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PERIODIC CYCLIC HOMOLOGY AND EQUIVARIANT GERBES

JEAN-LOUIS TU AND PING XU

Abstract. This paper is our first step in establishing a de Rham model for equivariant
twisted K-theory using machinery from noncommutative geometry. Let G be a compact
Lie group, M a compact manifold on which G acts smoothly. For any α ∈ H3

G(M,Z) we
introduce a notion of localized equivariant twisted cohomology H•(Ω̄•(M,G,L)g, d

α
Gg ),

indexed by g ∈ G. We prove that there exists a natural family of chain maps, indexed
by g ∈ G, inducing a family of morphisms from the equivariant periodic cyclic homology
HPG

•
(C∞(M,α)), where C∞(M,α) is a certain smooth algebra constructed from an

equivariant bundle gerbe defined by α ∈ H3
G(M,Z), to H•(Ω̄•(M,G,L)g, d

α
Gg ). We

formulate a conjecture of Atiyah-Hirzebruch type theorem for equivariant twisted K-
theory.

1. Introduction

The well-known Atiyah-Hirzebruch theorem asserts that for a smooth manifold M , the
Chern character establishes an isomorphism:

K•(M)⊗C
ch
−→
∼=

H•
DR(M,C)

Therefore, modulo the torsion, K-theory groups are isomorphic to the (Z2-graded) de
Rham cohomology groups. In the study of K-theory, it has been a central question how
to establish a Atiyah-Hirzebruch type theorem for other types of K-theory groups, among
which are equivariant K-theory [21]. In 1994, Block-Getzler proved the following re-
markable theorem [8] extending a result of Baum-Brylinski-MacPherson [3] in the case of
G = S1:

Let G be a compact Lie group, M a compact manifold on which G acts smoothly. Then

K•

G(M)⊗R(G) R
∞(G) −→

∼=
H•(A•

G(M), deq).

Here R(G) is the representation ring of G, and R∞(G) is the ring of smooth functions
on G invariant under the conjugation. Then R∞(G) is an algebra over R(G), since R(G)
maps to R∞(G) by the character map. And H•(A•

G(M), deq) is the cohomology of global
equivariant differential forms on M , also called the delocalized equivariant cohomology.
Roughly speaking, H•(A•

G(M), deq) can be considered as the cohomology of the inertia
stack Λ[M/G] (while ordinary equivariant cohomology is the cohomology of the quotient
stack [M/G]). In a certain sense, delocalized equivariant cohomology H•(A•

G(M), deq) is
a de Rham description of the equivariant K-theory.

In late 1980’s, Block [7] and Brylinski [10, 11] independently proved the following the-
orem:
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2 JEAN-LOUIS TU AND PING XU

Let G be a compact Lie group and A a topological G-algebra. Then the equivariant
Chern character (26) induces an isomorphism

(1) HPG
• (A) −→

∼=
KG

• (A)⊗R(G) R
∞(G).

By using the above theorem, Block-Getzler [8] reduces the problem of establishing
Atiyah-Hirzebruch type theorem for equivariant K-theory to that of computing the equi-
variant periodic cyclic homology HPG

• (C∞(M)), and thus can apply the machinery of
noncommutative geometry. When G = {∗}, HPG

• (C∞(M)) is isomorphic to the (Z2-
graded) de Rham cohomology H•

DR(M) according to a theorem of Connes [12, 13], and
therefore Block-Getzler theorem reduces to the classical Atiyah-Hirzebruch theorem.

Motivated by string theory, there has been a great deal of interest in the study of twisted
K-theory [9, 31]. It is thus natural to ask how to extend Atiyah-Hirzebruch theorem to
twisted K-theory. The manifolds case was completely solved in [18], while orbifolds case
was done [26]. This paper is our first step in establishing Atiyah-Hirzebruch type theorem
for twisted equivariant K-theory.

In literatures, there exist different equivalent approaches to twisted equivariant K-
theory, eg. [2]. In [25], with Laurent-Gengoux, we introduced twisted equivariant K-
theory based on the idea from noncommutative geometry. It can be described roughly as
follows. For a compact manifold M equipped with an action of a compact Lie group G,
and any α ∈ H3

G(M,Z), one can always construct an S1-central extension of Lie groupoids

X̃1
π
→ X1 ⇒ X0 representing α ∈ H3

G(M,Z). Such an S1-central extension is unique up

to Morita equivalence. From the S1-central extension of Lie groupoids X̃1
π
→ X1 ⇒ X0,

one constructs a convolution algebra Cc(X1, L). Then the twisted equivariant K-theory
groups can be defined as the K-theory groups of this algebra (or its corresponding reduced
C∗-algebra), i.e., K•

G,α(M) := K•(Cc(X1, L)).

In order to apply Block-Brylinski theorem [7, 10, 11] (Theorem 5.7) in our situation,
first of all, we prove the following

Theorem A. For any integer class α ∈ H3
G(M,Z), there always exists a G-equivariant

bundle gerbe [27] H̃1
φ
→ H1 ⇒ H0 over M with an equivariant connection and an

equivariant curving, whose equivariant 3-curvature represents α in the Cartan model
(Ω•

G(M), d + ι).

As a consequence, equivalently one can define the twisted equivariant K-theory groups
K•

G,α(M) as KG
• (C∞

c (H,L)), where C∞
c (H,L) is the convolution algebra corresponding

to the G-equivariant bundle gerbe H̃1
φ
→ H1 ⇒ H0. Note that when G = {∗} and

α ∈ H3
G(M,Z) being trivial, H̃1

φ
→ H1 ⇒ H0 is Morita equivalent to C∞(M).

Therefore, we are led to the following

Problem B. Compute the equivariant periodic cyclic homology HPG
• (C∞

c (H,L)) in terms
of geometric data to obtain de Rham type cohomology groups.

Toward this direction, we first prove the following:

Theorem C. Any Lie groupoid S1-central extension representing α ∈ H3
G(M,Z) canon-

ically induces a family of G-equivariant flat S1-bundles
∐

g∈G(P
g → Mg) indexed by

g ∈ G, where Mg = {x ∈ M |x · g = x} is the fixed point set under the diffeomorphism
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x → x · g, and for any h ∈ G, the action by h, is an isomorphism of the flat bundles

(P g → Mg) 7→ (P h−1gh → Mh−1gh).
Two such S1-central extensions induce G-equivariantly isomorphic families of flat S1-

bundles.

Let L =
∐

g∈G Lg, where Lg = P g ×S1 C, ∀g ∈ G, are their associated G-equivariant
flat complex line bundles.

Choose a G-equivariant closed 3-form ηG ∈ Z3
G(M) such that [ηG] = α. Following Block-

Getzler [8], we consider the localized twisted equivariant cohomology as follows. Denote
by Ω̄•(M,G,L)g the space Ω̄Gg(Mg, Lg) of germs at zero of Gg-equivariant smooth maps
from gg to Ω•(Mg, Lg). By dαGg we denote the twisted equivariant differential operator
∇g + ι− 2πiηG on Ω̄Gg(Mg, Lg), where ∇g : Ω̄Gg(Mg, Lg) → Ω̄Gg(Mg, Lg) is the covariant
differential induced by the flat connection on the complex line bundle Lg → Mg, and
ηG acts on Ω̄Gg(Mg, Lg) by taking the wedge product with i∗gηG. Here i∗g : ΩG(M) →

ΩGg(Mg) is the restriction map. It is simple to see that (dαGg )2 = 0, and {dαGg |g ∈ G}
are compatible with the G-action. The family of cohomology groups are denoted by
H•(Ω̄•(M,G,L)g , d

α
Gg ), and are called localized twisted equivariant cohomology.

Our main result in the paper is the following:

Theorem D. There exists a family of G-equivariant chain maps, indexed by g ∈ G:

τg : (PC
G
• (C

∞
c (H,L)), b + B) → (Ω̄•(M,G,L)g , d

α
Gg )

By G-equivariant chain maps, we mean that the following diagram of chain maps com-
mutes:

(PCG
• (C

∞
c (H,L)), b + B)

τg
//

τ
h−1gh

++❱❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

((Ω̄•(M,G,L)g , d
α
Gg ))

φh

��

((Ω̄•(M,G,L)h−1gh, d
α
Gh−1gh

)).

Therefore, there is a family of morphisms on the level of cohomology:

(2) τg : HPG
• (C∞

c (H,L)) → H•((Ω̄•(M,G,L)g , d
α
Gg )).

In order to completely solve Problem B, following Block-Getzler [8], we propose the
following

Problem E. Introduce global twisted equivariant differential forms by modifying the no-
tion of global equivariant differential forms a la Block-Getzler [8] to define delocalized
twisted equivariant cohomology H•

G,delocalized,α(M), and establish the isomorphism

HPG
• (C∞

c (H,L)) −→
∼=

H•

G,delocalized,α(M).

We will devote Section 5 to discussions on this issue.

Acknowledgments. We would like to thank several institutions for their hospitality
while work on this project was being done: Penn State University (Tu), IHES (Xu), and
Université Paris Diderot (Xu). We also wish to thank many people for useful discussions
and comments, including Mathieu Stiénon and Camille Laurent-Gengoux.
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2. Localized equivariant twisted cohomology

2.1. S1-gerbes over [M/G]. Let X̃1 → X1 ⇒ X0 be an S1-central extension of Lie
groupoids. By abuse of notations, we denote, by d, both the de Rham differentials

Ω•(X•) → Ω•+1(X•), and Ω•(X̃•) → Ω•+1(X̃•). And, by ∂, we denote the simplicial

differential ∂ : Ω•(X•) → Ω•(X•+1) for the groupoid X1 ⇒ X0, while, by ∂̃, we denote the

simplicial differential ∂̃ : Ω•(X̃•) → Ω•(X̃•+1) for the groupoid X̃1 ⇒ X0. See Section 2.1
[32] for details on de Rham cohomology of Lie groupoids. Recall the following

Definition 2.1 ( [5]). (i) A connection form θ ∈ Ω1(X̃1) for the S1-bundle X̃1 → X1,

such that ∂̃θ = 0, is a connection on the S1-central extension S1 → X̃1 → X1 ⇒ X0;

(ii) Given θ, a 2-form B ∈ Ω2(X0), such that dθ = ∂̃B is a curving;
(iii) and given (θ,B), the 3-form Ω = dB ∈ H0(X•,Ω

3) ⊂ Ω3(X0) is called the 3-
curvature.

We have the following

Lemma 2.2. Given an S1-central extension X̃1
π
→ X1 ⇒ X0,

(1) the obstruction group to the existence of connections is H2(X•,Ω
1);

(2) the obstruction group to the existence of curvings is H1(X•,Ω
2).

Proof. (1). Choose any connection one-form θ ∈ Ω1(X̃1) of the S1-bundle π : X̃1 → X1.

It is simple to see that ∂̃θ = π∗η, where η ∈ Ω1(X2). Here by abuse of notations, we use the

same symbol π to denote the induced projection X̃2 → X2. Since π
∗∂η = ∂̃π∗η = ∂̃2θ = 0,

it thus follows that ∂η = 0. If θ′ is another connection one-form, then θ′ differs from θ by
a one-form A ∈ Ω1(X1). Thus η′ = η + ∂A. It follows that the class [η] ∈ H2(Ω1(X•), ∂)
is independent of the choice of θ. Note that H•(Ω1(X•), ∂) ∼= H•(X•,Ω

1) since Ω1 is a
soft sheaf.

Assume that [η] ∈ H2(X•,Ω
1) vanishes. We may write η = ∂α for some one-form

α ∈ Ω1(X1). It is simple to see that θ′ = θ − π∗α is indeed a connection for the S1-
extension.

