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Given a prime number ≥ 5, we construct an infinite family of three-dimensional abelian varieties over Q such that, for any A/Q in the family, the Galois representation ρ A, : G Q → GSp 6 (F ) attached to the -torsion of A is surjective. Any such variety A will be the Jacobian of a genus 3 curve over Q whose respective reductions at two auxiliary primes we prescribe to provide us with generators of Sp 6 (F ).

Introduction

Let be a prime number. This paper is concerned with realisations of the general symplectic group GSp 6 (F ) as a Galois group over Q, arising from the Galois action on the -torsion points of three-dimensional abelian varieties defined over Q.

More precisely, let g ≥ 1 be an integer. One can exploit the theory of abelian varieties defined over Q as follows. If A is an abelian variety of dimension g defined over Q, let A[ ] = A(Q)[ ] denote the -torsion subgroup of Q-points of A. The natural action of the absolute Galois group G Q = Gal(Q/Q) on A[ ] gives rise to a continuous Galois representation ρ A, taking values in GL(A[ ]) GL 2g (F ). If the abelian variety A is moreover principally polarised, the image of ρ A, lies inside the general symplectic group GSp(A[ ]) of A[ ] with respect to the symplectic pairing induced by the Weil pairing and the polarisation of A; thus, we have a representation

ρ A, : G Q -→ GSp(A[ ]) GSp 2g (F ),
providing a realisation of GSp 2g (F ) as a Galois group over Q if ρ A, is surjective.

The image of Galois representations attached to the -torsion points of abelian varieties has been widely studied. For an abelian variety A defined over a number field, the classical result of Serre ensures surjectivity for almost all primes when End Q (A) = Z and the dimension of A is 2, 6 or odd (cf. [START_REF] Serre | [END_REF]). More recently, Hall [START_REF] Hall | An open-image theorem for a general class of abelian varieties[END_REF] proves a result for any dimension, with the additional condition that A has semistable reduction of toric dimension 1 at some prime. This result has been further generalised to the case of abelian varieties over finitely generated fields (cf. [START_REF] Arias-De Reyna | Big monodromy theorem for abelian varieties over finitely generated fields[END_REF]).

We can use Galois representations attached to the torsion points of abelian varieties defined over Q to address the Inverse Galois Problem and its variations involving ramification conditions. For example, the Tame Inverse Galois Problem, proposed by Birch, asks if, given a finite group G, there exists a tamely ramified Galois extension K/Q with Galois group isomorphic to G. Arias-de-Reyna and Vila solved the Tame Inverse Galois problem for GSp 2g (F ) when g = 1, 2 and ≥ 5 is any prime number, by constructing a family of genus g curves C such that the Galois representation ρ Jac(C), attached to the Jacobian variety Jac(C) is surjective and tamely ramified for every curve in the family (cf. [START_REF] Arias-De-Reyna | Tame Galois realizations of GL 2 (F l ) over Q[END_REF], [START_REF] Arias-De-Reyna | Tame Galois realizations of GSp 4 (F ) over Q[END_REF]). For both g = 1 and g = 2, the strategy entails determining a set of local conditions at auxiliary primes, (that is to say, prescribing a finite list of congruences that the defining equation of C should satisfy) which ensure the surjectivity of ρ Jac(C), , and a careful study of the ramification at in particularly favourable situations.

In fact, the strategy of ensuring surjectivity of the Galois representation attached to the -torsion of an abelian variety by prescribing local conditions at auxiliary primes works in great generality. Given a g-dimensional principally polarised abelian variety A over Q, such that the Galois representation ρ A, is surjective, it is always possible to find some auxiliary primes p and q depending on such that any abelian variety B defined over Q which is "close enough" to A with respect to the primes p and q (in a sense that can be made precise in terms of p-adic, resp. q-adic, neighbourhoods in moduli spaces of principally polarised g-dimensional abelian varieties with full level structure) also has a surjective -torsion Galois representation ρ B, . This is a consequence of Kisin's results on local constancy in p-families of Galois representations; the reader can find a detailed explanation of this aspect in [START_REF] Arias-De-Reyna | Abelian varieties over number fields, tame ramification and big Galois image[END_REF]Section 4.2].

In this paper we focus on the case g = 3. Our aim is to find auxiliary primes p and q (depending on ), and explicit congruence conditions on polynomials defining genus 3 curves, which ensure that any curve C, defined by an equation over Z satisfying these congruences, will have the property that the image of ρ Jac(C), coincides with GSp 6 (F ). In this way we obtain many distinct realisations of GSp 6 (F ) as a Galois group over Q.

To state our main result, we introduce the following notation: we will say that a polynomial f (x, y) in two variables is of 3-hyperelliptic type if it is of the form f (x, y) = y 2 -g(x), where g(x) is a polynomial of degree 7 or 8 and of quartic type if the total degree of f (x, y) is 4.

