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Abstract—Mobile phones equipped with a rich set of em-
bedded sensors enhance participatory sensing to collect data
for different applications. However, many challenges arise when
selecting participants to perform sensing tasks. Among these
challenges, we can cite energy consumption, users’ mobility
impact and the quality of retrieved data, recently defined as
Quality of Information (Qol). In this work, we study the Qol
and Energy-aware Mobile Sensing (QEMSS) problem. Hence,
for a given set of users, a sensing area and data quality
requirements, the objective of QEMSS is to find the subset
of users that maximizes Qol in terms of spatial and temporal
metrics while minimizing the overall energy consumption and
reducing the redundancy during the sensing process. We propose
a meta-heuristic algorithm based on Tabu-Search to provide a
sub-optimal solution. Simulation results, for both deterministic
and unknown participants’ trajectories, are compared to other
state-of-the-art methods. This allows showing that our approach
outperforms both the greedy-based and the random selection
strategies. Particularly, the achieved data quality by our scheme
is significantly higher in challenging scenarios such as low dense
areas or scarce users’ energy resources.

I. INTRODUCTION

Mobile devices nowadays are equipped with numerous em-
bedded sensors such as accelerometer, GPS, gyroscope, camera
and microphone [1] to cite a few, besides their communication,
processing and storage capacities. This enhances their role in
collecting and sharing data by the crowd (people), a trend
called Crowdsensing. Participatory sensing, or Crowdsensing,
was first introduced by authors in [2]. Recently, various appli-
cations are enabled by this new paradigm of mobile sensing.
For example, by leveraging the sensors in users’ handsets,
location data can be collected to estimate the personalized
environmental impact [3]. Other promising applications have
been developed in different fields: health care, tourism and
transportation [4].

However, these systems raise new challenges compared
to traditional WSNs. Authors in [5] pointed out the security
issue and built a framework, called Anonysense, to protect the
privacy of participants in large scale mobile sensing applica-
tions. Another major focus was the fact that smart devices are
energy-constrained which requires specific selection schemes
to reduce the dedicated energy for sensing tasks. In [6], authors
proposed various selection algorithms to show potential energy
savings by sensing in a collaborative way. To this purpose,
only a subset of participants is selected to cover the area
targeting the minimization of the overall energy consumption.
Furthermore, authors in [7] proposed collecting “readings”
cooperatively and periodically by mobile phones to be mapped

into virtual stationary sensors and used later by applications
tiers which limits energy consumption during sensing tasks.

In spite of the benefits that may be brought by such a new
paradigm, participants may be reluctant to contribute their re-
sources during the sensing procedure. Motivation mechanisms,
denoted as “incentives”’, were introduced to stimulate users to
dedicate a percentage of their devices’ energy. The MCARD
algorithm illustrated in [8] targets selecting participants to get
all the required data such that the total cost on paying them is
minimized.

One element that hadn’t been well addressed in previous
works is the quality of collected data, which should be a major
requirement for sensing applications. Quality of Information
(Qol) was first studied by Bisdikan et al. for WSNs [9] and
it has been recently investigated for Crowdsensing. Authors
in [10] studied the Qol issue while providing incentives for
selected participants. The aforementioned scheme proposed a
multi-task oriented mobile users selection strategy (DPS) to
maximize a Qol-satisfaction metric per sensing task subject to
a budget constraint, yet, energy efficiency was handled very
partially.

With all this in mind, we propose a Qol and Energy-aware
Mobile Sensing Scheme, (QEMSS), for large scale participa-
tory sensing. The objective is to maximize the overall achieved
quality of data while ensuring no-redundancy and respecting
energy-constraints towards registered participants. We formally
model the corresponding optimization problem and propose a
Tabu-Search based algorithm to reach a sub-optimal solution.
The effectiveness of our strategy was extensively evaluated in
terms of Maximum Achieved Qol and Spatial and Temporal
Accuracy. Eventhough results for high density sensing areas
are comparable to other selection schemes in the literature,
the importance of our work is demonstrated for low density
sensing regions and its limited requirements in terms of users’
resources.

The rest of the paper is organized as follows. We start
by explaining the techniques used in this work: i.e. the Tabu-
Search meta-heurstic, in section II. Next, we detail the system
model and define necessary elements to model the correspond-
ing optimization problem in section III. In section IV, we
describe in details the use of Tabu-Search for designing our
solution QEMSS. Section V illustrates our simulation results
while comparing QEMSS to the two concurrent methods: DPS
and Random Selection algorithms. Finally, conclusions and
future perspectives are drawn in section VL.



