1)

ˆ ti

ti−1

ˆ
R\{0}

γ(Xs−)zµ(ds, dz)|1Ki
n∩Nin

≤
n∑
i=1

E

ˆ ti

ti−1

ˆ
|z|≤3vn/γmin

|f(θ,Xti−1
)γ(Xs−)z|µ(ds, dz)

≤
n∑
i=1

ˆ ti

ti−1

ˆ
|z|≤3vn/γmin

E[|f(θ,Xti−1
)γ(Xs)|]|z|ν(dz)ds = O(n∆n

ˆ
|z|≤3vn/γmin

|z|ν(dz)).

Since γmin ≥ 1, we obtain,

(82) E sup
θ∈Θ
|B2
n(θ)| = O(n∆n

ˆ
|z|≤3vn/γmin

|z|ν(dz)) ≤ O(n∆n

ˆ
|z|≤3vn

|z|ν(dz)).

The L1 norms of supθ∈Θ |G2
n(θ)| and supθ∈Θ |G3

n(θ)| have been studied in the Lemma 8, when the
Lévy process has finite activity. However, the proofs of the upper bounds (57) and (58), obtained
in Lemma 8, do not use the fact that ν(R) <∞.

Finally, collecting (57), (58) with 1/q = 1− ε/2, (81), and (82) we obtain (i). We continue with
the proof of (ii). Using the events Ki

n and N i
n given by (44) and (74) we define
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B3
n(θ) :=

n∑
i=1

f(θ,Xti−1) (∆n
i X

c) 1(Ki
n)c∩(Nin)c ; B4

n(θ) :=

n∑
i=1

f(θ,Xti−1) (∆n
i X

c) 1(Ki
n)c∩(Nin);

and decompose the difference as follows

(83)
n∑
i=1

f(θ,Xti−1)
(
∆n
i X

c −∆iX1|∆n
i X|≤vn

)
= B1

n(θ) +B2
n(θ) +B3

n(θ) +B4
n(θ),

where B1
n(θ) and B2

n(θ) are given by (75). Using (79) and (80) we can see that

(84) E|B1
n(θ)| = o

n∆2−ε
n

(ˆ
|z|≥3vn/γmin

ν(dz)

)1−ε/2
 ,

while (82) gives the bound for E|B2
n(θ)|. The role of the event N i

n (all the jumps of L are small) in
the case of the infinite activity is similar to the role of M i

n (L does not jump) in the finite activity
case. Therefore, to estimate B3

n(θ) we use a decomposition similar to (61), where we replace M i
n

by N i
n which leads to

(85) B3
n(θ) =

n∑
i=1

f(θ,Xti−1) (∆n
i X

c) 1(Nin)c −
n∑
i=1

f(θ,Xti−1) (∆n
i X

c) 1Ki
n∩(Nin)c .

We will show that the first term of this decomposition goes to zero after suitable normalization.
Let ẽi := f(θ,Xti−1

)∆n
i X

c1(Nin)c . Recall that

P
(
(N i

n)c
)

= 1− P (

ˆ ti

ti−1

ˆ
|z|>3vn/γmin

µ(ds, dz) = 0) = 1− e−∆n

´
|z|>3vn/γmin

ν(dz)

= O

(
∆n

ˆ
|z|>3vn/γmin

ν(dz)

)
.

Therefore, the same arguments that were used to obtain (64) give here

(86) |E[ẽi|Fi−1]| ≤ h(|Xti−1
|)∆2−ε/2

n

(ˆ
|z|>3vn/γmin

ν(dz)

)1−ε/2

,

where h is a polynomial function. Hence, under the condition n∆3−ε
n

(´
|z|>3vn/γmin

ν(dz)
)2−ε

→ 0,

(87) E

[
n∑
i=1

∣∣∣∣E [ ẽi√
n∆n

|Fi−1

]∣∣∣∣
]

= O

n1/2∆3/2−ε/2
n

(ˆ
|z|>3vn/γmin

ν(dz)

)1−ε/2
→ 0.