Theorem 0.1. Let ≥ 13 be a prime number. For all odd distinct prime numbers p, q = , with q > 1.82 2 , there exist f p (x, y), f q (x, y) ∈ Z[x, y] of the same type (3-hyperelliptic or quartic), such that for any f (x, y) ∈ Z[x, y] of the same type as f p (x, y) and f q (x, y) and satisfying f (x, y) ≡ f q (x, y) (mod q) and f (x, y) ≡ f p (x, y) (mod p 3 ), the image of the Galois representation ρ Jac(C), attached to the -torsion points of the Jacobian of the projective genus 3 curve C defined over Q by the equation f (x, y) = 0 is GSp 6 (F ).

Moreover, for ∈ {5, 7, 11} there exists a prime number q = for which the same statement holds for each odd prime number p = q, .

In Section 4 we state and prove a refinement of this Theorem (cf. Theorem 4.1). In fact, we have a very explicit control of the polynomial f p (x, y). In general we can say little about f q (x, y), but for any fixed ≥ 13 and any fixed q ≥ 1.82 2 we can find suitable polynomials f q (x, y) by an exhaustive search as follows: there exist only finitely many polynomials fq (x, y) ∈ F q [x, y] of 3-hyperelliptic or quartic type with non-zero discriminant. For each of these, we can compute the characteristic polynomial of the action of the Frobenius endomorphism on the Jacobian of the curve defined by fq (x, y) = 0 by counting the F q r -points of this curve, for r = 1, 2, 3, and check whether this polynomial is an ordinary q-Weil polynomial with non-zero middle coefficient, non-zero trace modulo , and which is irreducible modulo . Proposition 3.5 ensures that the search will terminate. Then, any lift of fq (x, y), of the same type, gives us a suitable polynomial f q (x, y) ∈ Z[x, y]. In Example 4.3 we present some concrete examples obtained using Sage and Magma.

Note that the above result constitutes an explicit version of Proposition 4.6 of [START_REF] Arias-De-Reyna | Abelian varieties over number fields, tame ramification and big Galois image[END_REF] in the case of principally polarised 3-dimensional abelian varieties. We can explicitly give the size of the neighbourhoods where surjectivity of ρ A, is preserved; in other words, we can give the powers of the auxiliary primes p and q such that any other curve defined by congruence conditions modulo these powers gives rise to a Jacobian variety with surjective -torsion representation.

The proof of Theorem 0.1 is based on two main pillars: the classification of subgroups of GSp 2g (F ) containing a non-trivial transvection, and the fact that one can force the image of ρ A, to contain a non-trivial transvection by imposing a specific type of ramification at an auxiliary prime. This strategy goes back to Le Duff [START_REF] Le | Représentations galoisiennes associées aux points d'ordre l des jacobiennes de certaines courbes de genre 2[END_REF] in the case of Jacobians of genus 2 hyperelliptic curves, and has been extended to the general case by Hall in [START_REF] Hall | An open-image theorem for a general class of abelian varieties[END_REF], where he obtains a surjectivity result for ρ A, for almost all primes .

We already followed this strategy in [START_REF] Arias-De-Reyna | Galois representations and Galois groups over Q[END_REF] to formulate an explicit surjectivity result for g-dimensional abelian varieties (see Theorem 3.10 of loc. cit.): let A be a principally polarised g-dimensional abelian variety defined over Q, such that the reduction of the Néron model of A at some prime p is semistable with toric rank 1, and the Frobenius endomorphism at some prime q of good reduction for A acts irreducibly and with trace a = 0 on the reduction of the Néron model of A at q. We proved that for each prime number 6pqa, coprime with the order of the component group of the Néron model of A at p, and such that the characteristic polynomial of the Frobenius endomorphism at q is irreducible mod , then the representation ρ A, is surjective.

Section 1 collects some notations and tools that we will use in the rest of the paper. In Section 2 we address the condition of semistable reduction of toric rank 1 at a prime p; we obtain a congruence condition modulo p 3 (cf. Proposition 2.3).

In Section 3 we give conditions ensuring that the reduction of the Néron model of a Jacobian variety A = Jac(C) at a prime q is an absolutely simple abelian variety over F q such that the characteristic polynomial of the Frobenius endomorphism at q is irreducible and has non-zero trace modulo (cf. Theorem 3.1). We make use of Honda-Tate Theory in the ordinary case, which relates so-called ordinary Weil polynomials to isogeny classes of ordinary abelian varieties defined over finite fields of characteristic q. First, we need to prove the existence of a suitable prime q and a suitable ordinary Weil polynomial; this is the content of Proposition 3.5, whose proof is postponed to Section 5. This polynomial provides us with an abelian variety A q defined over F q ; any abelian variety A such that the reduction of the Néron model of A at q coincides with A q will satisfy the desired condition at q. At this point we use the fact that each principally polarised 3-dimensional abelian variety over F q is the Jacobian of a genus 3 curve, which can be defined over F q up to a quadratic twist.