II. BACKGROUND: TABU-SEARCH

Tabu search is a meta-heuristic that guides a local heuristic
search procedure to explore the solution space beyond local
optimality [11]. It was first introduced by Glover in [12]. The
basic idea is to forbid a move that would return to recently
visited solutions called tabus.

Given S, the set of possible solutions to a problem, for each
solution s € S it exists a subset of S called neighborhood of
s, N(s). The neighborhood contains feasible solutions, each
is obtained by making a simple move from the solution s. A
move m can be defined as adding/deleting an element to/from
the current solution. Besides, the Tabu Search (TS) algorithm
uses a memory structure called Tabu List (TL) to avoid cycles.
A solution among N(s) is selected only if it does not exist in
the TL. At each iteration, the TS updates the TL by adding
attributes of the selected solution. Attributes usually do not
contain the complete solution to facilitate handling the TL.
The TL size is called Tabu Tenure (TT). It is crucial to define
an adequate TT, because if it is too small, there is a high
chance to have cycles and hence TS cannot go beyond the
local optimal solution. However, if TT is very large, very few
options will be left for the neighborhood formation.

To start TS, an Initialization phase is set. This is to
generate an initial feasible solution s;,;:. Note that the further
is this solution from the optimal one, the greater is the overall
time of execution of the method. Therefore, it would be more
efficient not to start with a totally random solution. The use
of this search in designing our solution, QEMSS, is presented
in details in section IV.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a system of N mobile users and a central
server as shown in Figure 1. Each user carries his mobile
equipped with embedded sensors and is considered as a
candidate participant for the sensing task. Users are moving
arbitrarily in a 2D area representing a city. Nevertheless, they
do not move in a totally random way but rather they follow
paths. The trajectory of each user can be then formally defined
as a set of possible visited areas (“locations”). In this case, we
subdivide the sensing region into multiple sub-regions of one
or many locations.

First, the server initiates the sensing tasks with a set of Qol
requirements: ¢; € {q1,...,qr}, such as quantity of collected
data, sensing region and time of measurements. The server
regularly gathers information from registered mobile phones
users regarding their mobility. Moreover, each participant
is assumed to update his device remaining energy. In our
scenario, we assume that the unit energy consumption of a
sensor on different type of devices is almost identical as
assumed by the authors in [13] and we denote it by e.. It
is worth mentioning that we consider also a threshold level
on energy eg. Whenever a device’s energy level reaches this
value, the user in question is eliminated from the candidate list
of participants during future sensing periods. This guarantees
to participants the necessary energy for normal use of their
mobiles. The server selects then the subset of participants
that maximizes the Qol of overall collected data while taking
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Fig. 1. Mobile Phone Sensing scenario: the server selects a subset of users
that answers the maximum Qol while considering an energy constraint and
broadcasts the scheduling. Selected participants collect and upload the data.
The server answers requests generated by application tiers by retrieving the
adequate information.

into account energy and redundancy. To do so, we limit the
number of required measurements to one measurement per
area for a particular sensing period. Finally, a sensing schedule
is generated to determine when and where to sense for each
participant.

B. Problem Formulation

1) Qol attributes and metrics: In the following, we use
the notation from TABLE 1. Suppose that X is the subset
of the selected users among all participants. We compute, for
each user, the possible provided data quality. To this point,
we selected three attributes: “Completeness”, “Timeliness” and
“Affordability”. The first term measures if the collected data
provides all facts. In this work, the spatial completeness is
considered as the area potentially covered by a participant.
Timeliness is, as the term indicates, collecting and uploading
information within a limited time interval which is the sensing
period. The last criterion highlights the fact that a user with a
low battery level cannot “afford” to participate in next sensing
tasks. We quantify the aforementioned attributes using the
utility function introduced in [14] as a metric. This normalized
function was proposed in economy to quantify the level of
usefulness that a user derives from a given product. In our
scenario, we set different functions to measure the utility
perceived by the system of each Qol attribute .