(2). Assume that θ ∈ Ω1(X̃1) is a connection. Let ω ∈ Ω2(X1) be its curvature, i.e.

dθ = π∗ω. Since π∗∂ω = ∂̃π∗ω = ∂̃dθ = d∂̃θ = 0, we have ∂ω = 0. Hence [ω] ∈
H1(Ω2(X•), ∂) ∼= H1(X•,Ω

2). Then [ω] vanishes if and only if there exists B ∈ Ω2(X0)

such that ω = ∂B, i.e. dθ = ∂̃B. Hence [ω] = 0 if and only if there exists a curving. �

Remark 2.3. Note that H2(X•,Ω
1) and H1(X•,Ω

2) are isomorphic to H2(X,Ω1) and
H1(X,Ω2), respectively, where X is the differentiable stack corresponding to the groupoid
X1 ⇒ X0 [5]. Therefore, these cohomology groups are Morita invariant.

The following theorem is due to Abad-Crainic [[1] Corollary 4.2].

Theorem 2.4. If X1 ⇒ X0 is a proper Lie groupoid, then

Hp(X•,Ω
q) = 0, if p > q.

In particular, we have H2(X•,Ω
1) = 0. Thus we have the following

Proposition 2.5. If X̃1 → X1 ⇒ X0 is an S1-central extension of a proper Lie groupoid
X1 ⇒ X0, then connections always exist.

In particular, if G is a compact Lie group acting on a manifold M , and X̃1
π
→ X1 ⇒ X0

is an S1-central extension representing any class α ∈ H3
G(M,Z), then this extension admits

a connection.

Note that H1((M ⋊ G)•,Ω
2) may not necessarily vanish in general, so curvings does

not always exist.
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2.2. Equivariant bundle gerbes. We now recall some basic notions regarding equivari-
ant cohomology in order to fix the notations.

Let M be a smooth manifold with a smooth right action of a compact Lie group G:
(x, g) ∈ M ×G → x · g. There is an induced action of the group G on the space Ω•(M) of
differential forms on M by g ·ω = R∗

gω, where Rg : M → M is the operation of the action
by g ∈ G. If ω : g → Ω•(M) is a map from g to Ω•(M), the group G acts on ω by the
formula

(3) (g · ω)(X) = g · (ω(Adg−l X)), ∀X ∈ g.

By an equivariant differential form on M , we mean a G-equivariant polynomial function
ω : g → Ω•(M). When ω is a homogeneous polynomial, the degree of ω is defined to be the
sum of 2×the degree of the polynomial and the degree of the differential form ω(X), X ∈ g.
We denote by Ωk

G(M) the space of local equivariant differential forms of degree k. Define

an equivariant differential dG = d+ ι : Ω•
G(M) → Ω•+1

G (M), where

(dω)(X) = d(ω(X)), (ιω)(X) = ιX̂ω(X).

Here X̂ denotes the infinitesimal vector field on M generated by the Lie algebra element
X ∈ g. Note that Ω•

G(M) can also be identified with the space of invariant polynomials

(Sg∗ ⊗ Ω•(M))G. The cochain complex (Ω•
G(M), dG) is called the Cartan model of the

equivariant cohomology group H•
G(M) [6].

Following [27], an S1-central extension H̃1
p
−→ H1 ⇒ H0 is said to be G-equivariant if

both H̃1 ⇒ H0 and H1 ⇒ H0 are G-groupoids, the groupoid morphism p : H̃1 → H1 is

G-equivariant, and H̃1
p
−→ H1 is a G-equivariant principal S1-bundle, i.e. if the following

relations:

(x̃ · ỹ) ⋆ g = (x̃ ⋆ g) · (ỹ ⋆ g)

p(x̃ ⋆ g) = p(x̃) ⋆ g

(λx̃) ⋆ g = λ(x̃ ⋆ g)

are satisfied for all g ∈ G, all composable pairs (x̃, ỹ) in H̃2 and all λ ∈ S1.

Now assume that H0
π
−→ M is a G-equivariant surjective submersion. Consider the pair

groupoid H1 ⇒ H0, whereH1 = H0×MH0, the source and target maps are t(x, y) = x and
s(x, y) = y, and the multiplication (x, y) · (y, z) = (x, z). Then H1 ⇒ H0 is a G-groupoid,
which is Morita equivalent to the G-manifold M ⇒ M . A G-equivariant bundle gerbe

[19, 27] is a G-equivariant S1-central extension of Lie groupoids H̃1
p
−→ H1 ⇒ H0.

The following notion is due to Stienon [27].

Definition 2.6 ([27]). (1) An equivariant connection is a G-invariant 1-form θ ∈

Ω1(H̃1)
G such that θ is a connection 1-form for the principal S1-bundle H̃1

p
−→ H1

and satisfies

∂̃θ = 0.

(2) Given an equivariant connection θ, an equivariant curving is a degree-2 element
BG ∈ Ω2

G(H0) such that

(4) curvG(θ) = ∂BG,

where curvG(θ) denotes the equivariant curvature of the S
1-principal bundle H̃1

p
−→

H1, i.e. the element curvG(θ) ∈ Ω2
G(H1) characterized by the relation

(5) dGθ = p∗ curvG(θ).
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(3) Given an equivariant connection and an equivariant curving (θ,BG), the corre-
sponding equivariant 3-curvature is the equivariant 3-form ηG ∈ Ω3

G(M) such that

(6) π∗ηG = dGBG.

Here the coboundary operators ∂ : Ω•(H•) → Ω•(H•+1) and ∂̃ : Ω•(H̃•) → Ω•(H̃•+1)

are the simplicial differentials of the groupoids H1 ⇒ H0 and H̃1 ⇒ H0, respectively.

The following result can be found in [27].

Proposition 2.7. Let H̃1
φ
−→ H1 ⇒ H0 be a G-equivariant bundle gerbe over a G-manifold

M .

(1) Equivariant connections and equivariant curvings (θ,BG) always exist.
(2) The class [ηG] ∈ H3

G(M) defined by the equivariant 3-curvature is independent of
the choice of θ and BG.

The degree 3 equivariant cohomology class [ηG] ∈ H3
G(M) is called the equivariant

Dixmier-Douady class of the underlying equivariant bundle gerbe.

2.3. Kostant-Weil theorem for equivariant bundle gerbes. The main result of this
section is the following Kostant-Weil type of quantization theorem for equivariant bundle
gerbes.

Theorem 2.8. For any integer class α ∈ H3
G(M,Z), there always exists a G-equivariant

bundle gerbe over M with an equivariant connection and an equivariant curving, whose
equivariant 3-curvature represents α in the Cartan model. Moreover, one can choose a
G-basic connection as an equivariant connection on the G-equivariant bundle gerbe.

The rest of this subsection is devoted to the proof of Theorem 2.8.

For any α ∈ H3
G(M,Z) ∼= H3((M ⋊G)•,Z), let Γ̃

π
→ Γ ⇒ M ′, where p : M ′ → M is an

immersion, be an S1-central extension of Lie groupoids representing α. Let H0 = M ′×G.
Assume that the map

π : H0 → M, π(x, g) = p(x)g

is a surjective submersion. Note that this assumption always holds if M ′ =
∐

Ui is an open
cover ofM . It is clear thatH0 admits a right G-action: (x, h)·g = (x, hg), ∀(x, h) ∈ M ′×G
and g ∈ G. Then the map π : H0 → M is clearly G-equivariant. Let H1 = H0 ×M H0.
Then H1 ⇒ H0 is a G-groupoid, which is Morita equivalent to M ⇒ M . Consider the
groupoid morphism

ν : H1 → Γ, ν((x, g), (y, h)) = (x, gh−1, y).

Let H̃1 → H1 be the pullback S1-bundle of Γ̃ → Γ via the map ν : H1 → Γ:

H̃1 = H1×ΓΓ̃ = {((x, g), (y, h), r̃)|(x, g), (y, h) ∈ H0, r̃ ∈ Γ̃, p(x)g = p(y)h, (x, gh−1, y) = p(r̃)}.

Since ν is constant along the G-orbits on H1, the G-action on H1 naturally lifts to H̃1, i.e.

((x, g), (y, h), r̃) · k = ((x, gk), (y, hk), r̃), ∀k ∈ G, ((x, g), (y, h), r̃) ∈ H̃1.

Thus H̃1 ⇒ H0 is a G-equivariant groupoid. Let φ : H̃1 → H1 be the projection.

Lemma 2.9. (1) H̃1
φ
→ H1 ⇒ H0 is a G-equivariant bundle gerbe over M ;
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(2) the following diagram

(7) H̃1

��

q̃
// Γ̃

��

H1

����

q
// Γ

����

H0 q0
// M ′

,

where q̃ : H̃1 → Γ̃, ((x, g), (y, h), r̃) 7→ r̃ is the projection, q : H1 → Γ is the map
ν, and q0 : H0(∼= M ′ × G) → M ′ is the projection pr1, defines a morphism of
S1-central extensions;

(3) the S1-central extensions H̃1 ⋊ G
φ
→ H1 ⋊ G ⇒ H0 and Γ̃

π
→ Γ ⇒ M ′ are Morita

equivalent. Indeed,

(8) H̃1 ⋊G

��

q̃◦pr1
// Γ̃

��

H1 ⋊G

����

q◦pr1
// Γ

����

H0 q0
// M ′

is a Morita morphism of S1-central extensions [25].

Proof. This can be verified directly, which is left to the reader. �

As an immediate consequence, we have the following

Corollary 2.10. For any integer class α ∈ H3
G(M,Z), there exists a G-equivariant bundle

gerbe H̃1 → H1 ⇒ H0 over M such that the Dixmier-Douady class of H̃1⋊G
φ
→ H1⋊G ⇒

H0 is equal to α under the natural isomorphism

H3((H ⋊G)•,Z) ∼= H3((M ⋊G)•,Z) ∼= H3
G(M,Z).

Proof. For any α ∈ H3
G(M,Z) ∼= H3((M ⋊ G)•,Z), according to Proposition 4.16 in

[5], one can always represent α by an S1-central extension [5, 24] Γ̃
π
→ Γ ⇒ M ′, where

p : M ′ → M is étale and surjective, and Γ = {(x, g, y) ∈ M ′ × G ×M ′| p(x)g = p(y)} is
the pull-back groupoid of M ⋊G ⇒ M via p. Then

(9) Γ
p
//

����

M ⋊G

�� ��

M ′ p
// M

is a Morita morphism, where, by abuse of notations, p : Γ → M⋊G is given by p(x, g, y) =
(p(x), g). The groupoid structure on Γ ⇒ M ′ is given by s(x, g, y) = y, t(x, g, y) = x,
(x, g, y)(y, h, z) = (x, gh, z) and (x, g, y)−1 = (y, g−1, x). Thus we are in the situation
described at the beginning of this section. In particular, the Dixmier-Douady class of

the S1-central extension H̃1 ⋊ G → H1 ⋊ G ⇒ H0 is equal to α under the isomorphism
H3((H ⋊ G)•,Z) ∼= H3((M ⋊ G)•,Z) = H3

G(M,Z). This concludes the proof of the
corollary. �
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Proof of Theorem 2.8 It remains to prove that the Dixmier-Douady class, in the
Cartan model, defined by the equivariant 3-curvature of the G-equivariant bundle gerbe

H̃1 → H1 ⇒ H0 in Corollary 2.10 is equal to α. This essentially follows from a theorem
of Stienon (Theorem 4.6 in [27]). More specifically, if ηG ∈ Z3

G(M) is the equivariant

3-curvature of the G-equivariant bundle gerbe H̃1 → H1 ⇒ H0, then [ηG] maps to the

Dixmier-Douady class of the central extension H̃1 ⋊ G → H1 ⋊ G ⇒ H0, under the
isomorphism H3

G(M)
∼
→ H3

DR((H ⋊ G)•) according to Theorem 4.6 in [27]. The latter
corresponds exactly to α according to Corollary 2.10.

