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Introduction: the SkyScanner project

Mapping the micro-physical properties of cumulus
clouds

Spatio-temporal evolution of u-physical properties of a cumulus ?
Issues :
@ Size, at the base: ~100m,
height: ~1km
. @ Short lifespan ~ 20min to 1h
T— ) - Solution:
' ' .gae @ Aplane ?
@ Adrone (UAV) ?
@ = Afleet of UAVs
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The SkyScanner project

Project financed by the STAE foundation

Axis 1: Aerologic
models

Axis 3 : Fleet
control

LAAS-CNRS

Axis 2 : Enduring drone
conception and control

A. Renzaglia (LAAS-CNRS)

SkyScanner@LAAS

CNRM: Model of the
cloud pu-physics
ISAE: Conception of
an automatically
optimized vehicle
ONERA: Optimized
control architecture
ENAC: 3D Wind
estimation, the
Paparazzi autopilot
LAAS: Path planning
and mapping
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Introduction: the SkyScanner project

Objectives of a mission

A fleet (>2) of UAVs has to collect data inside a cumulus cloud
Objectives:

@ (Maximum) duration: 1h

@ I|dentify the different areas and characteristic variables of the

cloud:
altitude of the base, height, strength of the ascending currents,...

= parametric, conceptual model
@ Map the evolution of some p-physical parameters in predefined

areas
= (dense) statistical model
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Introduction: the SkyScanner project

A hierarchy of models

parametric model
Ex: updraft = f(diam, height)
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Introduction: the SkyScanner project

Two-stage planning approach

Task planning

AT ~ 1min

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS

Path planning

AT ~ 10sec
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Outline

e Modeling the environment
@ Problem Statement
@ Gaussian processes: an introduction
@ Links between models and planning

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016

8/32



Modeling the environment Problem Statement

Modeling the environment

Issues:

@ Reconstructing a 3D+Time map from punctual and sparse
measurements

@ Size of a cumulus

We use Gaussian Processes to solve this regression problem

«A Gaussian Process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.», CE Rasmussen
et CKI Williams, Gaussian Processes for Machine Learning (2006)).

Gaussian = entirely defining by its mean and covariance
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Modeling the environment Problem Statement

Gaussian Process Regression (GPR)

-+ Abundance in literature (although more statistics - big data)
+ Continuous world, prediction of the error

+/— Cost of inference: O(n®) building model, O(n?) each inference
— Choosing kernels, slow hyper-parameters optimization

Noiseless GPR GPR with noise
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Problem statement

Given some samples, we wish to reconstruct the underlying process f

Definition

f - RMeatures __y R
Xr—y=f(X)

In our case, Npatyres = 4

— the features are the space-time locations of the samples
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Modeling the environment Gaussian processes: an introduction

Definitions

Definition
f ~ GP(m(X), k(X, X))

m(X): expectation, zero in most cases
k(x,x): covariance or kernel (function)

Definition
Let (X, Y) be an ensemble of n samples in R* x R, then:

m(x) := 0 (zero mean)
L= k(X,X) + U%oise/

Y is the n x n covariance matrix accounting for a Gaussian noise of

i 2
variance o5 ;.
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Modeling the environment Gaussian processes: an introduction

Kernel families

How to choose the covariance function (kernel) ?

rbf kernel

@ Choose a kernel family

o8 — sets a prior (stationarity,
- periodicity...)
@ Set hyper-parameters

— optimization

-4 -2 0 2
x

Squared Exponential kernel family
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Modeling the environment Gaussian processes: an introduction

Inference

Theorem
Inference: for a given sample x, in RX

}_/* = k(X*,X)Z_1y
V(yi) = k(Xe, Xi) — k(% X)X k(X0 X) T

Y« Is the mean, V(y.) the variance at point x,. of the functions
represented by the GP conditioned by the X previous samples

Cost of inference:
@ O(n®) for inverting ¥
@ O(n?) for subsequent predictions
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Gaussian processes: an introduction
lllustration of the mapping process

£

y coordinate (km)

Ground truth

230 235
X coordinate (km)

Ground truth

210 215 2.20 2.25 230 235

x coordinate (km)

Ground truth

215 2.20 2.25 230 235 2.40
x coordinate (km)

Predicted mean 4. Predicted variance V'[y.]

0 |

210 215 220 225 2.30 2.35 240 30 2.35 240
X coordinate (km) xeoodnate (km)

y coordinate (km)

y coordinate (km)

Predicted mean y. Predicted variance V'[y.]

o

210 215 220 225 230 235 200 210 215 2.20 225 230 235 240
X coordinate (km) x coordinate (km)

y coordinate (km)
y coordinate (km)

Predicted mean y. Predicted variance V'[y.]

g -
06
0.0 s 5
06 2

210 215 220 225 230 235 2.0 210 2,15 2.20 225 230 235 2.40
x coordinate (km) x coordinate (km)

rdinate (km)

co

SkyScanner@LAAS 9 Mar. 2016 15/32



Modeling the environment Links between models and planning

Information gathering

Is a planned path interesting in terms of gathered information ?
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Modeling the environment Links between models and planning

Information gathering

Is a planned path interesting in terms of gathered information ?