According to [14], the “completeness” metric is an upward
criterion, as the more a user covers an area, the more he
collects samples of data. Given a variation range of the
coverage x, T, < * < xg and a middle point of the utility
T, an adequate utility function for z is:
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As per the “Timeliness” metric, it must be a centered
function, because the sensing period is a time interval with
the required instant of measurement as the median. This
ensures that as the time of measurement gets further from the
required moment, its utility lowers. Given a variation range
of the instant z, v, < @ < wg and the required instant of
measurement x,» as a middle point of the utility, we formulate
the utility function described in Equation (4).
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where x,,1 and x,,2 are respectively the middle points of the
time intervals [z, z,] and [z, zg].

Finally, the total utility of data is the product of all its Qol-
attributes utilities presented by Equation (5). This formulation
makes the collected information “utile” only if it satisfies all
quality metrics. Hence, in case one quantity is null, the overall
data-utility provided by the corresponding mobile user in a
specific area is null which forbids, for example, collecting data
out of the sensing time interval.

Ugor = Ug(z) X Uy(x). (5)

Equation (5) illustrates the objective function to be max-
imized in our scheme: i.e. we target to maximize the “time-
liness” and “completeness” of collected data during sensing
tasks. For the “affordability” attribute, its corresponding metric
will be introduced as a constraint in our problem rather than
an objective since it is a limiting condition. Besides, the
“affordability” is a downward criterion; when a user’s mobile
remaining energy gets low, the utility of its measurements
lowers as well. Hence, we quantify the “affordability”, i.e. the
capability of a mobile to sense, by the decreasing function of
Equation (6).

Ue(z) =1 —Ue(x). (6)

Note that the percentage of energy « varies in [eg, 100%] where
Ue (63) =0.

2) Known/Unknown users’ trajectories: It is worth noting
that we consider both deterministic and unknown users’ tra-
jectories. The first approach assumes that the server knows in
advance each user’s trip. This helps to define a benchmark
for the unknown case: i.e. the realistic scenario where users
announce only their initial locations obtained via the GPS
service to the server at the beginning of each sensing period.

TABLE 1. LIST OF NOTATIONS
Notations Description
N Set of candidate participants
M Sensing sub-regions
L Number of Qol requirements
e; Initial Energy level for user ¢
€c Energy cost for sensing
eg Energy level Threshold
qi A Qol requirement
Pinit Initial participant position
Uqor Total Qol-Utility achieved by a user
X Subset of selected users

To predict next possible visited areas, we use the Markov
model for mobility prediction. Particularly, we choose the
second-order Markov model, that is to predict the next position
based on the two last visited ones. To this end, we define the
probability of visiting a future area as introduced in [15] by:

_ |Ti/(ny,ns) € T
DPrs = |E/nr c E‘ )

where n, is the last two visited positions vector, ng is the
possible future sub-area to be visited and 7; is the trajectory
of the user 1.

3) Optimization Problem: The final goal of QEMSS is to
maximize the overall achieved value of data quality collected
by X selected participants while minimizing the consumed
resources to achieve that. Hence, an optimization problem can
be formulated as:

(N

N M
maxiTmize Z Zmij x Ugor(Qol;;)
i=1 j=1
M
subject to Ue(eifeCinj) >0 Viel...N (8)
j=1
N
and PETES! Viel...M
i=1

where X is a users X areas sized-matrix with elements in
{0,1}. If @;; is 1, user i is selected to sense on area j. The
first constraint ensures to each mobile the necessary amount of
energy for the common activities while the second one forbids
data redundancy by selecting at most one user per area.

In the formulation in (8), we look for a “combination” of
users that satisfies both constraints and maximizes the objective
function. However, combinatorial optimization problems are
challenging to solve whenever a large number of entities is
involved. In this paper, we are working on a large scale
Crowdsensing scenario which makes looking for the optimal
solution a non polynomial-time process [10]. Therefore, it
would be more efficient to search a sub-optimal solution using
heuristic methods such as Tabu-Search (TS).

IV. QoI AND ENERGY-AWARE MOBILE SENSING SCHEME

In the following, we present in details the use of Tabu-
Search for designing our solution QEMSS. First, we start with
defining the different components of TS:

e A possible solution X is a users X areas sized
boolean matrix: i.e. z;; in {0, 1}. This solution must
answer the constraints of the problem in Equation (8).