Finally, let θ′ ∈ Ω1(Γ̃) be a connection of the S1-central extension Γ̃
π
→ Γ ⇒ M ′, which

always exists according to Proposition 2.5. Let θ = q̃∗θ′ ∈ Ω1(H̃1), where q̃ is as in Eq. (7).
Since q̃ is a morphism of S1-central extensions, θ is clearly a connection of the S1-central

extension H̃1
φ
→ H1 ⇒ H0. Since q̃(τ · g) = q̃(τ), ∀τ ∈ H̃1, g ∈ G, it follows that θ is

G-invariant. Since X̂ θ = 0, ∀X ∈ g, thus θ is G-basic. This concludes the proof of the
theorem.

Remark 2.11. When G is a compact simple Lie group and G acts on G by conjugation,
there is an explicit construction of G-equivariant bundle gerbe due to Meinrenken [19] (see
also [16] for the case of G = SU(n)).

2.4. Geometric transgression. For a Lie groupoid Γ ⇒ Γ0, by SΓ we denote the space
of closed loops {g ∈ Γ|s(g) = t(g)}. Then Γ acts on SΓ by conjugation: γ · τ = γτγ−1,
∀γ ∈ Γ and τ ∈ SΓ such that s(γ) = t(τ). One forms the transformation groupoid

ΛΓ : SΓ ⋊ Γ ⇒ SΓ, which is called the inertia groupoid. If Γ̃ → Γ ⇒ Γ0 is an S1-central

extension, then the restriction Γ̃|SΓ is naturally endowed with an action of Γ. To see this,

for any γ ∈ Γ, let γ̃ ∈ Γ̃ be any of its lifting. Then for any τ̃ ∈ Γ|SΓ such that s(γ) = t(τ̃),
set

(10) τ̃ · γ = γ̃−1τ̃ γ̃.

It is simple to see that this Γ-action is well defined, i.e. the right hand side of Eq. (10) is

independent of the choice of the lifting γ̃. Thus Γ̃|SΓ → SΓ naturally carries an S1-bundle
structure over the inertia groupoid ΛΓ ⇒ SΓ (see also Proposition 2.9 in [28]).

Proposition 2.12. Let Γ ⇒ Γ0 be a Lie groupoid. Then any S1-central extension Γ̃ →
Γ ⇒ Γ0 induces an S1-bundle over the inertia groupoid ΛΓ ⇒ SΓ.

Remark 2.13. In general, the inertia groupoid is not a Lie groupoid since SΓ may not
be a smooth manifold.

Now assume that Γ̃
π
→ Γ ⇒ Γ0 is an S1-central extension representing α ∈ H3

G(M,Z).

By Proposition 2.5, this central extension admits a connection θ ∈ Ω1(Γ̃). According
to Proposition 3.9 [28], there exists an induced connection on the associated S1-bundle

Γ̃|SΓ → SΓ over the inertia groupoid ΛΓ. Since Γ ⇒ Γ0 is Morita equivalent to M ⋊G ⇒

M , ΛΓ is Morita equivalent to Λ(M ⋊ G), where the Morita equivalence bimodule is
induced by the equivalence bimodule between Γ ⇒ Γ0 and M ⋊ G ⇒ M . Thus one
obtains an S1-bundle P with a connection over the groupoid Λ(M ⋊ G), according to
Corollary 3.15 in [25].

It is clear that the groupoid Λ(M ⋊G) is isomorphic to (
∐

g∈GMg)⋊G ⇒
∐

g∈GMg,

where Mg = {x ∈ M |x · g = x} is the fixed point set under the diffeomorphism x → x · g.
By

∐
g∈G P g →

∐
g∈G Mg, we denote this S1-bundle. As a consequence, we obtain a

family (i.e. over a manifold instead of over a groupoid) of S1-bundles P g → Mg, with
connections, indexed by g ∈ G, on which G acts equivariantly preserving the connections.
The main result of this section is the following
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Theorem 2.14. Let α ∈ H3
G(M,Z).

(1) Assume that Γ̃
π
→ Γ ⇒ Γ0 is an S1-central extension representing α, where Γ ⇒ Γ0

is the pullback groupoid of the transformation groupoid M⋊G ⇒ M via a surjective

submersion p : Γ0 → M . Then Γ̃
π
→ Γ ⇒ Γ0 canonically induces a family of G-

equivariant flat S1-bundles P g → Mg indexed by g ∈ G.
Here, for any h ∈ G, the action by h, denoted Rh by abuse of notations, is an

isomorphism of the flat bundles (P g → Mg) 7→ (P h−1gh → Mh−1gh) over the map

Rh : Mg → Mh−1gh; Moreover, g acts on P g as an identity.

(2) If Γ̃
π
→ Γ ⇒ Γ0 and Γ̃′ π′

→ Γ′ ⇒ Γ′
0 are any two such S1-central extensions, their

induced families of flat S1-bundles
∐

g∈G(P
g → Mg) and

∐
g∈G(P

′g → Mg) are
G-equivariantly isomorphic.

We need a few lemmas. Note that Γ ∼= {(x, g, y) ∈ Γ0 × G × Γ0| p(x)g = p(y)} and
SΓ = {(x, g, x) ∈ Γ0 ×G× Γ0| p(x)g = p(x)}. For any g ∈ G, denote

(SΓ)g = {(x, g, x) ∈ Γ0 ×G× Γ0| p(x) ∈ Mg}.

By ig : (SΓ)g → Γ, we denote the natural inclusion.

Lemma 2.15. Assume that ω ∈ Ωk(Γ) is a multiplicative k-form, i.e. satisfies ∂ω = 0.
Then i∗gω = 0.

Proof. For simplicity, we prove the lemma for the case k = 1. Differential forms of higher
degree can be proved in a similar manner. Fix any tangent vector δx ∈ Txp

−1(Mg). Let
δm = p∗δx ∈ TmM , where m = p(x), and Gδm = {h ∈ G|Rh∗δm = δm}, the isotropy group
at δm of the lifted G-action Rh∗

on TM . For any h ∈ Gδm , (δx, 0h, δx) is clearly a well
defined tangent vector in T(x,h,x)Γ, where 0h ∈ ThG is the zero tangent vector. Since Gδm

is compact, then (δx, 0h, δx) ω, considered as a function on Gδm , must be bounded. On
the other hand, it is simple to see that, with respect to the tangent groupoid multiplication
TΓ ⇒ TΓ0, we have

(δx, 0g, δx) · (δx, 0g, δx) = (δx, 0g2 , δx).

Since ∂ω = 0, it follows that 2(δx, 0g, δx) ω = (δx, 0g2 , δx) ω. Hence, for any n ∈ N∗,

(δx, 0g, δx) ω =
1

n
(δx, 0gn , δx) ω.

Since gn ∈ Gδm , it thus follows that (δx, 0g, δx) ω = 0. Hence i∗gω = 0. �

Lemma 2.16. The groupoid ΛΓ|(SΓ)g ⇒ (SΓ)g is Morita equivalent to the transformation
groupoid Mg ⋊Gg ⇒ Mg.

Proof. Consider

ΛΓ|(SΓ)g
ϕ

//

����

Mg ⋊Gg

�� ��

(SΓ)g
ϕ0

// Mg

.

Here the map ϕ : ΛΓ|(SΓ)g → Mg ⋊ Gg is defined by ϕ((x, g, x), (x, h, z)) =
(p(x), h), ∀((x, g, x), (x, h, z)) ∈ SΓ⋊ Γ|(SΓ)g , and ϕ0 : (SΓ)g → Mg is ϕ0(x, g, x) = p(x),
∀(x, g, x) ∈ (SΓ)g. It is simple to check that the diagram above indeed defines a Morita
morphism. �

Proof of Theorem 2.14

(1). Note that for any g ∈ G, the S1-bundle P g → Mg is induced from the S1-bundle

Γ̃|(SΓ)g → (SΓ)g over ΛΓ|(SΓ)g . According to Proposition 2.5, the S1-central extension



10 JEAN-LOUIS TU AND PING XU

Γ̃ → Γ admits a connection θ ∈ Ω1(Γ̃). Let ω ∈ Ω2(Γ) be the curvature of the S1-bundle

Γ̃ → Γ, i.e. dθ = π∗ω. Since ∂θ = 0, it follows that ∂ω = 0. Hence Lemma 2.15 implies

that Γ̃|(SΓ)g → (SΓ)g must be a flat bundle over ΛΓ|(SΓ)g ⇒ (SΓ)g. Therefore P g → Mg

is a flat bundle over the transformation groupoid Mg ⋊Gg ⇒ Mg, according to Corollary
3.15 in [17].

Assume that θ′ ∈ Ω1(Γ̃) is another connection of the central extension Γ̃ → Γ ⇒ Γ0.
Then θ − θ′ = π∗ξ, where ξ ∈ Ω1(Γ) satisfies the equation ∂ξ = 0. Applying Lemma 2.15
again, we obtain that ξ|(SΓ)g = 0. It thus follows that θ′ = θ when being restricted to

Γ̃|(SΓ)g .

By construction, for any u ∈ Mg, P g
u =

∐
{x|p(x)=u} Γ̃|(x,g,x)/ ∼, where ∼ is the equiv-

alence relation between elements in Γ̃|(x,g,x) and those in Γ̃|(y,g,y) with p(x) = p(y) = u
induced by the action of the element (x, 1, y) ∈ Γ as given by Eq. (10). To prove that g
acts on P g by the identity map, it suffices to show that γ := (x, g, x) acts on P g by the
identity. The latter is equivalent to the identity:

(11) γ̃ξγ̃−1 = ξ,

for any γ̃ ∈ Γ̃|(x,g,x) which lifts γ = (x, g, x), and any ξ ∈ Γ̃|(x,g,x). Since γ̃ and ξ lie in the

same fiber Γ̃|(x,g,x), we may assume that ξ = λγ̃, λ ∈ C∗. Eq. (11) follows immediately

since Γ̃ → Γ is an S1-central extension.

(2). To prove (ii), assume that Γ̃′ π′

→ Γ′ ⇒ Γ′
0 is another S1-central extension repre-

senting α, where p′ : Γ′
0 → M is a surjective submersion and Γ′ ⇒ Γ′

0 is the pullback
groupoid of the transformation groupoid M ⋊ G ⇒ M by p′. Let Γ′′

0 = Γ0 ×M Γ′
0. By

pr1 : Γ′′
0 → Γ0 and pr2 : Γ′′

0 → Γ′
0, we denote the natural projections. Let Γ′′ ⇒ Γ′′

0 be the
pull back groupoid of the transformation groupoid M ⋊ G ⇒ M via p′′ : Γ′′

0 → M . By

assumption, pr∗1(Γ̃ → Γ ⇒ Γ0) and pr∗2(Γ̃ → Γ ⇒ Γ0) are Morita equivariant S1-central
extensions. Since p′′ = p′◦pr2 = p◦pr1, one finds that Γ′′ ⇒ Γ′′

0 is isomorphic to the
pullback groupoids pr∗1(Γ ⇒ Γ0) and pr∗2(Γ

′ ⇒ Γ′
0). Therefore, we obtain two Morita equi-

variant S1-central extensions: pr∗1 Γ̃ → Γ′′ ⇒ Γ′′
0 and pr∗2 Γ̃

′ → Γ′′ ⇒ Γ′′
0. By Proposition

4.16 in [5], there exists an S1-bundle L → Γ′′
0 such that pr∗2 Γ̃

′ ∼= L ⊗ pr∗1 Γ̃ ⊗ L−1. It

thus follows that pr∗2 Γ̃
′|(SΓ′′)g

∼= pr∗1 Γ̃|(SΓ′′)g . This implies that Γ̃′|(SΓ′)g → (SΓ′)g, as an

S1-bundle over ΛΓ′|(SΓ′)g ⇒ (SΓ′)g, is isomorphic to Γ̃|(SΓ)g → (SΓ)g, as an S1-bundle
over ΛΓ|(SΓ)g ⇒ (SΓ)g.

Remark 2.17. Freed-Hopkins-Teleman also proved the existence of a family of flat S1-
bundles over Mg using a different method [14].