Once we have established congruence conditions at auxiliary primes p and q, we need to check that any curve C over Z whose defining equation satisfies these conditions will provide us with a Galois representation ρ Jac(C), whose image is GSp 6 (F ). This is carried out in Section 4.

David Zywina communicated to us that he has recently and independently developed a method for studying the image of Galois representations ρ Jac(C), attached to the Jacobians of genus 3 plane quartic curves C, for a large class of such curves (cf. [START_REF] Zywina | An explicit jacobian of dimension 3 with maximal Galois action[END_REF]). In particular, for each prime , he obtains a realisation of GSp 6 (F ) as a Galois group over Q. Samuele Anni, Pedro Lemos and Samir Siksek also worked independently on this topic. In their paper [START_REF] Anni | Residual representations of semistable principally polarized abelian varieties[END_REF], they study semistable abelian varieties and provide an example of a hyperelliptic genus 3 curve C such that Imρ Jac(C), = GSp 6 (F ) for all ≥ 3. Both Zywina and Anni et al. propose a method which, given a fixed genus 3 curve C satisfying suitable conditions, returns a finite list of primes such that the corresponding representation ρ Jac(C), is surjective for any outside the list, generalising the approach of [START_REF] Dieulefait | Explicit determination of the images of the Galois representations attached to abelian surfaces with End(A) = Z. Experiment[END_REF] for the case of genus 2 to genus 3. Both methods rely on Hall's surjectivity result [START_REF] Hall | An open-image theorem for a general class of abelian varieties[END_REF] for the image of Galois representations attached to the torsion points of abelian varieties as the main technical tool. In our paper, however, we fix a prime ≥ 5 and give congruence conditions such that, for any genus 3 curve C satisfying them, we can ensure surjectivity of the attached Galois representation ρ Jac(C), . We also borrow some ideas from Hall's paper [START_REF] Hall | An open-image theorem for a general class of abelian varieties[END_REF], although formally we do not make use of his results.

Geometric preliminaries

In this section we recall some background from algebraic geometry and fix some notations.

1.1. Hyperelliptic curves and curves of genus 3. A smooth geometrically connected projective curve1 C of genus g ≥ 1 over a field K is hyperelliptic if there exists a degree 2 finite separable morphism from

C K = C × K K to P 1 K .
If K is algebraically closed or a finite field, then such a curve C has a hyperelliptic equation defined over K 2 . That is to say, the function field of C is K(x)[y] under the relation y 2 + h(x)y = g(x) with g(x), h(x) ∈ K[x], deg(g(x)) ∈ {2g + 1, 2g + 2}, and deg(h(x)) ≤ g. Moreover, if char(K) = 2, we can take h(x) = 0. Indeed, in that case, the conic defined as the quotient of C by the group generated by the hyperelliptic involution has a K-rational point, hence is isomorphic to P 1 K (see e.g. [START_REF] Lercier | Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects[END_REF]Section 1.3] for more details). The curve C is the union of the two affine open schemes

U = Spec K[x, y]/(y 2 + h(x)y -g(x)
) and

V = Spec K[t, w]/(w 2 + t g+1 h(1/t)y -t 2g+2 g(1/t))
glued along Spec(K[x, y, 1/x]/(y 2 + h(x)y -g(x))) via the identifications x = 1/t, y = t -g-1 w.

If char(K) = 2, then any separable polynomial g(x) ∈ K[x] of degree 2g + 1 or 2g + 2 gives rise to a hyperelliptic curve C of genus g defined over K by glueing the open affine schemes U and V (with h(x) = 0) as above. We will say that C is given by the hyperelliptic equation y 2 = g(x). We will also say, as in the introduction, that a polynomial in two variables is of g-hyperelliptic type if it is of the form y 2 -g(x) with g(x) a polynomial of degree 2g + 1 or 2g + 2.

In this article, we are especially interested in curves of genus 3. If C is a smooth geometrically connected projective non-hyperelliptic curve of genus 3 defined over a field K, then its canonical embedding C → P 2 K identifies C with a smooth plane quartic curve defined over K. This means that the curve C has a model over K given by Proj(K[X, Y, Z]/F (X, Y, Z)) where F (X, Y, Z) is a degree 4 homogeneous polynomial with coefficients in K. Conversely, any smooth plane quartic curve is the image by a canonical embedding of a non-hyperelliptic curve of genus 3. If this curve is Proj(K[X, Y, Z]/F (X, Y, Z)) where F (X, Y, Z) is the homogenisation of a degree 4 polynomial f (x, y) ∈ K[x, y], we will say that C is the quartic plane curve defined by the affine equation f (x, y) = 0. We will say, as in the introduction, that a polynomial in two variables is of quartic type if its total degree is 4.