That means, for each user (u;: row of X) the remain-
ing energy of his mobile device, e; — e, Z]Ail Tij,
needs to be above the defined threshold ey. Besides,
to have at most a user per sub-area, the sum of each
column a; of the feasible solution must be less than
or equal to 1 to avoid redundancy.

aq apnr

Ul T11 T1M
X=": : Tij : )

un ITN1 TNM

e A move m € M(X) is a modification applied to
an initial solution X;,;; to generate other possible
solutions. In our work, we consider swapping the
assignment of users to a same area. Thus, a move
m can be a matrix of the same size as X with all
elements equals to zeros except those of the old and
the new assignment positions, which are set to 1.

e To generate the neighborhood of a solution X, we
apply the defined move m. Each element in N(X) is
the result of a simple XOR operation: X' = X @ m.

e  For each solution X € .S, we compute the maximum
achieved Qol value as its attribute.

e In each iteration, we update the TL by adding the
attributes of the best achieved solution Xpes; in terms
of the maximum achieved Qol.

We add the best achieved Qol-value among all visited solutions
to the TL as an attribute of X such as done in [11]. This will
not only forbid recycling to already visited solutions but also to
not visit solutions with same Ug,r. Consequently, we reduce
both the time of computation and the required memory for TL.
Our TS-based selection scheme is presented in Algorithm 1.

Algorithm 1 TS for maximizing the overall Qol of collected
data
1: Initialization: Generate an initial solution X;,,;; from the

space of feasible solutions and compute its data utility U.

X Xinit

Xopt — Xinit

Uopt ~ Uinit

while iter < Maz;t., do

Neighborhood Formation: Generate all neighbors of
the current solution X by applying moves m € M (X)
except those in the Tabu List TL.

7. Neighborhood Selection: Select the neighbor solution
X' € N(X) with the far best data utility Upes: to be
considered as the initial solution for the next iteration.

8: if Ubest > Uopt then

AR N

9: Xopt <~ Xbest

10: Uopt — Ubest

11:  end if

12z Update TL: Add the attributes of the selected solution
to TL.

130 X — Xpest
14: end while
15: Return X

Initialization: To generate an initial solution, we need to
satisfy all constraints of the optimization problem (8). A first
trivial solution may be the identity matrix which answers the
second constraint: at most one user per area. However, note
that we can not assign a user to an area which does not
belong to his trajectory. To this end, we propose a simple
heuristic to find an initial feasible solution. It is a “greedy-
based procedure” presented in Algorithm 2. First, we select
a random sub-region among the set of all sensing sub-regions.
Then, we search for the participant with the maximum value of
Qol and a residual mobile energy above the defined threshold.
We repeat this procedure till we cover all the required area or
no more candidates are available.

Algorithm 2 Greedy Method to generate an initial solution

Require: Set of sensing sub-regions R , Users N, Utility
matrix U.
Ensure: Set of selected users X
1: while R is not empty do
2. Select a random area R; € R
3:  while select = 0 do
4: Select the user with the maximum collected data
utility in the area R;:
(Maxzy,argmax) < max(Ug,)

5 Verify the energy constraint :
6: if U (argmaz) > 0 then

7: X(argmazx, R;) < 1

8: select < 1

9: else

10: U(argmaz, R;) < 0

11: select < 0

12: end if

13:  end while
14 R+ R—R;
15: end while

16: Return X

Neighborhood Formation: Starting from a solution X we
can generate the neighborhood N (X) by applying one move.
We swap a selected user to sense on a specific area in X with
another user in the same area. Our swap is based on a generated
reference matrix X,.r, where z,¢r(7,j) = 1 only if the user
i stopped by the area j during his trip. All moves are chosen
among the 1-elements of the current region (column of the
matrix). By this way, we obtain a "Reduced Neighborhood”
which facilitates the search among feasible solutions. As for
the initial solution, we check that each neighbor X' € N(X)
conforms with the energy constraint.

Note that Algorithm 1 is the search strategy for both deter-
ministic and unknown trajectories approaches. Simulations are
described in detail in the next section and results are compared
to existing concurrent participatory sensing schemes from the
literature.