2.5. Localized twisted equivariant cohomology. Let us first recall some basic con-
structions of Block-Getzler [8]. Following [8], by a local equivariant differential form on
M , we mean a smooth germ at 0 ∈ g of a smooth map from g to Ω•(M) equivariant under
the G-action. Denote the space of all local equivariant differential forms by Ω̄•

G(M), i.e.

Ω̄•
G(M) := C∞

0 (g,Ω•(M))G. Here for a finite-dimensional vector space V , C∞
0 (V ) denotes

the algebra of germs at 0 ∈ V of smooth functions on V . It is clear that Ω̄•
G(M) is Z/2-

graded, and is a module over the algebra C∞
0 (g)G of germs of invariant smooth functions

over g. The usual equivariant differential dG = d + ι : Ω•
G(M) → Ω•+1

G (M) extends to a
differential, denoted by the same symbol dG,

dG = d+ ι : Ω̄•
G(M) → Ω̄•+1

G (M)
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satisfying d2G = 0. Thus we obtain a Z/2-graded chain complex (Ω̄•
G(M), dG), which can

be considered as a certain completion of the Cartan model of the equivariant cohomology
H•

G(M).
Now let G act on the manifold underlying G by conjugation: h · g = g−1hg. For any

g ∈ G, by Mg we denote the fixed point set of the diffeomorphism induced by g on M . Let
Gg denote the centralizer of g: Gg = {h ∈ G|gh = hg}, and gg its Lie algebra. Consider
the space of equivariant differential forms Ω̄•(M,G)g := Ω̄Gg(Mg), which consist of germs
at zero of smooth maps from gg to Ω(Mg) equivariant under Gg. It is easy to see that
if ω ∈ Ω̄•(M,G)g , k · ω ∈ Ω̄•(M,G)g·k. Moreover, the equivariant differential coboundary
operators on {Ω̄•

Gg (Mg), g ∈ G} are compatible with the G action as well. That is

k · dGgω = dGAdkg(k · ω),

where dGg : Ω̄•(M,G)g → Ω̄•(M,G)g is the equivariant differential on Ω̄•(M,G)g . The
family of cohomology groups H•(Ω̄•(M,G)g , dGg ) are called localized equivariant cohomol-
ogy.

For any α ∈ H3
G(M,Z), let

∐
g∈G P g be a family of G-equivariant flat S1-bundles as

in Theorem 2.14, and L =
∐

g∈G Lg, where Lg = P g ×S1 C, ∀g ∈ G, are their associated
G-equivariant flat complex line bundles.

Choose a G-equivariant closed 3-form ηG ∈ Z3
G(M) such that [ηG] = α. Following Block-

Getzler [8], we consider the localized twisted equivariant cohomology as follows. Denote
by Ω̄•(M,G,L)g the space Ω̄Gg(Mg, Lg) of germs at zero of Gg-equivariant smooth maps
from gg to Ω•(Mg, Lg). By dαGg we denote the twisted equivariant differential operator
∇g + ι − 2πiηG on Ω̄Gg(Mg, Lg), where ∇g : Ω̄Gg(Mg, Lg) → Ω̄Gg(Mg, Lg) denotes the
covariant differential induced by the flat connection on the complex line bundle Lg → Mg,
and ηG acts on Ω̄Gg(Mg, Lg) by taking the wedge product with i∗gηG. Here i∗g : ΩG(M) →

ΩGg(Mg) is the restriction map. It is simple to see that (dαGg )2 = 0, and {dαGg |g ∈ G}
are compatible with the G-action. The family of cohomology groups are denoted by
H•(Ω̄•(M,G,L)g , d

α
Gg ), and are called localized twisted equivariant cohomology.

The proposition below justifies our definition.

Proposition 2.18. Assume that η1G and η2G are equivariant closed 3-forms in Z3
G(M) such

that η2G − η1G = dGBG, for some BG ∈ Ω2
G(M). Then

ΦBG
: Ω̄•(M,G,L)g → Ω̄•(M,G,L)g

ω 7→ exp(2πiBG)ω

defines an isomorphism of the cochain complexes from (Ω̄•(M,G,L)g ,∇g + ι− 2πiη1G) to
(Ω̄•(M,G,L)g ,∇g + ι− 2πiη2G).

Moreover, if BG is a coboundary, then ΦBG
induces the identity map on the cohomology

group H•(Ω̄•(M,G,L)g , d
α
Gg ). As a consequence, there is a canonical map

(12) H2
G(M) → Aut(H•(Ω̄•(M,G,L)g , d

α
Gg )).

Proof. The proof of the first part is straightforward. We note that the exponential does
make sense, since, if BG = β + f ∈ Ω2(M)G ⊕ (g∗ ⊗ Ω0(M))G, exp(2πif) ∈ C∞(g,M) is

well-defined and exp(2πiβ) is a finite sum:
∑

k≤dimM/2
(2πi)k

k! βk.

For the second part, assume that BG = dGγ, with γ ∈ Ω1(M)G. Then η1G = η2G. A
simple calculation (see e.g. [28, Prop. 4.8]) shows that, for any cocycle ω ∈ Ω̄•(M,G,L)g ,
we have

ΦBG
ω − ω = (∇+ ι− 2πiη1G)(uω),

where u = γ e2πiBG−1
BG

. �
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As a consequence, the localized twisted equivariant cohomology H•(Ω̄•(M,G,L)g , d
α
Gg )

depends on L up to an isomorphism.

3. The Hochschild-Kostant-Rosenberg theorem

3.1. Equivariant cyclic homology. The Connes’ Hochschild-Kostant-Rosenberg theo-
rem states that if M is a compact manifold, then

τ : a0 ⊗ · · · ⊗ ak 7→
1

k!
a0da1 · · · dak

induces an isomorphism from HPi(C
∞(M)) to H i+2Z

dR (M,C) for i = 0, 1. In fact, τ is a
chain map from the periodic cyclic chain complex (PC•(C

∞(M)), b + B) to the de Rham
complex (Ω•(M), dDR) [12, 13]. In general, we have the following

Proposition 3.1. Let A be an associative unital algebra over C, (Ω•, d) a differential
graded algebra, (Ω̄•, d) a chain complex, and ρ : A → Ω0 an algebra morphism. Assume
that Tr : Ω• → Ω̄• is a chain map, called a (super-)trace. Then the map τ : PC•(A) → Ω̄•

given by

τ : a0 ⊗ · · · ⊗ ak 7→
1

k!
Tr(ρ(a0)dρ(a1) · · · dρ(ak))

is a chain map from (PC•(A), b + B) to (Ω̄•, d).

The goal of this section is to prove a counterpart of the above result for a G-equivariant
curved differential graded algebra.

Assume that A is a topological algebra over C endowed with an action of a compact Lie

group G by automorphisms. Let Ã = A⊕C1 be its unitization considered as a G-algebra,

where G acts on the unit 1 trivially. Set CCG
k (A) = C∞(G, Ã ⊗ A⊗k)G, where G acts

on itself by conjugation, and ⊗ denotes an appropriate topological tensor product chosen
according to the situation. There exist two differentials b : CCG

k (A) → CCG
k−1(A) and

B : CCG
k (A) → CCG

k+1(A), defined, respectively, by

b(ϕ⊗ a0 ⊗ · · · ⊗ ak)(g) =
k−1∑

i=0

(−1)iϕ(g)a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak

+(−1)kϕ(g)(g−1ak)a0 ⊗ a1 ⊗ · · · ⊗ ak−1

B(ϕ⊗ a0 ⊗ · · · ⊗ ak)(g) =
k∑

i=0

(−1)kiϕ(g)1 ⊗ (g−1ak−i+1)⊗ · · ·

· · · ⊗ (g−1ak)⊗ a0 ⊗ · · · ⊗ ak−i,

∀ϕ ∈ C∞(G), ai ∈ A, i = 1, · · · , k.

It is simple to check that b2 = B2 = bB + Bb = 0. Let PCG
i (A) = ⊕m∈NCCG

i+2m(A).
The G-equivariant periodic cyclic homology of A is defined to be the homology group of
the chain complex (PCG

• (A), b+ B):

HPG
i (A) = Hi(PC

G
• (A), b + B).

The following result is due to Brylinski [10, 11].

Proposition 3.2. Let A be a topological associative algebra, and G a compact Lie group
acting on A by automorphisms. Then there is a natural isomomorphism

HPG
• (A) ∼= HP•(A⋊G),

where A⋊G := C∞(G,A) is the crossed product algebra.
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We refer to [30] for the general theory of equivariant periodic cyclic homology.

3.2. Traces on curved differential graded G-algebras. We use the standard notation

for the Lie derivative: LXa = X · a = limt→0
etX ·a−a

t for all X ∈ g.
By an N-graded G-vector space with a connection, we mean a N-graded vector space

(Ωn)n∈N equipped with a degree preserving G-action whose infinitesimal g-action is de-
noted by LX , together with a G-equivariant linear map ∇ : Ω• → Ω•+1 of degree 1, and a
G-equivariant linear map ι : g → Der−1(Ω•) satisfying the following identities:

(i) ι2X = 0 for all X ∈ g;
(ii) ∇ιX + ιX∇ = LX .

Here Der−1(Ω•) denotes the space of degree −1 derivations on Ω•. The operators ιX are
called contractions, the operators LX are called Lie derivatives, and the operator ∇ is
called connection.

A morphism between two N-graded G-spaces with connections is a G-equivariant linear
map of degree 0 which interchanges the connections and contractions (and hence the Lie
derivatives as well).

Similarly, an N-graded G-algebra with a connection is a N-graded topological algebra,
which is an N-graded G-vector space with a connection such that LX , ιX , and ∇ are all
derivations of the graded algebra.

Given an N-graded G-space with a connection (Ω•,∇), and Θ ∈ Ω2, set

(13) ηG = (∇+ ι)Θ,

which is a map from g to Ω•, i.e., ηG(X) = ∇Θ + ιXΘ, ∀X ∈ g. In the sequel, we write
Ω = ∇Θ ∈ Ω3 and ηX = ιXΘ ∈ Ω1.

Definition 3.3. A curved differential graded G-algebra is an N-graded G-algebra with a
connection (Ω•,∇) such that ∇2 = [Θ, ·] for some Θ ∈ Ω2 satisfying the properties that
∀X ∈ g, LXΘ = 0, and ηG(X) is central in Ω•.

For instance, for a graded G-manifold M , the de Rham complex (Ω•(M), dDR) is clearly
a (curved) differential graded G-algebra with Θ = 0.

A module over a N-graded G-algebra with a connection (Ω•,∇) is a N-graded G-space
with a connection (Ω̄•, d) such that ∀β ∈ Ω• and ω ∈ Ω̄•,

(i) d(βω) = ∇β · ω + (−1)|β|β · dω;

(ii) ῑX(βω) = (ῑXβ)ω + (−1)|β|βιXω.

Definition 3.4. A trace map between a curved differential graded G-algebra (Ωn)n∈N and
a N-graded G-space (Ω̄n)n∈N with a connection, is a morphism Tr : Ω• → Ω̄• of N-graded
G-spaces with connections such that the following identity holds for a fixed central element
g ∈ G:

Tr(ω1ω2) = (−1)|ω1| |ω2|Tr((g−1ω2)ω1), ∀ω1, ω2 ∈ Ω•.

Lemma 3.5. Let (Ω̄•, d) be a module of a curved differential graded algebra (Z•,∇) such
that d2 = 0. Assume that ∇2 = [Θ, ·] for Θ ∈ Z2. Let

C̄•

G(Ω̄) := C∞
0 (g, Ω̄•)G

be the space of smooth germs at 0 ∈ g of G-equivariant maps from g to Ω̄•. Then
(C̄•

G(Ω̄), d + ῑ + ηG) is a chain complex, where the coboundary operator d + ῑ + ηG is
defined by

(d+ ῑ+ ηG)(ω)(X) = d(ω(X)) + ῑX(ω(X)) + ηG(X) · ω(X),∀ ω ∈ C•

G(Ω̄), X ∈ g.