1.2. Semistable curves and their generalised Jacobians. We briefly recall the basic notions we need about semistable and stable curves, give the definition of the intersection graph of a curve and explain the link between this graph and the structure of their generalised Jacobian. The classical references we use are essentially [START_REF] Liu | Algebraic geometry and arithmetic curves[END_REF] and [START_REF] Bosch | Néron models[END_REF]. For a nice overview which contains other references, the reader could also consult [START_REF] Romagny | Models of curves[END_REF].

A curve C over a field k is said to be semistable if the curve C k = C × k k is reduced and has at most ordinary double points as singularities. It is said to be stable if moreover C k is connected, projective of arithmetic genus ≥ 2, and if any irreducible component of C k isomorphic to P 1 k intersects the other irreducible components in at least three points. A proper flat morphism of schemes C → S is said to be semistable (resp. stable) if it has semistable (resp. stable) geometric fibres.

Let R be a discrete valuation ring with fraction field K and residue field k. Let C be a smooth projective geometrically connected curve over Assume that C is a smooth projective geometrically connected curve of genus g ≥ 2 over K with semistable reduction. Denote by C its stable model over R and by C min its minimal regular model over R. We know that the Jacobian variety J = Jac(C) of C admits a Néron model J over R and the canonical morphism Pic 0 C/R → J 0 is an isomorphism (cf. [7, §9.7, Corollary 2]). Note that since C min is also semistable, we have Pic 0 C min /R ∼ = J 0 . Moreover, the abelian variety J has semistable reduction, that is to say

K. A model of C over R is a normal scheme C/R such that C × R K ∼ = C.
J 0 k ∼ = Pic 0 C k /k
is canonically an extension of an abelian variety by a torus T . As we will see, the structure of the algebraic group J 0 k (by which we mean the toric rank and the order of the component group of its geometric special fibre) is related to the intersection graphs of C k and C min,k .

Let X be a curve over k. Consider the intersection graph (or dual graph) Γ(X), defined as the graph whose vertices are the irreducible components of X, where two irreducible components X i and X j are connected by as many edges as there are irreducible components in the intersection X i ∩ X j . In particular, if the curve X is semistable, two components X i and X j are connected by one edge if there is a singular point lying on both X i and X j . Here X i = X j is allowed. The (intersection) graph without loops, denoted by Γ (X), is the graph obtained by removing from Γ(X) the edges corresponding to X i = X j .

Next, we paraphrase [7, §9.2, Example 8], which gives the toric rank in terms of the cohomology of the graph Γ(C k ). Proposition 1.1 ([7], §9.2, Ex. 8). The Néron model J of the Jacobian of the curve C k has semistable reduction. More precisely, let X 1 , . . . , X r be the irreducible components of C k , and let X 1 , . . . , X r be their respective normalisations. Then the canonical extension associated to Pic 0 C k /k is given by the exact sequence

1 -→ T → Pic 0 C k /k π * -→ r i=1 Pic 0 X i /k -→ 1
where the morphism π * is induced by the morphisms π i :

X i -→ X i .
The rank of the torus T is equal to the rank of the cohomology group

H 1 (Γ(C k ), Z).
We will use the preceding result in Sections 2 and 3. Note that the toric rank does not change if we replace C by C min .

The intersection graph of C min,k also determines the order of the component group of the geometric special fibre J k . Indeed, the scheme C min × R sh , where R sh is the strict henselisation of R, fits the hypotheses of [7, §9.6, Proposition 10] which gives the order of the component group in terms of the graph of C min,k ; we reproduce it here for the reader's convenience. Proposition 1.2 ([7], §9.6, Prop. 10). Let X be a proper and flat curve over a strictly henselian discrete valuation ring R with algebraically closed residue field k. Suppose that X is regular and has geometrically irreducible generic fibre as well as a geometrically reduced special fibre X k . Assume that X k consists of the irreducible components X 1 , . . . , X r and that the local intersection numbers of the X i are 0 or 1 (the latter is the case if different components intersect at ordinary double points). Furthermore, assume that the intersection graph without loops Γ (X k ) consists of l arcs of edges λ 1 , . . . , λ l , starting at X 1 and ending at X r , each arc λ i consisting of m i edges. Then the component group J (R sh )/J 0 (R sh ) has order l i=1 j =i m j .

We will use this result in the proof of Proposition 2.3.

Local conditions at p

Let p > 2 be a prime number. Denote by Z p the ring of p-adic integers and by Q p the field of p-adic numbers.