Next, we bound the second moment of ẽi. Similarly to (66) we obtain

(88) E[ẽ2
i ] ≤ ∆nP [(N i

n)c]1−ε/2 = O

∆2−ε/2
n

(ˆ
|z|>3vn/γmin

ν(dz)

)1−ε/2
 ,
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Hence, using ∆n

´
|z|>3vn/γmin

ν(dz)→ 0, which is implied by n∆3−ε
n

(´
|z|>3vn/γmin

ν(dz)
)2−ε

→ 0,

we have

E

[∣∣∣∣∣
n∑
i=1

E

[(
ẽi√
n∆n

)2

|Fi

]∣∣∣∣∣
]

=

n∑
i=1

E

[(
ẽi√
n∆n

)2
]

= O

∆1−ε/2
n

(ˆ
|z|>3vn/γmin

ν(dz)

)1−ε/2
→ 0.(89)

Under (87) and (89) we obtain from Lemma 9 in Genon-Catalot and Jacod [1993] that

(90)
1√
n∆n

n∑
i=1

f(θ,Xti−1
)∆n

i X
c1(Nin)c =

n∑
i=1

ẽi√
n∆n

P−→ 0

if n∆3−ε
n

(´
|z|>3vn/γmin

ν(dz)
)2−ε

→ 0.

Recall that the second term in the decomposition (85) of B3
n is given by

n∑
i=1

f(θ,Xti−1
)∆n

i X
c1Ki

n∩(Nin)c .

We will now bound this term in L1. Using the set Ain defined by (77) we decompose

1Ki
n∩(Nin)c = 1Ki

n∩(Nin)c∩Ain + 1Ki
n∩(Nin)c∩(Ain)c .

The first term of this decomposition is bounded in L1 using (78). As a result, for all p > 1,

(91) E sup
θ∈Θ
|
n∑
i=1

f(θ,Xti−1
) (∆n

i X
c)
(
1Ki

n∩(Nin)c∩Ain

)
| = O(n∆εp

n ).

Then, exactly as in (80), we get

(92) E|
n∑
i=1

f(θ,Xti−1
) (∆n

i X
c)
(
1Ki

n∩(Nin)c∩(Ain)c
)
| = o

(
n∆2−ε

n (

ˆ
|z|≥vn/γmin

ν(dz))1−ε/2

)
.

As a result,

(93) B3
n(θ) = oP (

√
n∆n) + oL1

(
n∆2−ε

n (

ˆ
|z|≥vn/γmin

ν(dz))1−ε/2

)
.

It remains to estimate the term B4
n in the decomposition (83). Observe that for all p > 1,

P ((Ki
n)c ∩N i

n) =

P (|∆n
i X

c +
∑

ti−1<s≤ti

∆Xs| > vn;N i
n) ≤ P (|∆n

i X
c| > vn

2
) + P (|

∑
ti−1<s≤ti

∆Xs| >
vn
2

;N i
n) ≤

C∆εp
n + P (|

ˆ ti

ti−1

γ(Xs−)

ˆ
|z|≤3vn/γmin

zµ(ds, dz)| > vn
2

) ≤ C∆εp
n +

∆n

vn

ˆ
|z|≤3vn/γmin

|z|ν(dz),
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where C > 0. Using Hölder’s inequality twice, this last bound, sub-polynomial growth of f and
Lemma 15 (iii) we can easily see that with 1/q = 1− ε/2 we get

E|B4
n(θ)| =(94)

E|
n∑
i=1

f(θ,Xti−1
) (∆n

i X
c) 1(Ki

n)c∩Nin | ≤
n∑
i=1

(
E|f(θ,Xti−1

)|p|∆n
i X

c|p
)1/p

P 1/q(Ki
n)c ∩N i

n) ≤

n∆1/2
n

(
∆n

vn

ˆ
|z|≤3vn/γmin

|z|ν(dz)

)1−ε/2

≤ n∆1+ε/2
n

(ˆ
|z|≤3vn/γmin

|z|ν(dz)

)1−ε/2

.