Here ηG is defined by Eq. (13).
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3.3. From equivariant periodic cyclic homology to equivariant cohomology. We
are now ready to state the main result of this section.

Theorem 3.6. Let (Ω•,∇) be a curved differential graded G-algebra with ∇2 = [Θ, ·], and
(Ω̄•, d) a N-graded G-space with a connection. Let Tr : Ω• → Ω̄• be a trace map. Assume
that Ω̄• is a module over the curved differential graded G-algebra Z• generated by ηG(X),
i.e. by ∇Θ and ῑXΘ, ∀X ∈ g, such that

Tr(βω) = βTrω, ∀β ∈ Z•, ω ∈ Ω•.

Then, for any algebra homomorphism ρ : A → Ω0, the map τ : PCG
• (A) → C̄•

G(Ω̄) defined
by

τ(ϕ⊗ a0 ⊗ · · · ⊗ ak)(X)

= ϕ(geX )

∫

∆k

Tr(ρ(a0)∇
(t1,X)ρ(a1) · · · ∇

(tk ,X)ρ(ak))e
−Θdt1 · · · dtk,

∀ϕ ∈ C∞(G), ai ∈ A, i = 1, · · · , k, where ∆k = {(t1, . . . , tk)| 0 ≤ t1 ≤ · · · ≤ tk ≤ 1} and

∇(t,X)β = e−tΘ∇(e−tXβ)etΘ, ∀β ∈ Ω•

is a chain map from (PCG
• (A), b + B) to (C•

G(Ω̄), d + ῑ+ ηG).

We start with the following

Lemma 3.7. For all β ∈ Ω0,

−
∂

∂t
(e−tΘ(e−tXβ)etΘ) = (∇+ ιX)∇(t,X)(β).

Proof. We have

−
∂

∂t
(e−tΘ(e−tXβ)etΘ) = e−tΘ[Θ, e−tXβ]etΘ + e−tΘLX(e−tXβ)etΘ

= e−tΘ∇2(e−tXβ)etΘ + e−tΘιX∇(e−tXβ)etΘ,

where we have used the identities: ∇2 = [Θ, ·] and LX = ιX∇+∇ιX . Now, since Ω = ∇Θ
is central by assumption, we have

∇∇(t,X)(β) = ∇(e−tΘ∇(e−tXβ)etΘ)

= −te−tΘΩ∇(e−tXβ)etΘ + e−tΘ∇2(e−tXβ)etΘ

−e−tΘ∇(e−tXβ)tΩetΘ

= e−tΘ∇2(e−tXβ)etΘ − te−tΘ[α,∇(e−tXβ)]etΘ (since Ω is central)

= e−tΘ∇2(e−tXβ)etΘ.

Similarly, since ιXΘ := ηX is central, we have ιX∇(t,X)(β) = e−tΘιX∇(e−tXβ)etΘ. The
result thus follows. �

Proof of Theorem 3.6

Without loss of generality, we may assume that A = Ω0 and ρ = id. We compute
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(d+ ῑ)τ(ϕ ⊗ a0 ⊗ · · · ⊗ ak)(X)

=

∫

∆k

(d+ ῑX)Tr(ϕ(geX )a0∇
(t1,X)a1 · · · ∇

(tk ,X)ake
−Θ) dt1 · · · dtk

=

∫

∆k

Tr((∇ + ιX)(ϕ(geX )a0∇
(t1,X)a1 · · · ∇

(tk ,X)ake
−Θ)) dt1 · · · dtk

=

∫

∆k

ϕ(geX )Tr(∇a0∇
(t1,X)a1 · · · ∇

(tk ,X)ake
−Θ) dt1 · · · dtk

+

k∑

i=1

(−1)i+1

∫

∆k

ϕ(geX )Tr(a0∇
(t1,X)a1 · · · (∇+ ιX)∇(ti,X)ai · · · ∇

(tk ,X)ake
−Θ) dt1 · · · dtk

+(−1)k
∫

∆k

ϕ(geX )Tr(a0∇
(t1,X)a1 · · · ∇

(tk ,X)ak(∇+ ιX)e−Θ) dt1 · · · dtk

= I + II + III.

Next we examine each term I, II and III separately. Since (∇+ ιX)e−Θ = −e−Θ(α+
ηX), the third term is equal to

III = −(−1)k
∫

∆k

Tr(ϕ(geX )a0∇
(t1,X)a1 · · · ∇

(tk ,X)ake
−Θ(α+ ηX)) dt1 · · · dtk

= −(α+ ηX)τ(ϕ ⊗ a0 ⊗ · · · ⊗ ak)(X).

Using Lemma 3.7 above, we see that the second term

II =

∫

(t1,...,t̂i,...,tk)∈∆k−1

( k∑

i=1

(−1)i+1Tr(ϕ(geX )a0∇
(t1,X)a1 . . .∇

(ti−1,X)ai−1

(
e−ti−1Θ(e−ti−1Xai)e

ti−1Θ
)

∇(ti+1,X)ai+1 · · · e
−Θ) + (−1)iTr(ϕ(geX )a0∇

(t1,X)a1 · · ·

∇(ti−1,X)ai−1

(
e−ti+1Θ(e−ti+1Xai)e

ti+1Θ
)
∇(ti+1,X)ai+1 · · · e

−Θ)
)
dt1 · · · d̂ti · · · dtk

with t0 = 0 and tk+1 = 1 by convention.
After re-indexing, we obtain

II =

∫

(t1,...,tk−1)∈∆k−1

k∑

i=1

(
(−1)i+1Tr(ϕ(geX )a0∇

(t1,X)a1 . . .∇
(ti−1,X)ai−1e

−ti−1Θ

∇(e−ti−1X)ai−1)(e
−ti−1Xai)e

ti−1Θ · · · ∇(tk−1,X)ake
−Θ) dt1 · · · dtk−1

+(−1)iTr(ϕ(geX )a0∇
(t1,X)a1 . . .∇

(ti−1,X)ai−1e
−tiΘ(e−tiXai)∇(e−tiXai+1)e

tiΘ · · ·

∇(tk−1,X)ak · · · e
−Θ)

)
dt1 · · · dtk−1
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After replacing i by i+ 1 in the first sum, and using the derivation property for ∇, we
obtain

II =

∫

∆k−1

(
Tr(ϕ(geX )a0a1∇

(t1,X)a2 · · · ∇
(tk−1,X)ake

−Θ)

+
k−1∑

i=1

(−1)iTr(ϕ(geX )a0∇
(t1,X)a1 · · · ∇

(ti,X)(aiai+1) · · · ∇
(tk−1,X)ake

−Θ)

+(−1)kTr(ϕ(geX )a0∇
(t1,X)a1 · · · ∇

(tk−1,X)ak−1e
−Θ(e−Xak))

)
dt1 · · · dtk−1

=

k−1∑

i=0

(−1)iτ(ϕ⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak)

+(−1)k
∫

∆k−1

Tr(ϕ(geX )(g−1e−Xak)a0∇
(t1,X)a1 · · · ∇

(tk−1,X)ak−1)e
−Θ dt1 · · · dtk−1

= (τ ◦ b)(ϕ⊗ a0 ⊗ · · · ⊗ ak)(X).

It remains to show that the first term I is equal to (τ ◦ B)(ϕ⊗ a0 ⊗ · · · ⊗ ak)(X).

(τ ◦ B)(ϕ⊗ a0 ⊗ · · · ⊗ ak)(X)

=

k∑

i=0

(−1)ki
∫

∆k+1

Tr(ϕ(geX )∇(t0,X)(g−1e−Xak−i+1) · · ·

· · · ∇(ti−1,X)(g−1e−Xak)∇
(ti,X)a0 · · · ∇

(tk ,X)ak−ie
−Θ) dt0 · · · dtk

=

k∑

i=0

∫

∆k+1

Tr(ϕ(geX )∇(ti,X)a0 · · ·

· · · ∇(tk ,X)ak−i∇
(1+t0,X)ak−i+1 · · · ∇

(1+ti−1,X)ake
−Θ) dt0 · · · dtk

=
k∑

i=0

∫

∆k+1

Tr(ϕ(geX )e−tiX ·
(
∇a0 · · · ∇

(tk−ti,X)ak−i∇
(1+t0−ti,X)ak−i+1 · · ·

· · · ∇(1+ti−1−ti,X)ak

)
e−Θ) dt0 · · · dtk,

where we used the G-invariance of ∇.
Change variables: s′0 = ti, s1 = ti+1− ti, . . . , sk−i = tk− ti, sk−i+1 = 1+ t0− ti, . . . , sk =

1+ti−1−ti. One immediately checks that (t0, . . . , tk) ∈ ∆k+1 if and only if (s1, . . . , sk) ∈ ∆k

and sk−i ≤ 1− s′0 ≤ sk−i+1. Thus,

(τ ◦ B)(ϕ⊗ a0 ⊗ · · · ⊗ ak)(X)

=

k∑

i=0

∫

∆k

∫

sk−i≤1−s′0≤sk−i+1

Tr(e−s′0X ·
(
ϕ(geX )∇a0∇

(s1,X)a1 · · · ∇
(sk,X)ak

)
e−Θ) ds′0ds1 · · · dsk.

Since ϕ ⊗ a0 ⊗ · · · ⊗ ak is a G-invariant element by assumption, it follows that
ϕ(geX )∇a0∇

(s1,X)a1 · · · ∇
(sk,X)ak must be also G-invariant. Therefore the equation above

equals

k∑

i=0

∫

∆k

(sk−i+1 − sk−i)Tr(ϕ(ge
X )∇a0∇

(s1,X)a1 · · · ∇
(sk,X)ake

−Θ) ds1 · · · dsk,
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(with s0 = 0 and sk+1 = 1 by convention), which in turn is equal to
∫

∆k

Tr(ϕ(geX )∇a0∇
(s1,X)a1 · · · ∇

(sk,X)ake
−Θ) ds1 · · · dsk.

This concludes the proof of Theorem 3.6.

4. Main theorem

4.1. Pseudo-etale structure. Let M be a manifold with an action of a compact Lie
group G. In this section, we investigate a special kind of G-equivariant bundle gerbes,
whose properties are needed for our future study.

Recall that a pseudo-etale structure [4, 23] on a Lie groupoid H1 ⇒ H0 is an integrable
subbundle F of TH1 such that

(1) F ⇒ TH0 is a subgroupoid of the tangent Lie groupoid TH1 ⇒ TH0;
(2) for all γ ∈ H1, s∗ : Fγ → Ts(γ)H0 and t∗ : Fγ → Tt(γ)H0 are isomorphisms;
(3) F |H0 = TH0.

Definition 4.1. (1) Let f : N → M be a surjective submersion. For any x ∈ M ,
denote byNx the fiber f

−1(x). A fiberwise measure is a family (µx)x∈M of measures
such that for all x, the support of µx is a subset of Nx.

(2) A fiberwise measure µ = (µx)x∈M is said to be smooth if for all f ∈ C∞
c (N), the

map

x 7→

∫
f dµx

is smooth.

Proposition 4.2. Let p : M ′ → M be an immersion such that

(1) σ : M ′ ×G → M , σ(x, g) = p(x)g is a surjective submersion, and
(2) ∀x, y ∈ M ′ and g ∈ G satisfying p(x) = p(y)g, there exists a diffeomorphism φ

from a neighborhood Ux of x in M ′ to a neighborhood Uy of y in M ′, which is
compatible with the diffeomorphism on M induced by the action by g. That is,

p(φ(z)) = p(z)g, ∀z ∈ Ux.

Let H0 = M ′ ×G, and H1 = H0 ×M H0. Then

(1) there is a G-invariant pseudo-etale structure on the Lie groupoid H1 ⇒ H0;
(2) there exists a G-invariant Haar system (λx)x∈H0 on the Lie groupoid H1 ⇒ H0.