Definition 2.1. Let f (x, y) ∈ Z p [x, y] be a polynomial with f (0, 0) = 0 or v p (f (0, 0)) > 2. We say that f (x, y) is of type: (H) if f (x, y) = y 2 -g(x)
, where g(x) ∈ Z p [x] is of degree 7 or 8 and such that

g(x) ≡ x(x -p)m(x) mod p 2 Z p [x],
with m(x) ∈ Z p [x] such that all the roots of its mod p reduction are simple and non-zero; (Q) if f (x, y) is of total degree 4 and such that

f (x, y) ≡ px + x 2 -y 2 + x 4 + y 4 mod p 2 Z p [x, y].
For f (x, y) ∈ Z p [x, y] a polynomial of type (H) or (Q), we will consider the projective curve C defined by f (x, y) = 0 as explained in Subsection 1.1 and the scheme C over Z p defined, for each case of Definition 2.1 respectively, as follows:

(H) the union of the two affine subschemes

U = Spec(Z p [x, y]/(y 2 -g(x))) and V = Spec(Z p [t, w]/(w 2 -g(1/t)t 8 )) glued along Spec(Z p [x, y, 1/x]/(y 2 -g(x)) via x = 1/t, y = t -4 w; (Q) the scheme Proj(Z p [X, Y, Z]/(F (X, Y, Z))), where F (X, Y, Z) is the homogenisation of f (x, y).
This scheme has generic fibre C.

Proposition 2.2. Let f (x, y) ∈ Z p [x, y] be a polynomial of type (H) or (Q) and C be the projective curve defined by f (x, y) = 0. The curve C is a smooth projective and geometrically connected curve of genus 3 over Q p with stable reduction. Moreover, the scheme C is the stable model of C over Z p and the stable reduction is geometrically integral with exactly one singularity, which is an ordinary double point.

Proof. With the description we gave in Subsection 1.1 of what we called the projective curve defined by f , smoothness over Q p follows from the Jacobian criterion. This implies that C is a projective curve of genus 3. The polynomials defining the affine schemes U and V and the quartic polynomial F (X, Y, Z) are all irreducible over Q p , hence over Z p . So the curve C is geometrically integral (hence geometrically irreducible and geometrically connected) and C is integral as a scheme over Z p . It follows in particular that C is flat over Z p (cf. [17, Chap. 4, Corollary 3.10]). Hence, C is a model of C over Z p .

We will show that C Fp is semistable (i.e. reduced with only ordinary double points as singularities) with exactly one singularity.

Combined with flatness, semistability will imply that the scheme C is semistable over Z p . Since C has genus greater than 2, and C = C Qp is smooth and geometrically connected, this is then equivalent to saying that C has stable reduction at p with stable model C, as required (cf. [20, Theorem 3.1.1]).

In what follows, we denote by f the reduction modulo p of any polynomial f with coefficient in Z p . In Case (H), C Fp is the union of the two affine subschemes 

U = Spec(F p [x, y]/(y 2 -x 2 m(x))) and V = Spec(F p [t, w]/(w 2 - m(1/t)t 6 )), glued along Spec(F p [x, y, 1/x]/(y 2 -ḡ(x)) via x = 1/t
= Spec(F p [x, y]/ f (x, y)), where f (x, y) = x 2 -y 2 + x 4 + y 4 ∈ F p [x, y]. Since C Fp \U
is smooth, it suffices to prove that U has only ordinary double singularities. Let u ∈ U . The Jacobian criterion shows that U is smooth at u = (0, 0). So suppose that u = (0, 0), and note that f (x, y) = 

x 2 (1 + x 2 ) -y 2 (1 -y 2 ). Since 2 ∈ F × p ,
O U,u ∼ = F p [[x, y]]/(xa(x) + yb(y))(xa(x) -yb(y)) ∼ = F p [[t, w]]/(tw).
It follows that C Fp has only one singularity (at [0 : 0 : 1]) which is an ordinary double singularity. We have thus showed that C is the stable model of C over Z p and that its special fibre is geometrically integral and has only one ordinary double singularity.

Proposition 2.3. Let f (x, y) ∈ Z p [x,
y] be a polynomial of type (H) or (Q) and C be the projective curve defined by f (x, y) = 0. The Jacobian variety Jac(C) of the curve C has a Néron model J over Z p which has semi-abelian reduction of toric rank 1. The component group of the geometric special fibre of J over F p has order 2.