Finally, collecting (82), (84), (93) and (94) we obtain assertion (ii) of the lemma. �

Proof of Lemma 10. Using dXc
s = b(θ?, Xs)ds+ σ(Xs)dWs we decompose the difference as

(95)
ˆ tn

0

f(θ,Xs) dX
c
s −

n∑
i=1

f(θ,Xti−1
)∆n

i X
c = An,1(θ) +An,2(θ) +An,3(θ),

where

An,1(θ) :=

n∑
i=1

ˆ ti

ti−1

(f(θ,Xs)− f(θ,Xti−1
))σ(Xs)dWs,(96)

An,2(θ) :=

n∑
i=1

ˆ ti

ti−1

(f(θ,Xs)− f(θ,Xti−1
))(b(θ?, Xs)− b(θ?, Xti−1

))ds,

An,3(θ) :=

n∑
i=1

ˆ ti

ti−1

(f(θ,Xs)− f(θ,Xti−1
))b(θ?, Xti−1

)ds.(97)

Let us start by proving (ii). Let as previously Ft = σ{X0,Wu, Lu; u ≤ t}, t ≥ 0. Using martingale
property and Itô’s isometry of the stochastic integral together with the finite increments formula
applied to f , we obtain

E[A2
n,1(θ)] = E

 n∑
i=1

(ˆ ti

ti−1

(f(θ,Xs)− f(θ,Xti−1
))σ(Xs)dWs

)2


= E

n∑
i=1

ˆ ti

ti−1

(f(θ,Xs)− f(θ,Xti−1))2σ2(Xs)ds

≤
n∑
i=1

ˆ ti

ti−1

E
[
(Xs −Xti−1)2f ′2(θ, x̃)σ2(Xs)

]
ds,

where x̃ is a point between Xs and Xti−1
. Note that |x̃| ≤ |Xs| + |Xti−1

|. Using sub-polynomial
growth of σ and supθ |f ′(θ, .)|, Hölder’s inequality, (3) of the Lemma 1 and (1) of the Lemma 15
yields

(98) E
[
(Xs −Xti−1

)2f ′2(θ, x̃)σ2(Xs)
]
≤ CE[|Xs −Xti−1

|2q]1/q ≤ C∆1/q
n ,

where q > 1 and C is a positive constant. Hence, for all θ ∈ Θ,

E[A2
n,1(θ)] ≤ Cn∆1+1/q

n
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and consequently

(99)
1√
n∆n

An,1(θ)
L2

−→ 0.

Using Lipshitz continuity of b, and the same arguments than for obtaining (98), it follows imme-
diately that

(100) E[sup
θ∈Θ
|An,2(θ)|] ≤ Cn∆1+1/q

n

Hence, by choosing q = 1− ε/2 such that n∆
1+2/q
n = n∆3−ε

n → 0 it follows that

(101)
1√
n∆n

sup
θ∈Θ
|An,2(θ)| L

1

−→ 0.

Observe that by Itô’s formula An,3(θ) can be written as

An,3(θ) = an(θ) + bn(θ) + cn(θ),

where

an(θ) =

n∑
i=1

b(θ?, Xti−1
)

ˆ ti

ti−1

ds

ˆ s

ti−1

f ′(θ,Xu)σ(Xu)dWu,

bn(θ) =

n∑
i=1

b(θ?, Xti−1)

ˆ ti

ti−1

ds

ˆ s

ti−1

[
f ′(θ,Xu)b(θ?, Xu) + f ′′(θ,Xu)

1

2
σ2(Xu)

]
du,

cn(θ) =

n∑
i=1

b(θ?, Xti−1)

ˆ ti

ti−1

ds
∑

τ∈[ti−1,s]

(f(θ,Xτ )− f(θ,Xτ−)).