V. PERFORMANCE EVALUATION

‘We consider as a simulation area, a city of 4000m x 6000m
scale which includes 20 horizontal “roads” and 20 vertical
ones. We first subdivide this area into sub-areas of “roads”. The
topology of the area is similar to the well known Manhattan-
city model. Therefore, we use mobility traces of the Manhattan
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Fig. 2. Achieved Qol by different selection schemes in case of
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sensing area and (b) considering the energy evolution for 400 users during a
16-hour sensing period.

mobility model generated by the mobility scenario generation
tool, Bonnmotion [16]. Each user enters a road with a random
speed picked from [1,3], moves straight with a probability
of 0.5, turns left or right with respective probabilities of
0.25 each. The number of users is varied from 100 to 1000.
Users’ initial energy is randomly generated as a uniformly-
distributed random variable ranging from ey to 100%. We
carried out simulations for 16-hours sensing period. Besides,
we conducted two predictions per hour for the unknown
trajectories scenario.

To evaluate the performance of our algorithm, we introduce
three metrics: Maximum Achieved Qol, Spatial Accuracy and
Temporal Accuracy. QEMSS was compared to two methods, a
modified version of the Dynamic Participant Selection Scheme
(DPS) algorithm in [10] and a Random selection scheme.
Results are detailed in Figures 2 and 3.

A. Maximum Achieved Qol

In Figure 2, we plot the achieved data quality percentage
achieved by the three considered selection schemes. The
average value of the different 16-hours measured Qol per-
centage varying the number of users is shown in Figure 2(a).
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Obviously, the reached Qol value increases in function of
the number of users available in the sensing area. For high
density areas (500-1000 users), QEMSS performs as efficient
as others schemes. However, for low density (100-400 users),
our scheme outperforms both DPS and RS. This is observed for
both deterministic and prediction algorithms. The maximum
achieved Qol value, in the case of unknown trajectories, gets
lower for all algorithms due to the prediction resulted errors.
Nevertheless, QEMSS still performs better than the two other
evaluated schemes.

In Figure 2(b), we observe that for a specific number of
users (400) the performance of our scheme is comparable to
the DPS algorithm in the beginning of the period. Nevertheless,
the gap between QEMSS and DPS widened in the end of
the sensing period up to 27%. This is due to the selection
strategy; the TS-based algorithm used by QEMSS conducts
extensive search at each sensing interval to diversify the
selected users which makes their devices’ batteries last more.
However, using the DPS greedy-based search, the same users
are frequently selected to sense which limits their resources.
The Random Selection has clearly the lower performance in
terms of achieved Qol.

B. Spatial and Temporal Accuracy

To measure the spatial accuracy, we used the Manhattan-
distance function as presented by Equation (9). We compute
the distance between the spatial coordinates of the required
sensing area and the collected data. Note that the server
answers applications’ requests by available data, i.e, if no
measurement is collected on the required area, it looks for
the spatially and temporally closest measurement. That is, the
larger is the Manhattan-distance dist(areareq,datacon), the
lower is its spatial accuracy.

Sa=1-)Y |X; =Y, 9)
i=1



As shown in Figure 3(a) and 3(b), the DPS-scheme is get-
ting less accurate when getting closer to the end of the sensing
period. This corresponds to the fact of not achieving good
data quality. QEMSS and Random Search reached comparable
spatial accuracy since they both cover most of the required
regions. However, for the timeliness criterion quantified by
the utility function U,(z), we observe in Figures 3(c) and
3(d) that the RS-scheme is the less accurate selection strategy.
That means, selected users by RS covered most of the area
but collected samples in random instants that are far from the
required time of measurement. Eventhough DPS is as accurate
as QEMSS for the first half of the sensing period, the error
rate is leveled up to 62% by the end of the sensing period.
This is due to the limited energy resources of available users
at the end of the sensing period when using DPS.

VI. CONCLUSIONS

In this paper, a Qol Energy-aware Selection Scheme for
participatory sensing systems is presented. We investigated
first how to quantify different Qol attributes by introducing an
adequate “utility function” to each criterion. In order to select
an optimal set of users that maximizes data quality, a Tabu-
Search based algorithm was illustrated. Simulation results
show that our system has achieved competitive performance
in high density areas compared to other benchmark schemes.
However, QEMSS obtained a significant gain in the achieved
Qol and spatial and temporal accuracy of data in challenging
situations such as low density sensing areas and/or low battery
equipped participants at the end of a sensing period. Hence,
QEMSS outperformed the two state-of-the-art participatory
selection schemes.

Besides, QEMSS diversified the selection of users in each
iteration by using the Tabu-search. This resulted on a first level
of fairness among participants. A future work will study in
detail the fairness issue in order to reduce the individual energy
consumption by minimizing the number of sensing times for
each participant.
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