Proof. By Proposition 2.2, the curve C is a smooth projective geometrically connected curve of genus 3 over Q p with stable reduction and stable model C over Z p . Let C min be the minimal regular model of C. As recalled in Subsection 1.2, Jac(C) admits a Néron model J over Z p and the canonical morphism Pic 0 C/Zp → J 0 is an isomorphism. In particular, J has semiabelian reduction and J 0 Fp ∼ = Pic 0 C Fp /Fp . Since C min is also semistable, we have Pic 0

C min /S ∼ = J 0 .
By Proposition 1.1, the toric rank of J 0

Fp is equal to the rank of the cohomology group of the dual graph of C Fp . Since C Fp is irreducible and has only one ordinary double point, the dual graph consists of one vertex and one loop, so the rank of J 0

Fp is 1. To determine the order of the component group of the geometric special fibre J Fp , we apply Proposition 1.2 to the minimal regular model C min ×Z sh p , where Z sh p is the strict henselisation of Z p . This is still regular and semistable over Z sh p (cf. p consists of a chain of e -1 projective lines over F p and one component of genus 2 (where the latter corresponds to the irreducible component C Fp ), which meet transversally at rational points. It follows from Proposition 1.1 that the order of the component group J (Z sh p )/J 0 (Z sh p ) of the geometric special fibre is equal to the thickness e.

We will now show that in both cases (H) and (Q), the thickness e is equal to 2, which will conclude the proof of Proposition 2.3. For this, in several places, we will use the well-known fact that every formal power series in

Z p [[x]] (resp. Z p [[y]], Z p [[x, y]]) with constant term 1 (or more generally a unit square in Z p ) is a square in Z p [[x]] (resp. Z p [[y]], Z p [[x, y]]
) of some invertible formal power series.

Let U denote the affine subscheme Spec(Z p [x, y]/(f (x, y))) which contains the ordinary double point P = [0 : 0 : 1]. Firstly, we claim that, possibly after a finite extension of scalars R/Z p which splits the singularity, in both cases we may write in R[[x, y]]:

(2.1) ±f (x, y) = x 2 a(x) 2 -y 2 b(y) 2 + pαx + p 2 yg(x, y) + p r β where a(x) ∈ R[[x]] × , b(y) ∈ R[[y]] × , g(x, y) ∈ Z p [x, y], α ∈ Z × p , β ∈ Z p .
Moreover, from the assumptions on f , it follows that either β = 0, or β ∈ Z × p and r = v p (f (0, 0)) > 2.

We prove the claim case by case:

(H) We have f (x, y) = y 2 -g(x) = y 2 -x(x -p)m(x) + p 2 h(x) for some h(x) ∈ Z p [x]. Since h(x) = h(0) + xs(x) for some s(x) ∈ Z p [x] and m(x)+ps(x) = m(0)+ps(0)+xt(x) for some t(x) ∈ Z p [x], we obtain f (x, y) = y 2 -x 2 m(x) + px(m(x) + ps(x)) + p 2 h(0) = y 2 -x 2 (m(x) -pt(x)) + px(m(0) + ps(0)) + p 2 h(0).
Since m(0) = 0 (mod p), we have m(0) -pt(0) ∈ Z × p , hence if we extend the scalars to some finite extension R over Z p , in which m(0) -pt(0) is a square, we get that (m(x) -pt(x)) is a square of some a(x) in R[[x]] × . Then -f (x, y) has the expected form. Note that R/Z p is unramified because p = 2 and m(0) = 0 (mod p), so we still denote the ideal of R above p ∈ Z p by p. 

(Q) We have f (x, y) = x 4 + y 4 + x 2 -y 2 + px + p 2 h(x, y) for some h(x, y) ∈ Z p [x, y]. We may write h(x, y) = δ + xγ + x 2 s(x) + yt(x, y) for some γ, δ ∈ Z p , s(x) ∈ Z p [x] and t(x, y) ∈ Z p [x, y]. We obtain f (x, y) = x 2 (1 + x 2 ) -y 2 (1 -y 2 ) + px + p 2 (δ + xγ + x 2 s(x) + yt(x, y)) = x 2 (1 + x 2 + p 2 s(x)) -y 2 (1 -y 2 ) + px(1 + pγ) + p 2 yt(x, y) + p 2 δ.

Local conditions at q

This section is devoted to the proof of the following key result. In the statement, the two conditions on the characteristic polynomial, namely nonzero trace and irreducibility modulo , are the ones appearing in Theorem 2.10 of [START_REF] Arias-De-Reyna | Galois representations and Galois groups over Q[END_REF] which is used to prove the main Theorem 0.1. Theorem 3.1. Let ≥ 13 be a prime number. For every prime number q > 1.82 2 , there exists a smooth geometrically connected curve C q of genus 3 over F q whose Jacobian variety Jac(C q ) is a 3-dimensional ordinary absolutely simple abelian variety such that the characteristic polynomial of its Frobenius endomorphism is irreducible modulo and has non-zero trace modulo .

Moreover, for ∈ {3, 5, 7, 11}, there exists a prime number q > 1.82 2 such that the same statement holds.

For any integer g ≥ 1, a g-dimensional abelian variety over a finite field k with q elements is said to be ordinary if its group of char(k)-torsion points has rank g.