Denote

eni :=
1√
n∆n

ˆ ti

ti−1

ds

ˆ s

ti−1

b(θ?, Xti−1)f ′(θ,Xu)σ(Xu)dWu

Using martingale property of the stochastic integral with respect to W we obtain

E
[
eni |Fti−1

]
= 0.

Using Hölder’s inequality and isometry property of the stochastic integral we get

E
(
E
[
(eni )2|Fti−1

])
= E

[
(eni )2

]
≤ 1

n

ˆ ti

ti−1

dsE

(ˆ s

ti−1

b(θ?, Xti−1
)f ′(θ,Xu)σ(Xu)dWu

)2

=
1

n

ˆ ti

ti−1

ds

ˆ s

ti−1

E
[
b2(θ?, Xti−1)f ′2(θ,Xu)σ2(Xu)

]
du ≤ C∆2

n

n
,

where in the last inequality we have used the uniform in θ sub-polynomial growth of f ′ and b,
sub-linear growth of σ and Lemma 1(3). Therefore

E

n∑
i=1

E
[
(eni )

2 |Fti−1

]
≤ C∆2

n → 0 when n→∞.

We conclude, using Lemma 9 in Genon-Catalot and Jacod [1993], that ∀θ ∈ Θ,

(102)
1√
n∆n

an(θ) =

n∑
i=1

eni
P−→ 0.
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Using again uniform in θ sub-polynomial growth of b, f ′, f ′′, sub-linearity of σ and (3) of the Lemma
1 we easily see that

(103) E sup
θ∈Θ
|bn(θ)| ≤ Cn∆2

n.

Let us now derive a bound for the jump term cn.

E sup
θ∈Θ
|cn(θ)|(104)

≤
n∑
i=1

ˆ ti

ti−1

ds

ˆ s

ti−1

du

ˆ
R\{0}

E|b(θ?, Xti−1
)||f(θ,Xu− + γ(Xu−)z)− f(θ,Xu−)|µ(du, dz)

≤
n∑
i=1

ˆ ti

ti−1

ds

ˆ s

ti−1

du

ˆ
R\{0}

E|b(θ?, Xti−1
)f ′(θ, x̃)γ(Xu−)||z|ν(dz).

(105)

where in the second inequality we used again the finite increments formula and denoted x̃ the
corresponding point between Xu− and Xu = Xu− + γ(Xu−)z. Note that again |x̃| ≤ |Xu−|+ |Xu|.
According to the Assumptions 3 (i), (iii) and the assumption b) of the Lemma, the functions γ,
b(θ?, .) and supθ |f ′(θ, .)| are sub-polynomial, and ν(|z|) < ∞. Therefore, using (3) from Lemma 1
we have

sup
θ∈Θ

ˆ
R\{0}

E|b(θ?, Xti−1)f ′(θ, x̃)γ(Xu−)||z|ν(dz) <∞.

This last inequality together with (104) gives

(106) E sup
θ∈Θ
|cn(θ)| = O(n∆2

n).

From (102), (103) and (106) we conclude that under condition n∆3−ε
n → 0,

(107)
1√
n∆n

An,3(θ)
P−→ 0.

Finally, the previous display together with (99) and (101) proves (ii) of the lemma. To prove the
claim (i) we will again use the decomposition of the difference given by (95).

Using the same arguments as in (98) and Lemma 15 (1), we get for some p > 1, C > 0 and x̃
between Xs and Xti−1 :

E sup
θ∈Θ
|An,3(θ)| ≤ C

n∑
i=1

ˆ ti

ti−1

E
[
|f ′(θ, x̃)(1 + |Xti−1

|p)|
∣∣Xs −Xti−1

∣∣] ds ≤
C

n∑
i=1

ˆ ti

ti−1

E
(∣∣Xs −Xti−1

∣∣2)1/2 (
E
[
|f ′(θ, x̃)|2(1 + |Xti−1 |2p)

])1/2
ds ≤

n∑
i=1

ˆ ti

ti−1

C∆1/2
n ds ≤ Cn∆3/2

n .