Goal: maximize information given a criterion on the model

@ minimizing the covariance between samples:

e D: maximize differential entropy (log-det of =)
e T: maximize trace of ¥’

Let m new samples Xnew and x the n x n covariance matrix between
the n previous samples X:

zX,,ew\x = k(xnew; Xnew) - k(xnew, X)Z;1 k(xneWa X)T

We then compute directly D and T from the conditional covariance ¥x,,,, x
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Outline

e Trajectory generation
@ Problem Formulation
@ Optimization Method
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Problem Formulation

Task to achieve

Maximize the information gain within an area of interest while
minimizing the energy consumption
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Problem Formulation

Task to achieve

Maximize the information gain within an area of interest while
minimizing the energy consumption

@ Centralized approach: ground station and no communication issues

@ Aircraft dynamics:

o Constant airspeed
o Constrained control inputs: turn radius R and power input Pj,
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Trajectory generation Problem Formulation

From an objective to an optimization function

Three criteria to optimize during the mission:

@ Energy:
, 1 AT
UP (o, AT) =1 — g >, PR(D)ct
PI*AT =
=l

@ Information Gain:

) v+ VTb_2VTp)>
U(v)=max (0, min(1, =2 —="p
) ( ( 2(v — V)

@ Region of Interest:

db(Xé+AT) - db(Xé)

1] _
Us(h,AT) = VAT

Total Utility Function:

Uit = weUe + wiU) + wgUg
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Approach

@ Finite (short) horizon AT ~ 20s

o Model reliability
o Computational complexity

@ Planning in control space

e Currents strongly affect navigation (unfeasible movements,
unreachable areas, etc.)

@ The trajectories are discretized and defined as a sequence of
control inputs {ug, Ugy, ..., UAT gt}
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Approach

Two-step optimization scheme: % e N A

@ Blind random sampling for
trajectories initializations

@ Constrained stochastic gradient
ascent algorithm (SPSA) with
local convergence guarantee
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Trajectory generation Optimization Method

Stochastic Gradient Approximation

Stochastic Gradient Approximation by Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithm:
Ukt = N(ug + akg(u))

U(uk+cxAx)—U(uk—ckAg)
2¢K A

Ok(Uk) = :
U(ug+ck D) —U(uy)—ce Ay
2ckAwn

(.¢]

o0 Ooa2
a >0, ¢k >0, a0, G—0, Y a=o0, Z—’Z‘
k=0 —o Ck
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An illustrative example

@ Artificial 2D wind field

@ Fictitious utility function : ST

T W @ W W% % w7 @ % w0

@ The goal is to maximize the
utility collected along the
path

. LTIt
CRE I T R R R T T
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© Experiments & Results
@ Meso-NH simulations: a realistic environment
@ Path planning: preliminary results
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Experiments & Results Meso-NH simulations: a realistic environment

Meso-NH simulation: example

Simulation grid

dr = 0.2 sec
4000 m ¢
dz=10m => 100m
2500 m T
L
2
dz=10m
50 :
f”m dr=25m = 10m
300m -—tm Still frame from a simulation. In shades of grey the liquid water
o content, in orange the +0.5 m.s~! upwind isometric curves
" dz= 10 m
—
Ax=10m 4km .
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Experiments & Results Meso-NH simulations: a realistic environment

Meso-NH simulations

Meso-NH: Large scale simulations, model created and validated by
meteorologists. Simulations provided by the CNRM.

@ Scenario = cumulus cloud field arising from daily convection
@ Simulates all micro-physical properties (incl. wind)...

@ 700 MB per frame

@ at one frame per second

@ One hour - 25TB

@ ...weeks of computing on the meteo-france cluster

— Statistical study of the environmental model (pending)
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Path planning: preliminary results
One agent in a static wind field

— AV altitude
-~ UAV optimal altitude

B e . Loy A
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Altitude of the UAV
UAV trajectory during the flight

A. Renzaglia, C. Reymann, and S. Lacroix, “Monitoring the evolution of clouds with UAVs®, ICRA 2016
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Experiments & Results Path planning: preliminary results

Three agents in a dynamic wind field

R : Eé Eé Trajectories, altitude profiles
e i Eé and battery levels for three
( & UAVs flying simultaneously

C. Reymann, A. Renzaglia, F. Lamraoui, M. Bronz and S. Lacroix, "Adaptive Sampling of Cumulus Clouds with a Fleet of UAVs*,

Autonomous Robots, under review
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e Summary and prospects
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Summary and prospects

Summary

SkyScanner@LAAS, today:

@ A realistic meteorological simulation

@ A stochastic environmental model using GPR

@ A simple utility function integrating energy and IG criteria
@ A stochastic path planning algorithm

= The first iteration of a complete simulation environment
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Summary and prospects

Prospects

Environment model:
@ better handling of the time dimension
@ developing a conceptual cloud model
@ embedding prior knowledge into the GP model

Planning:
@ proper multi-criteria utility function
@ using Paparazzi which integrates a realistic FDM
@ task planning

Real experiments
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Summary and prospects

Questions ?

Thank you for your attention

More information about the SkyScanner project at:
https://www.laas.fr/projects/skyscanner/
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