The proof of Theorem 3.1 relies on Honda-Tate theory, which relates abelian varieties to Weil polynomials: Definition 3.2. A Weil q-polynomial, or simply a Weil polynomial, is a monic polynomial P q (X) ∈ Z[X] of even degree 2g whose complex roots are all Weil q-numbers, i.e., algebraic integers with absolute value √ q under all of their complex embeddings. Moreover, a Weil q-polynomial is said to be ordinary if its middle coefficient is coprime to q.

In particular, for g = 3, every Weil q-polynomial of degree 6 is of the form P q (X) = X 6 + aX 5 + bX 4 + cX 3 + qbX 2 + q 2 aX + q 3 for some integers a, b and c (cf. [START_REF] Howe | Principally polarized ordinary abelian varieties over finite fields[END_REF]Proposition 3.4]). Such a Weil polynomial is ordinary if, moreover, c is coprime to q.

Conversely, not every polynomial of this form is a Weil polynomial. However, we will prove in Proposition 5.1 that for q > 1.82 2 , every polynomial as above with |a|, |b|, |c| < is a Weil q-polynomial.

As an important example, the characteristic polynomial of the Frobenius endomorphism of an abelian variety over F q is a Weil q-polynomial, by the Riemann hypothesis as proven by Deligne.

A variant of the Honda-Tate Theorem (cf. [START_REF] Howe | Principally polarized ordinary abelian varieties over finite fields[END_REF]Theorem 3.3]) states that the map which sends an ordinary abelian variety over F q to the characteristic polynomial of its Frobenius endomorphism induces a bijection between the set of isogeny classes of ordinary abelian varieties of dimension g ≥ 1 over F q and the set of ordinary Weil q-polynomials of degree 2g. Moreover, under this bijection, isogeny classes of simple ordinary abelian varieties correspond to irreducible ordinary Weil q-polynomials.

Hence, the proof of Theorem 3.1 consists in proving the existence of an irreducible ordinary Weil q-polynomial of degree 6 which gives rise to an isogeny class of simple ordinary abelian varieties of dimension 3. By Howe (cf. [12, Theorem 1.2]), such an isogeny class contains a principally polarised abelian variety A over F q , which is the Jacobian variety of some curve C q defined over F q by results due to Oort and Ueno. If this abelian variety A is moreover absolutely simple, the curve is geometrically irreducible and we can conclude by a Galois descent argument. Thus, it is a natural question whether the Weil q-polynomial determines if the abelian varieties in the isogeny class are absolutely simple.

In [START_REF] Howe | On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field[END_REF], Howe and Zhu give a sufficient condition for an abelian variety over a finite field to be absolutely simple; for ordinary varieties, this condition is also necessary. Let A be a simple abelian variety over a finite field, π its Frobenius endomorphism and m A (X) ∈ Z[X] the minimal polynomial of π. Since A is simple, the subalgebra Q(π) of End(A) ⊗ Q is a field; it contains a filtration of subfields Q(π d ) for d > 1. If moreover A is ordinary, then the fields End(A) ⊗ Q = Q(π) and Q(π d ) (d > 1) are all CM-fields, i.e., totally imaginary quadratic extensions of a totally real field. A slight reformulation of Howe and Zhu's criterion is the following (see Proposition 3 and Lemma 5 of [START_REF] Howe | On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field[END_REF]): Proposition 3.3 (Howe-Zhu criterion for absolute simplicity). Let A be a simple abelian variety over a finite field k. If Q(π d ) = Q(π) for all integers d > 0, then A is absolutely simple. If A is ordinary, then the converse is also true, and if Q(π d ) = Q(π) for some d > 0, then A splits over the degree d extension of k.

Moreover, if Q(π d ) is a proper subfield of Q(π) such that Q(π r ) = Q(π) for all r < d, then either m A (X) ∈ Z[X d ], or Q(π) = Q(π d , ζ d ) for a primitive d-th root of unity ζ d .
From this criterion, Howe and Zhu give elementary conditions for a simple 2-dimensional abelian variety to be absolutely simple, see [START_REF] Howe | On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field[END_REF]Theorem 6]. Elaborating on their criterion and inspired by [START_REF] Howe | On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field[END_REF]Theorem 6], we prove the following for dimension 3: Proposition 3.4. Let A be an ordinary simple abelian variety of dimension 3 over a finite field k of odd cardinality q. Then either A is absolutely simple or the characteristic polynomial of the Frobenius endomorphism of A is of the form X 6 + cX 3 + q 3 with c coprime to q and A splits over the degree 3 extension of k.