Hence

(108)
1

n∆n
sup
θ∈Θ
|An,3(θ)| L

1

−→ 0.
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The bound (100) gives

(109)
1

n∆n
sup
θ∈Θ
|An,2(θ)| L

1

−→ 0.

From (99) we know that

∀θ ∈ Θ,
1

n∆n
An,1(θ)

P−→ 0.

Let us prove that this convergence holds uniformly with respect to θ. Denote φ : [0, tn] → [0, tn],
φ(s) = ti−1 if ti−1 ≤ s < ti, i = 0, . . . , n− 1, and define

Mn(θ) :=
1

tn
An,1(θ) =

1

tn

ˆ tn

0

(f(θ,Xs)− f(θ,Xφ(s)))σ(Xs)dWs.

Using Burkholder-Davis-Gundy inequality, Hölder continuity of f , sub-polynomial growth of its
Hölder constant K, sub-linear growth of σ and the boundedness of moments of X given by (3) of
Lemma 1 we find that for any p ≥ 2 and some C > 0,

E|Mn(θ)−Mn(θ′)|p ≤ |θ − θ′|κp C

t
p/2
n

E

(
1

tn

ˆ tn

0

(
K2(Xs) +K2(Xφ(s))

)
σ(Xs)

2ds

)p/2
≤ |θ − θ′|κp C

t
p/2+1
n

ˆ tn

0

E
(
K2(Xs) +K2(Xφ(s))

)p/2
σ(Xs)

pds ≤ C|θ − θ′|κp.

Choosing p > d
κ and using the Theorem 20 in the Appendix of I. Ibragimov [2013] we obtain

1

n∆n
sup
θ∈Θ
|An,1(θ)| P−→ 0

and the statement (i) follows.
�

8. Auxiliary results

In this section we gather some auxiliary results that are frequently used in our proofs. Further-
more, we give a proof of the ergodicity results of Lemma 1. We start by some moment inequalities
for jump diffusions and their continuous martingale part.

Lemma 15. Let X satisfy Assumption 1. Then for all t > s,
(1) ∀p ≥ 2,

E[|Xt −Xs|p]1/p ≤ C|t− s|1/p.
(2) Let Fs = σ{Xu, 0 ≤ u ≤ s}. Then for p ≥ 2, p ∈ N,

E[|Xt −Xs|p|Fs] ≤ |t− s|(1 + |Xs|p).

(3) ∀p > 1,

E [|Xc
t −Xc

s |p]
1/p ≤ C|t− s|1/2.

Proof. The first claim follows easily from the two lemmas and Theorem 66 on p. 339 in Protter
[2004]. The second claim follows from Proposition 3.1 in Shimizu and Yoshida [2006] and the third
from the first two lemmas on p.339 in Protter [2004]. �
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Lemma 16. Under assumptions 1 to 4, we have for some C > 0,

P ((N i
n)c ∩ (Ain)c) ≤ C ∆2

n

vn/γmin

ˆ
|z|≥3vn

ν(dz).

Proof. We need to introduce some notations. For z > 0, we define Uz =
´ ti
ti−1

´
|y|≥1/z

µ(ds, dy)

the number of jumps of (Xs), s ∈ (ti−1, ti], with a size greater than 1/z, and we set U0 = 0. It
is clear that (Uz)z≥0 is a process whose increments are independent and distributed with Poisson
laws. Hence, it is a Poisson process, and by a simple computation we can show that it has a jump
intensity equal to (ti − ti−1)z−2(ν(z−1) + ν(−z−1)), where ν(z) = ν(dz)/dz exists by Assumption
4 (iii).