Proof. (1) For any ((x, g), (y, h)) ∈ H1, where x, y ∈ M ′ and g, h ∈ G, set

F((x,g),(y,h)) = {((u, lgX), (v, lhX))|∀u ∈ TxM
′, v ∈ TyM

′,X ∈ g such that Rg∗p∗u = Rh∗p∗v}.

It is simple to see that F is a G-invariant subbundle of TH1, and is a Lie subgroupid of
TH1 ⇒ TH0. To prove that s∗ : Fγ → Ts(γ)H0 is an isomorphism, it suffices to show
that, for any ((x, g), (y, h)) ∈ H0 ×M H0, and any u ∈ TxM

′ and X ∈ g, there is a unique
v ∈ TyM

′ such that Rg∗p∗u = Rh∗p∗v. This holds due to the fact that

Rγ∗

(
p∗(TxM

′)
)
= p∗(TyM

′),when p(x)γ = p(y), x, y ∈ M ′, γ ∈ G,

which follows from Assumption (2). To see that F is integrable, note that for any
((x, g), (y, h)) ∈ H1, the submanifold {(z, gγ), (φ(z), hγ)|z ∈ Ux, γ ∈ G} is a leaf of F
in H1 through this point.

(2) It is simple to see that Haar systems on the Lie groupoid H1 ⇒ H0 are in one-one
correspondence with fiberwise smooth measures of the map σ : H0 → M , and G-invariant
Haar systems correspond to a G-invariant fiberwise smooth measures. Such a measure
always exists since G is compact. �
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Example 4.3. Let (Ui) be an open cover of M , and p : M ′ =
∐

Ui → M the covering
map. It is clear that the assumption in Proposition 4.2 is satisfied.

4.2. Statement of the main theorem. Let f : N → M be a surjective submersion. For
any x ∈ M , denote by Nx the fiber f−1(x). Assume that F is a horizontal distribution
for f : N → M , i.e. a subbundle F ⊆ TN satisfying the condition that for all y ∈ N ,

f∗ : Fy → Tf(y)X is an isomorphism. For any vector field X on M , denote by X̃ its

horizontal lifting on N , and by Φt the flow of X̃. Note that the flow preserves fibers.
More precisely, for any x ∈ M and any compact subset K ⊆ Nx, if |t| is small enough,
then Φt is well defined on K and maps K to Ny for some y ∈ M .

We say that a fiberwise smooth measure (µx)x∈M of f : N → M is preserved by F if
for any vector field X on M , any x ∈ M , f ∈ C∞

c (Nx), t > 0, y ∈ M such that Φt is well
defined on the support of f and maps it to Ny, the equality

∫
f dµx =

∫
f ◦ (ΦX

t )−1 dµy

holds.
Note that a pseudo-etale structure on a Lie groupoid H1 ⇒ H0 induces an action of the

Lie groupoid H1 ⇒ H0 on the vector bundle TH0 → H0.

Definition 4.4. Let M be a G-space. An immersion p : M ′ → M is said to be nice if
it satisfies the assumptions in Proposition 4.2, and, in addition, there exists a G-invariant
integrable horizontal distribution F ′ for the surjective submersion σ : H0 := M ′×G → M
and a G-invariant fiberwise smooth measure (µx)x∈M for σ : H0 → M such that

(1) F ′ is preserved under the action of H1 ⇒ H0 induced by the pseudo-etale structure
F ⊂ TH1;

(2) (µx)x∈M is preserved by F ′.

Lemma 4.5. Assume that M is a G-space, and p : M ′ → M is a nice immersion. Equip
a G-invariant Haar system on H1 ⇒ H0 as in Proposition 4.2. For any vector field X on

M , denote by Y its horizontal lift to H0 tangent to F ′, and by X̃ the corresponding vector

field on H1 tangent to F such that t∗(X̃h) = Yt(h), ∀h ∈ H1. Then the flow of X̃ maps a
t-fiber to another t-fiber, and preserves the Haar system.

Proof. Denote by ϕt and ϕ′
t the flows of X̃ and Y respectively. Since t∗(X̃h) = Yt(h) for

all h ∈ H1, we have ϕt(h) ∈ H
ϕ′

t(x)
1 for all h ∈ Hx

1 .

Moreover, since s∗(X̃h) = Ys(h), the following diagram commutes:

Hx
1

s
//

ϕt

��

H0|σ(x)

ϕ′

t

��

H
ϕ′

t(x)
1

s
// H0|σ(ϕ′

t(x))
.

The conclusion follows easily. �

Lemma 4.6. Let M be a G-space, (Ui) any open cover of M , and p : M ′ :=
∐

Ui → M
the covering map. Then p : M ′ → M is a nice immersion.

Proof. In this case, H0 =
∐

Ui ×G. It is easy to see that for any (x, g) ∈ Ui ×G,

F ′
x,g = {(v, 0)|v ∈ TxUi} ⊂ T(x,g)H0

is a G-invariant integrable horizontal distribution for the surjective submersion σ : H0 →
M . Define a G-invariant fiberwise smooth measure (µx)x∈M for σ : H0 → M as follows.
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For any x ∈ M ,

σ−1(x) =
∐

i

{(xg−1, g)|∀g ∈ G,xg−1 ∈ Ui}

For f ∈ C∞
c (σ−1(x)),

∫
fdµx =

∑

i

∫

G
f(xg−1, g)dλG,

where λG is the right invariant Haar measure on G. It is simple to check that, equipped
with the above structures, σ is indeed a nice immersion. �

Now assume that α ∈ H3
G(M,Z) ∼= H3((M ⋊ G)•,Z) is an equivariant integer class. Let

p :
∐

Ui → M be an open cover of M such that α is represented by an S1-central extension

Γ̃
π
→ Γ ⇒

∐
Ui. Then, according to Lemma 4.6, p : M ′ :=

∐
Ui → M is a nice immersion.

Let H0 = M ′×G, H1 = H0×M H0, and H̃1 = H1×Γ Γ̃. Then, according to Corollary 2.10,

H̃1 → H1 ⇒ H0 is a G-equivariant bundle gerbe over M such that the Dixmier-Douady

class of H̃1 ⋊G
φ
→ H1 ⋊G ⇒ H0 is equal to α under the natural isomorphism

H3((H ⋊G)•,Z) ∼= H3((M ⋊G)•,Z) ∼= H3
G(M,Z).

Indeed, according to Theorem 2.8, we can choose an equivariant connection θ ∈ Ω1(H̃1)
G

and an equivariant curving BG ∈ Ω2
G(H0), whose equivariant 3-curvature ηG ∈ Ω3

G(M)
represents α in the Cartan model. Write

(14) BG = B + λ, B ∈ Ω2(H0) and λ ∈ (g∗ ⊗ C∞(H0))
G.

Moreover, we can assume that θ ∈ Ω1(H̃1)
G is G-basic. Hence pr∗1θ ∈ Ω1(H̃1 ⋊ G) is a

connection for the S1-central extension H̃1 ⋊G
φ
→ H1 ⋊G ⇒ H0 according to Lemma 3.3

and Remark 3.5 [27]. By Theorem 2.14, there is a family of G-equivariant flat S1-bundles
P g → Mg indexed by g ∈ G such that the action by h is an isomorphism of flat bundles

(P g → Mg) 7→ (P h−1gh → Mh−1gh) over the map Rh : Mg → Mh−1gh and g acts on P g as
an identity map.

Let Lg = P g ×S1 C be the associated complex line bundle. Denote, by ∇g, the induced
covariant derivative on Lg → Mg.

By choosing a G-invariant Haar system (λx)x∈H0 on the groupoid H1 ⇒ H0, which
always exists according to Proposition 4.2, we construct a convolution algebra C∞

c (H,L):
it is the space of compact supported sections of the complex line bundle L → H1, where

L = H̃1 ×S1 C, equipped with the convolution product:

(ξ ∗ η)(γ) =

∫

h∈H
t(γ)
1

ξ(h) · η(h−1γ)λt(γ)(dh), ∀ξ, η ∈ Γc(L).

The following lemma can be easily verified.

Lemma 4.7. C∞
c (H,L) is a G-algebra.

The main result of this section is the following

Theorem 4.8. Under the hypothesis above, there exists a family of G-equivariant chain
maps, indexed by g ∈ G:

τg : (PC
G
• (C

∞
c (H,L)), b + B) → (Ω̄•(M,G,L)g , d

α
Gg )
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By G-equivariant chain maps, we mean that the following diagram of chain maps com-
mutes:

(PCG
• (C

∞
c (H,L)), b + B)

τg
//

τh−1gh
++❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

((Ω̄•(M,G,L)g , d
α
Gg ))

φh

��

((Ω̄•(M,G,L)h−1gh, d
α
Gh−1gh

)).

As an immediate consequence, we have the following

Theorem 4.9. Under the same hypothesis as in Theorem 4.8, there is a family of mor-
phisms on the level of cohomology:

(15) τg : HPG
• (C∞

c (H,L)) → H•((Ω̄•(M,G,L)g , d
α
Gg ))

The proof of Theorem 4.8 occupies the next two subsections. The idea is to apply
Theorem 3.6. First of all, since, Gg, ∀g ∈ G, is a Lie subgroup of G, there is a natural
chain map

(16) (PCG
• (C

∞
c (H,L)), b + B) → (PCGg

• (C∞
c (H,L)), b + B).

To define the map τg, we need to construct a chain map:

(17) (PCGg

• (C∞
c (H,L)), b + B) → (Ω̄•(M,G,L)g , d

α
Gg )

For this purpose, we need, for each fixed g ∈ G,

(1) to construct a curved differential graded Gg-algebra (Ω•,∇) together with an al-
gebra homomorphism ρ : C∞

c (H,L) → Ω0;
(2) a trace map Trg : Ω

• → Ω•(Mg, Lg).

Then we need to prove that they satisfy all the compatibility conditions so that we can
apply Theorem 3.6 to obtain the desired chain map.

4.3. A curved differential graded G-algebra. In this subsection, we deal with the
first issue as pointed out at the end of last subsection. After replacing G by Gg, we may
assume that g is central without loss of generality.

Denote by Ω̃•(H,L) the space of smooth sections of the bundle ∧•F ∗⊗L → H1, and by

Ω̃•
c(H,L) the subspace of compactly supported smooth sections. Consider the convolution

product on Ω̃•
c(H,L):

(ξ ∗ η)(γ) =

∫

h∈H
t(γ)
1

ξ(h) · η(h−1γ)λt(γ)(dh).

Here, the product of ξ(h) ∈ ∧kF ∗
h ⊗ Lh with η(h−1γ) ∈ ∧lF ∗

h−1γ ⊗ Lh−1γ is obtained

as follows. The product Lh ⊗ Lh−1γ → Lγ is induced from the groupoid structure on

H̃1 ⇒ H0, and ∧kF ∗
h ⊗ ∧lF ∗

h−1γ → ∧k+lF ∗
γ is the composition of the identifications F ∗

h →

F ∗
γ and F ∗

h−1γ → F ∗
γ , via the pseudo-etale structure, with the wedge product. Then

Ω̃•
c(H,L) is aG-equivariant graded associative algebra. The reason that we need compactly

supported “forms” on H is because the convolution product does not generally make sense

on Ω̃•(H,L).
Let

Ω• = Ω•(H0)⊕ Ω̃•

c(H,L).

Introduce a multiplication on Ω• by the following formula:
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(β1⊕ω1)·(β2⊕ω2) = (β1∧β2)⊕(t∗β1∧ω2+ω1∧s
∗β2+ω1∗ω2), ∀β1, β2 ∈ Ω•(H0), ω1, ω2 ∈ Ω̃•

c(H,L).

Note that t∗β1 and s∗β2 can be considered as elements in Ω̃•(H1) := C∞(H1,∧
•F ∗), of

which Ω̃•
c(H,L) is naturally a bimodule.