We define the filtration generated by the process (Uz)z≥0, by setting for all z ≥ 0, Gz = σ{Uy; y ≤
z}. We note Z∗1 the first jump time of the process U , which is a stopping time. By construction,
we have that 1/Z∗1 is the size of the biggest jumps of the Lévy process L on (ti−1, ti], or with the
notations of Lemma 9 that, 1/Z∗1 = |∆LT∗i |, where |∆LT∗i | = max {|∆Ls|; s ∈ (ti−1; ti]}.

Moreover, we can write

∑
ti−1<s≤ti;s6=T∗i

|∆Ls| =
ˆ ti

ti−1

ˆ
|y|<1/Z∗1

|y|µ(ds, dy) =

ˆ
(Z∗1 ,∞)

1

z
dUz,

where we have used that ∆LT∗i is the only jump with the maximal size 1/Z∗1 . Hence, we have

P ((N i
n)
c ∩ (Ain)c) = P

|∆LT∗i | > 3vn
γmin

;
∑

ti−1<s≤ti;s6=T∗i

|∆Ls| >
vn
γmax


= P

(
(Z∗1 )−1 >

3vn
γmin

;

ˆ
(Z∗1 ,∞)

z−1dUz >
vn
γmax

)

= E

[
1{(Z∗1 )−1> 3vn

γmin
}P

(ˆ
(Z∗1 ,∞)

z−1dUz >
vn
γmax

| GZ∗1

)]

≤ γmax
vn

E

[
1{(Z∗1 )−1> 3vn

γmin
}E

(ˆ
(Z∗1 ,∞)

z−1dUz | GZ∗1

)]
,

where we have used the Markov inequality in the last line. Using now that (Uz)z≥0 is a Poisson
process with an explicit jump intensity U(z) := (ti − ti−1)z−2(ν(z−1) + ν(−z−1)), we deduce,

P ((N i
n)
c ∩ (Ain)c) ≤ γmax

vn
E

[
1{(Z∗1 )−1> 3vn

γmin
}E

(ˆ
(Z∗1 ,∞)

z−1U(z)dz | GZ∗1

)]
.
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But, by a simple change of variable,
´

(Z∗1 ,∞)
z−1U(z)dz = (ti−ti−1)

´
|y|<1/Z∗1

|y|ν(y)dy ≤ ∆n

´
R |y|ν(y)dy.

We conclude

P ((N i
n)
c ∩ (Ain)c) ≤ γmax

vn
∆n

(ˆ
R
|y|ν(y)dy

)
P

[
(Z∗1 )−1 >

3vn
γmin

]
≤ C∆n

vn
P

(
µ((ti−1, ti]× [(−∞,− 3vn

γmin
) ∪ (

3vn
γmin

,+∞)]) ≥ 1

)
≤ C∆2

n

vn

ˆ
|z|> 3vn

γmin

ν(dz),

where C > 0. The lemma is proved. �

Proposition 17. Under Assumptions 1 to 4, the Assumption 6 is equivalent to the condition

∀(θ, θ′) ∈ Θ2, such that θ 6= θ′, b(θ, .) 6= b(θ′, .).

Proof. It is sufficient to show that if O is some non empty, open set, then πθ(O) > 0. It is proved
in Masuda [2007] (see equation (13) p.43) that for all ∆ > 0, x ∈ R, and O non empty, open set,
P (Xθ

∆ ∈ O | Xθ
0 = x) > 0. From this, we deduce that

πθ(O) =

ˆ
R
P (Xθ

∆ ∈ O | Xθ
0 = x)dπθ(x) > 0.

�

We conclude this section with a proof of the ergodicity results and moment bounds of Lemma
1. The proof is based on Masuda [2007].