Lemma 4.10. Under the product above, Ω• is a G-equivariant graded associative algebra.

Proof. It is straightforward to check the following relations, ∀ωi ∈ Ω̃•

c(H,L), β ∈ Ω̃•(H1):

t∗β ∧ (ω1 ∗ ω2) = (t∗β ∧ ω1) ∗ ω2(18)

(ω1 ∗ ω2) ∧ s∗β = ω1 ∗ (ω2 ∧ s∗β)(19)

(ω1 ∧ s∗β) ∗ ω2 = ω1 ∗ (t
∗β ∧ ω2).(20)

The associativity thus follows immediately. �

Lemma 4.11. The covariant derivative ∇ : Ω•

c(H,L) → Ω•+1
c (H,L) induces an algebra

derivation: ∇ : Ω̃•

c(H,L) → Ω̃•+1
c (H,L). I.e.,

(21) ∇(ω1 ∗ ω2) = ∇ω1 ∗ ω2 + (−1)|ω1|ω1 ∗ ∇ω2 ∀ω1, ω2 ∈ Ω̃•
c(H,L).

Proof. Since the pseudo-etale structure F ⊆ TH is an integrable distribution, by restric-
tion, the connection on L → H induces an F -connection, as a Lie algebroid connection,

on L. Therefore we have the induced covariant derivative ∇ : Ω̃•

c(H,L) → Ω̃•+1
c (H,L).

We now prove Eq. (21) by induction on n := |ω1|+ |ω2|. If n = 0, this is automatically
true since ∇ is a connection. Assume (21) is valid for n = k. Since t∗ : Fx → Tt(x)H0

is an isomorphism, we can assume that locally ω1 = t∗(df) ∧ η, where f ∈ C∞(H0) and

η ∈ Ω
|ω1|−1
c (H,L). Using Eq. (18) and the induction hypothesis, we have

∇(ω1 ∗ ω2) = ∇(t∗(df) ∧ (η ∗ ω2))

= −t∗(df) ∧ ∇(η ∗ ω2)

= −t∗(df) ∧ (∇η ∗ ω2 + (−1)|η|η ∗ ∇ω2)

= ∇(t∗(df) ∧ η) ∗ ω2 + (−1)|ω1|((t∗df) ∧ η) ∗ ∇ω2.

Hence Eq. (21) follows. �

Extend ∇ to Ω• by

(22) ∇(β ⊕ ω) = dβ ⊕∇ω, ∀ω ∈ Ω̃•

c(H,L), β ∈ Ω•(H0).

The following lemma is straightforward:

Lemma 4.12. ∇ : Ω• → Ω•+1 is a degree +1 derivation.

Lemma 4.13. The map ∇ : Ω• → Ω•+1 satisfies

∇2 = −2πi[B, ·],

where B ∈ Ω2(H0) ⊂ Ω• is defined as in Eq. (14).

Proof. The relation ∇2β = −2πi[B, β] holds automatically for β ∈ Ω•(H0) since both

sides are zero. For ω ∈ Ω̃•

c(H,L), we have

∇2ω = 2πidθ ∧ ω = 2πi∂B ∧ ω = −2πi(t∗B ∧ ω − s∗B ∧ ω) = −2πi[B,ω].
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The conclusion thus follows. �

Proposition 4.14. (Ω•,∇) is a curved differential graded G-algebra.

Proof. Define the map ιX , ∀X ∈ g, on Ω•(H0) by the usual contraction. Since the
pseudo-etale structure F ⊂ TH1 is preserved by the group G-action, it follows that the
contraction map ιX is also defined on Ω•

c(H,L). Thus we have a map ιX : Ω• → Ω•−1

satisfying ι2X = 0. One proves, by induction similar to the proof of Lemma 4.11, that ιX
is indeed a derivation.

It remains to prove that ∇ιX + ιX∇ = LX holds. This is clearly true on the component

Ω•(H0). Since both sides are derivations on Ω̃•
c(H,L) and this holds for elements in

Ω̃•(H) := C∞(H1,∧
•F ∗), it suffices to prove this identity for elements of degree zero, i.e.

LXξ = ∇Xξ for all X ∈ g and ξ ∈ C∞
c (H1, L). Note that for a G-equivariant complex

line bundle we always have the identity ∇X − LX = ιXθ. Here ιXθ can be considered as
a function on H0.

Since θ is G-basic, it follows that LXξ = ∇Xξ. This concludes the proof. �

4.4. Trace map. Now we deal with the second issue at the end of Section 4.2.
Consider Ω̄n = Ωn

c (M
g, Lg). Let d : Ω̄n → Ω̄n+1 denote the covariant derivative

Ωn
c (M

g, Lg) → Ωn+1
c (Mg, Lg) of the flat complex line bundle Lg → Mg. It is clear that

Ω̄• admits a Gg-action. Let ῑ : Ω̄n → Ω̄n−1 be the usual contraction.

Lemma 4.15. (Ω̄, d) is a N-graded G-vector space with a connection.

For any fixed g ∈ G, since Gg is a Lie subgroup of G, (Ω•,∇) is a curved Gg-differential
algebra. Next we will introduce a trace map

Trg : Ω
• → Ω̄•

On the first component Ω•(H0), we set Trg to be zero. Before we define Trg on the
second component of Ω•, some remarks are in order. Denote (S(H1 ⋊G))g by Hg

1 . I.e.

Hg
1 = {(x, xg−1)|σ(x) ∈ Mg}.

Note that the subbundle F ′ ⊂ TH0 corresponds to a subbundle F1 ⊂ F such that
t∗(F1)γ = F ′

t(γ) for all γ ∈ H1. Let F g
1 = F1 ∩ THg

1 . Then (σ◦s)∗ = (σ◦t)∗ : (F1)γ →

TMg
(σ◦s)(γ) is an isomorphism for all γ ∈ Hg

1 . Denote by ig : ∧F ∗ → ∧(F g
1 )

∗ the restriction
map.

We define, for any fixed γ,

(Trgω)γ = ig
∫

h∈Hx
1

h∗ωh−1γhg−1 λx(dh) ∈ ∧(F g
1 )

∗
γ ⊗ L|γ .

If we write γ = (x, xg−1), x ∈ Hg
0 , and h = (x, y), then

h−1γhg
−1

= (y, x)(x, xg−1)(xg−1, yg−1) = (y, yg−1).

Therefore ω
h−1γhg−1 ∈ ∧F ∗

(y,yg−1) ⊗ L|(y,yg−1) and h∗ωh−1γhg−1 ∈ ∧F ∗
(x,xg−1) ⊗ L|(x,xg−1).

Hence under the map ig, it goes to ∧(F g
1 )

∗
(x,xg−1) ⊗L|(x,xg−1). Since Trgω is Hg

1 -invariant,

it defines an element in Ω•(Mg, Lg).

Lemma 4.16. We have

Trg(ω1 ∗ ω2) = (−1)|ω1||ω2|Trg((g
−1ω2) ∗ ω1)
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Proof. We compute

Trg(ω1 ∗ ω2)γ = ig
∫

h∈Hx
1

∫

h′∈H
s(h)
1

h∗((ω1)h′ · (ω2)(h′)−1h−1γhg−1 )λs(h)(dh′)λx(dh)

= ig
∫

h,k∈Hx
1

h∗((ω1)h−1k · (ω2)k−1γhg−1 )λx(dh)λx(dk) (k = hh′)

Trg((g
−1ω2) ∗ ω1)γ = ig

∫

h,k∈Hx
1

k∗((g
−1ω2)k−1h · (ω1)h−1γkg−1 )λx(dh)λx(dk).

Replacing k by γkg
−1

in the expression for Trg(ω1 ∗ ω2)γ , we get

Trg(ω1 ∗ ω2)γ = ig
∫

h,k∈Hx
1

h∗((ω1)h−1γkg−1 · ((g−1ω2)k−1h)
g−1

)λx(dh)λx(dk).

It thus remains to prove that

ig(h−1k)∗(α2 · α1) = (−1)|α1||α2|igα1 · α
g−1

2

for all α1 ∈ (∧F ∗ ⊗ L)|
h−1γkg−1 and α2 ∈ (∧F ∗ ⊗ L)|k−1h. Replacing γ by k−1γkg

−1
and

h by k−1h to simplify notations, it suffices to show:

ig[(h−1)∗(α2 · α1)] = (−1)|α1||α2|ig[α1 · (α
g−1

2 )]

for all α1 ∈ (∧F ∗ ⊗L)|h−1γ and α2 ∈ (∧F ∗ ⊗L)|h. We may assume that α1 = η1 ⊗ ξ1 and
α2 = η2 ⊗ ξ2, for η1, η2 ∈ ∧F ∗ and ξ1, ξ2 ∈ L. It then suffices to establish the following
equalities:

(a) (h−1)∗(ξ2 · ξ1) = ξ1 · ξ
g−1

2 ;

(b) ig(h−1)∗[(rh−1γη2) ∧ (lhη1)] = ig(−1)|η1| |η2|(r
hg−1η1) ∧ (lh−1γη

g−1

2 ).

For (a), choose a lift h̃ ∈ H̃1 of h, and identify h̃ to (h̃, 1) ∈ H̃1 ×S1 C = L. Then, from

(??), (h−1)∗(ξ2 · ξ1) = (h̃)−1(ξ2 · ξ1)(h̃
g−1

) = (h̃−1ξ2)(ξ1h̃
g−1

). Now, h̃−1ξ2 is an element

of Ls(h)
∼= C, hence can be identified to the complex number (h̃−1ξ2)

g−1
∈ Ls(h)g−1

∼= C.

Therefore we have (h−1)∗(ξ2 · ξ1) = (ξ1h̃
g−1

)(h̃−1ξ2)
g−1

= ξ1ξ
g−1

2 as claimed.

For (b), using the fact that (h−1)∗ = lh−1rhg−1 , we see that (b) reduces to

iglh−1rh−1γhg−1η2 = iglh−1γη
g−1

2 .

We can of course assume that η2 ∈ F ∗
h . By duality, this is equivalent to

lh−1rh−1γhg−1X = lh−1γX
g−1

,

i.e. to r
h−1γhg−1X = lγX

g−1
for all X ∈ (F1)

g
h. Since (σ ◦ s)∗ : (F1)γhg−1 → Tσ◦s(h)M

g

is an isomorphism, it suffices to check that both sides coincide after applying the map
(σ ◦ s)∗.

(σ ◦ s)∗(lγX
g−1

) = (σ ◦ s)∗(X
g−1

) = ((σ ◦ s)∗(X))g−1 = (σ ◦ s)∗(X)

since (σ ◦ s)∗(X) ∈ Mg by assumption. On the other hand,

(σ ◦ s)∗(rh−1γhg−1X) = (σ ◦ t)∗(rh−1γhg−1X) = (σ ◦ t)∗(X) = (σ ◦ s)∗(X).

This completes the proof. �

Lemma 4.17. We have

Trg ◦ ∇ = ∇g ◦ Trg.
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Proof. Since the map Trg factors through the restriction to Mg, we may simply assume
that M = Mg, and thus H0 = Hg

0 .
For all y ∈ H0, the element ω(y,yg−1) ∈ ΛF ∗

(y,yg−1) ⊗ L(y,yg−1) restricts to an element

ω′
y ∈ ΛF ′∗

y ⊗ L(y,yg−1).
For all x ∈ H0, we have

(Trgω)(X1, . . . ,Xn)(σ(x)) =

∫

h=(x,y)∈Hx
1

h∗ω
′(X̃1(y), . . . , X̃n(y))λ

x(dh).