Proof of Lemma 1. Let q > 2, q even and f?(x) = |x|q.We show that f? satisfies the drift condition

Af? ≤ −c1f? + c2,

where c1 > 0, c2 > 0. Denote

Gf(x) =
1

2
σ2(x)f ′′(x) + b(θ, x)f ′(x),

J f(x) =

ˆ
R

(f(x+ zγ(x))− f(x))ν(dz).

for any f such that the two previous expressions are defined and decompose

A = G + J .
Using Taylor’s formula together with Assumptions 3 (iii) and 4 (ii) we can write

|J f?(x)| ≤
ˆ
R
|zγ(x)| sup

u∈[x,x+zγ(x)]

|f?
′
(u)|ν(dz) ≤ Cγ(x)|x|q−1

ˆ
R
|z|(1 + |z|)q−1ν(dz) = o(|x|q)

as x→∞. Using Assumption 3 (ii) and (iv) we get

Gf?(x) =
1

2
σ2(x)q(q − 1)xq−2 + b(θ, x)xqxq−2 ≤ −C|x|2qxq−2 + o(|x|q) ≤ −Cqf?(x) + o(|x|q),

for some C > 0. As Af?(x) is locally bounded, using two previous displays we can choose c2 > 0
and c1 > 0 such that for all x ∈ R,

Af?(x) ≤ −c1f?(x) + c2.
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Hence, Assumption 3? from Masuda [2007] holds and using Theorem 2.2 from Masuda [2007] we
get then

(110) sup
s≥0

E[|Xθ
s |q] <∞

and using Fatou’s lemma results in

sup
s≥0

E[|Xθ
s− |

q] <∞.

Hence we proved the assertion (3). Using Assumption 2 and the Theorem 2.1 from Masuda [2007]
we get for all θ ∈ Θ that Xθ admits the unique invariant distribution πθ, f? ∈ L1(πθ) and the
ergodic theorem holds. We proved (1) and (2). We continue with the proof of (4). Using ergodic
theorem, for all q > 0,

lim
t→∞

1

t

ˆ ∞
0

|Xθ
s |qds = πθ(|x|q), P − a.s.

Moreover, using Jensen’s inequality and the bound (110) we get the uniform integrability of the
family { 1

t

´ t
0
|Xθ

s |qds, t > 0}:

E

(
1

t

ˆ t

0

|Xθ
s |qds

)1+ε

≤ 1

t

ˆ t

0

[E|Xθ
s |q(1+ε)]ds ≤ C,

where C > 0, and hence

lim
t→∞

1

t

ˆ t

0

E|Xθ
s |qds = πθ(|x|q).

�

Proof of Lemma 11. Let us first prove (i). Using Lemma 15 (1), with some x̃ between Xti−1
and

Xs in the third line below we obtain:

E sup
θ∈Θ

∣∣∣∣∣
ˆ tn

0

f(θ,Xs) ds−
n∑
i=1

f(θ,Xti−1)∆iId

∣∣∣∣∣ = E sup
θ∈Θ

∣∣∣∣∣
n∑
i=1

ˆ ti

ti−1

f(θ,Xs)− f(θ,Xti−1) ds

∣∣∣∣∣
≤

n∑
i=1

ˆ ti

ti−1

E

[
sup
θ∈Θ

∣∣f(θ,Xs)− f(θ,Xti−1
)
∣∣] ds ≤ n∑

i=1

ˆ ti

ti−1

E

[
sup
θ∈Θ
|f ′(θ, x̃)|

∣∣Xs −Xti−1

∣∣] ds
≤

n∑
i=1

ˆ ti

ti−1

(
E sup
θ∈Θ
|f ′(θ, x̃)|2

)1/2 (
E|Xs −Xti−1

|2
)1/2

ds ≤ Cn∆3/2
n .

We now prove (ii). We find that
ˆ tn

0

f(θ,Xs) ds−
n∑
i=1

f(θ,Xti−1
)∆n

i Id =

n∑
i=1

ˆ ti

ti−1

(
f(θ,Xs)− f(θ,Xti−1

)
)
ds,

and it is then apparent that this term can be treated exactly as the term An,3(θ) given by the
equation (97). Hence, from (107) (which requires the condition n∆3−ε

n → 0) we have the result. �
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