Then

(∇g(Trgω))(X1, . . . ,Xn)(x)

=

n∑

i=1

(−1)i+1∇g
Xi

· (Trgω)(X1, . . . , X̂i, . . . ,Xn)

+
∑

1≤i<j≤n

(−1)i+j(Trgω)([Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . ,Xn)

=
n∑

i=1

(−1)i+1∇g
Xi

· h∗

∫

h∈Hx
1

ω′(X̃1(y), . . . ,
̂̃
Xi(y), . . . , X̃n(y))λ

x(dh)

+
∑

1≤i<j≤n

(−1)i+j

∫

h∈Hx
1

h∗ω
′( ˜[Xi,Xj ](y), X̃1(y), . . . ,

̂̃
Xi(y), . . . ,

̂̃
Xj(y), . . . , X̃n(y))λ

x(dh)

=

n∑

i=1

(−1)i+1∇g
Xi

·

∫

h∈Hx
1

h∗ω
′(X̃1(y), . . . ,

̂̃
Xi(y), . . . , X̃n(y))λ

x(dh)

+
∑

1≤i<j≤n

(−1)i+j

∫

h∈Hx
1

h∗ω
′([X̃i, X̃j ](y), X̃1(y), . . . ,

̂̃
Xi(y), . . . ,

̂̃
Xj(y), . . . , X̃n(y))λ

x(dh).

The last equality is a consequence of integrability of the bundle F ′.
To conclude, we need to show that in the expression ∇g

Xi
·

∫
h∈Hx

1
ω′(X̃1(y), . . . ,

̂̃
Xi(y), . . . , X̃n(y))λ

x(dh), derivation commutes with integration,

i.e. that for every L-valued section the equality

∇
X̃

∫

h=(x,y)∈Hx
1

h∗ξ(y)λ
x(dh) =

∫

h=(x,y)∈Hx
1

h∗((∇X̃
ξ)(y))λx(dh)

holds; this is a consequence of Lemma 4.5. �

The following results can be easily verified directly.

Proposition 4.18. The family of trace maps Trg : Ω• → Ω̄g is G-equivariant, i.e., the
following diagram

Ω•
Trg
//

Tr
h−1gh ''P

P

P

P

P

P

P

P

P

P

P

P

P

P

Ω̄g := Ω•
c(M

g, Lg)

(φ−1
h

)∗

��

Ω̄h−1gh := Ω•
c(M

h, Lh)

commutes.
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5. Discussions and open questions

5.1. Global equivariant differential forms a la Block-Getzler. In this section, we
briefly recall the basic construction of global equivariant differential forms a la Block-
Getzler. We closely follow the approach of [8].

Recall that G acts on the manifold underlying G by conjugation: h · g = g−1hg. Equip
G with the topology of invariant open sets:

(23) O = {U ⊂ G open|U = U · g ∀g ∈ G}.

Construct a sheaf Ω̄•(M,G) over G as follows. The stalk of the sheaf Ω̄•(M,G) at g ∈ G is
the space of equivariant differential forms Ω̄•(M,G)g = Ω̄Gg(Mg), which consist of germs
at zero of smooth maps from gg to Ω(Mg) equivariant under Gg. It is easy to see that if
ω ∈ Ω̄•(M,G)g , k ·ω ∈ Ω̄•(M,G)g·k. Therefore the group G acts on the sheaf Ω̄•(M,G) in
a way compatible with its conjugation action on G. Moreover, the equivariant differential
coboundary operators on {Ω̄•

Gg (Mg), g ∈ G} are compatible with the G action as well.
That is

k · dGgω = dGAdkg(k · ω),

where dGg : Ω̄•(M,G)g → Ω̄•(M,G)g is the equivariant differential on Ω̄•(M,G)g .

Definition 5.1. We say that a point h = g expX ∈ Gg, X ∈ gg, is near the point g ∈ Gg

if Mh ⊆ Mg and Gh ⊆ Gg.

Note that, from a theorem of Mostow-Palais [20, 22], it follows that the set of all points
in Gg near g is indeed an open neighborhood of g in G under the topology given as in
(23). Hence a section ω ∈ Γ(U, Ω̄•(M,G)) of the sheaf Ω̄•(M,G) over an invariant open
set U ⊂ G is given by, for each point g ∈ U , an element ωg ∈ Ω̄•(M,G)g , such that if
h = g expX ∈ Gg is near g, we have the equality of germs:

ωh(Y ) = ωg(X + Y ) ∈ Ω̄•(M,G)h, ∀Y ∈ gh.

Thus Ω̄•(M,G) is an equivariant sheaf of differential graded algebras over G. By a global
equivariant differential form on G, we mean an equivariant section ω ∈ Γ(G, Ω̄•(M,G))G,
i.e. ωk·g = k · ωg, ∀g, k ∈ G.

Remark 5.2. To understand the meaning of the above conditions on global equivariant
differential forms, it is useful to consider the following simple example in an anagous
situation. Let f ∈ C∞(G)G. For each fixed g ∈ G, denote fg(X) the germ of the function
X → f(g expX), ∀X ∈ gg. It is easy to check that the following identities hold

(1) if h = g expX ∈ Gg, X ∈ gg, then fh(Y ) = fg(X + Y ), ∀Y ∈ gg;
(2) for any r ∈ G, fr−1gr = (Adr−1)∗fg.

Let
A•

G(M) = Γ(G, Ω̄•(M,G))G

be the space of global equivariant differential forms on G. The family of differentials
{dGg}g∈G induces a differential deq on A•

G(M). The delocalized equivariant cohomology
H•

G,delocalized(M) is defined as its Z/2-graded cohomology:

H•

G,delocalized(M) := H•(A•

G(M), deq).

The following result is due to Block-Getzler [8] when the Lie group G is compact, and
to Baum-Brylinski-MacPherson [3] when G = S1.

Theorem 5.3. Let G be a compact Lie group, M a compact manifold on which G acts
smoothly. Then

HPG
•
(C∞(M)) ∼= H•(A•

G(M), deq).
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5.2. Delocalized twisted equivariant cohomology. A natural open question arises:

Question 5.4. Introduce global twisted equivariant differential forms by modifying the
notion of global equivariant differential forms of Block-Getzler [8] in the previous section,
and define delocalized twisted equivariant cohomology.

For any α ∈ H3
G(M,Z), let

∐
g∈G P g be a family of G-equivariant flat S1-bundles as

in Theorem 2.14, and L =
∐

g∈G Lg, where Lg = P g ×S1 C, ∀g ∈ G, are their associated
G-equivariant flat complex line bundles.

Following Block-Getzler [8], the key issue is to introduce a sheaf Ω̄•(M,G,L) over G
whose stalk at g ∈ G is the space of equivariant differential forms, with coefficients in Lg:
Ω̄•(M,G,L)g = Ω̄Gg(Mg, Lg).

For this purpose, we propose the following

Conjecture 5.5. Assume that a point h = g expX ∈ Gg, X ∈ gg, is near the point
g ∈ Gg. Then there exists a canonical isomorphism of flat S1-bundles over Mh:

(24) φgh : P h → P g|Mh ,

where P g|Mh → Mh denotes the restriction of P g → Mg under the inclusion Mh ⊆ Mg.

If the conjecture above holds, one can make sense of a global twisted equivariant differ-
ential form on G by defining it to be an equivariant section ω ∈ Γ(G, Ω̄•(M,G,L))G, i.e.
a family {ωg ∈ Ω̄Gg(Mg, Lg)|g ∈ G} such that

(1) ωk·g = k · ωg, ∀g, k ∈ G, and
(2) if h = g expX ∈ Gg, X ∈ gg is near g, we have the equality of germs

φgh[ωh(Y )] = ωg(X + Y )|Mh ,∈ Ω̄•(M,G,L)h, ∀Y ∈ gh,

where φgh : Lh → Lg is the canonical isomorphism induced by the isomorphism of
S1-bundles as in Eq. (24).

Let A•

G(M,L) = Γ(G, Ω̄•(M,G,L)) be the space of global twisted equivariant differ-
ential forms on G. The family of differentials {dαGg}g∈G induces a differential dαeq on
A•

G(M,L). By abuse of notations, we write

dαeq = ∇+ ι− 2πiηG.

The delocalized twisted equivariant cohomology H•

G,delocalized,α(M) can then be defined as

its Z/2-graded cohomology:

H•

G,delocalized,α(M) := H•(A•

G(M,L), dαeq).

Remark 5.6. A possible way to construct φgh in Eq. (24) is to use the parallel trans-

portation along the path t 7→ g exp(tX). More precisely, assume that S1 → Γ̃ → Γ ⇒ M ′

is an S1-central extension representing α ∈ H3
G(M,Z), where f : M ′ → M is a surjec-

tive submersion. Let ∇ ∈ Ω1(Γ̃) be a gerbe connection. The fibers P g
x and P h

x can be
identified with Px,g,x and Px,h,x, respectively. Then parallel transportation along the path

t 7→ (x, g exp(tX), x) can thus be used to identify Px,g,x := Γ̃|(x,g,x) with Px,h,x := Γ̃|(x,h,x).

However, for this identification to intertwine the connections ∇g and ∇h, one needs that
the curvature 2-form ω ∈ Ω2(Γ) of the connection ∇ satisfies the condition

(25) ωx,g,x((v, 0, v), (0,X, 0)) = 0,

∀x ∈ Mh ⊂ Mg and all v ∈ TxM
h. This condition does not necessarily always hold as

indicated by the example below.
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LetM be S1 endowed with a trivial action of G = S1. Let Γ ⇒ M be the transformation
groupoid M ⋊G ⇒ M . Consider

Γ̃ =
[0, 1] ×G× S1

(0, g, λ) ∼ (1, g, g + λ)
.

(The product in S1 is written additively.) It is clear that M×S1 → Γ̃ → Γ ⇒ M is an S1-

central extension, where the map Γ̃ → Γ is defined as (u, g, λ) 7→ (u, g) (with S1 identified

to R/Z), and the map M × S1 → Γ̃ is (u, λ) 7→ (u, 0, λ). Since Γ̃ → Γ is a non-trivial
S1-principal bundle, its first Chern class must be nonzero. Therefore, Condition (25) fails
in this case.

5.3. De Rham model of equivariant twisted K-theory. Let A be a topological
associative algebra, and G a compact Lie group acting on A by automorphisms. Then
there is an equivariant Chern character [7, 10, 11]:

(26) chG : KG
• (A) → HPG

• (A)

from the equivariant K-theory of A to the periodic cyclic homology HPG
• (A).

Let R(G) be the representation ring of G, and R∞(G) the algebra C∞(G)G of smooth
functions on the group G invariant under the conjugation. Since the character map sends
R(G) to R∞(G), R∞(G) is an algebra over the ring R(G). The following result is due to
Block [7] and Brylinski [10, 11].

Theorem 5.7. Let G be a compact Lie group and A a topological G-algebra. Then the
equivariant Chern character (26) induces an isomorphism

(27) HPG
• (A) ∼= KG

• (A)⊗R(G) R
∞(G)

Apply the theorem above to the topological algebra:

A = C∞
c (H,L).

By definition (see [25] for details), KG
• (C∞

c (H,L)) is exactly the twisted K-theory group
K•

G,α(M). Thus we obtain

Corollary 5.8. Under the same hypothesis as in Theorem 4.8, we have

(28) HPG
• (C∞

c (H,L)) ∼= K•

G,α(M)⊗R(G) R
∞(G)

Therefore one may think of HPG
• (C∞

c (H,L)) as a de Rham model of equivariant twisted
K-theory.

Conjecture 5.9. The family of chain maps {τg}g∈G as in Theorem 4.8 induces a quasi-
isomorphism

(29) (PCG
• (C

∞
c (H,L)), b + B) → (A•

G(M,L), dαeq)

An immediate consequence yields the following

Conjecture 5.10. Let G be a compact Lie group, M a compact manifold on which G acts
smoothly. For any α ∈ H3

G(M,Z), the equivariant Chern character composing with the
isomorphism induced by (29) leads to a natural isomorphism

(30) K•

G,α(M)⊗R(G) R
∞(G)

∼
→ H•

G,delocalized,α(M)
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