Proof. Let A be an ordinary simple but not absolutely simple abelian variety of dimension 3 over k. Since A is simple, the characteristic polynomial of π is m A (X). We apply Proposition 3.3 to A: Let d be the smallest integer such that

Q(π d ) = Q(π). Either m A (X) ∈ Z[X d ] or there exists a d-th root of unity ζ d such that Q(π) = Q(π d , ζ d ).
We will prove by contradiction that m A (X) ∈ Z[X d ]. Since m A (X) is ordinary, the coefficient of degree 3 is non-zero, and it will follow that d = 3 and that m A (X) has the form X 6 + cX 3 + q 3 , proving the proposition.

So, suppose that

m A (X) ∈ Z[X d ]. The field K = Q(π) = Q(π d , ζ d
) is a CM-field of degree 6 over Q, hence its proper CM-subfield L = Q(π d ) has to be a quadratic imaginary field. It follows that φ(d) = 3 or 6, where φ denotes the Euler totient function. However, φ(d) = 3 has no solution, so we must have φ(d) = 6, i.e. d ∈ {7, 9, 14, 18}, and

K = Q(ζ d ). Note that Q(ζ 7 ) = Q(ζ 14 ) and Q(ζ 9 ) = Q(ζ 18
), and they contain only one quadratic imaginary field; namely, Q( √ -7) for d = 7 (resp. 14), and Q( √ -3) for d = 9 (resp. d = 18) (cf. [START_REF] Washington | Introduction to cyclotomic fields[END_REF]). Let σ be a generator of the (cyclic) group Gal(K/L) of order 3. In their proof of [13, Lemma 5], Howe and Zhu show that we can choose mod d). This rules out the case d = 9 and 18, because -3 is neither a square modulo 9 nor a square modulo 18. So d = 7 or 14,

ζ d such that π σ = ζ d π. Moreover, ζ σ d = ζ k d for some integer k (which can be chosen to lie in [0, d -1]). Since σ is of order 3, we have π = π σ 3 = ζ (k 2 +k+1) d π, which gives k 2 + k + 1 ≡ 0 (
K = Q(ζ 7 ) and Q(π d ) = Q( √ - 7 
). It follows that the characteristic polynomial of π d , which is of the form

X 6 + αX 5 + βX 4 + γX 3 + βq d X 2 + αq 2d X + q 3d ∈ Z[X],
is the cube of a quadratic polynomial of discriminant -7. This is true if and only if

α 2 -36q d + 63 = 0, α 2 -3β + 9q d = 0 and α 3 -27γ + 54αq d = 0, that is, α 2 = 9(4q d -7), β = 3(5q d -7) and 3γ = α(10q d -7).
However, the first equation has no solution in q. Indeed, suppose that 4q d -7 is a square, say u 2 for some integer u. Then u is odd, say u = 1 + 2t for some integer t, hence 4q d = 8 + 4t(t + 1), so 2 divides q, which contradicts the hypothesis.

Hence, we obtain that m A (X) ∈ Z[X d ] and Proposition 3.4 follows.

Finally, the proof of Theorem 3.1 relies on Proposition 3.4 and the following proposition, whose proof consists on counting arguments and is postponed to Section 5: Proposition 3.5. For any prime number ≥ 13 and any prime number q > 1.82 2 , there exists an ordinary Weil q-polynomial P q (X) = X 6 +aX 5 + bX 4 + cX 3 + qbX 2 + q 2 aX + q 3 , with a ≡ 0 (mod ), which is irreducible modulo . For ∈ {3, 5, 7, 11}, there exists some prime number q > 1.82 2 and an ordinary Weil q-polynomial as above. Moreover, for all ≥ 3, the coefficients a, b, c can be chosen to lie in Z ∩ [-( -1)/2, ( -1)/2]. Remark 3.6. Computations suggest that for ∈ {5, 7, 11} and any prime number q > 1.82 2 , there still exist integers a, b, c such that Proposition 3.5 holds. For = 3, this is no longer true: our computations indicate that if q is such that q = -1, then there are no suitable a, b, c, while if q is such that q = 1, they indicate that there are 4 suitable triples (a, b, c).

We now have all the ingredients to prove Theorem 3.1.

Proof of Theorem 3.1. Let and q be two distinct prime numbers as in Proposition 3.5 and let P q (X) be an ordinary Weil q-polynomial provided by this proposition. Since the polynomial P q (X) is irreducible modulo , it is a fortiori irreducible over Z. It is also ordinary and of degree 6. Hence, by Honda-Tate theory, it defines an isogeny class A of ordinary simple abelian varieties of dimension 3 over F q . By Proposition 3.4, since a = 0, the abelian varieties in A are actually absolutely simple. Moreover, according to Howe (cf. [12, Theorem 1.2]), A contains a principally polarised abelian variety (A, λ). Now, by the results of Oort-Ueno (cf. [START_REF] Oort | Principally polarized abelian varieties of dimension two or three are Jacobian varieties[END_REF]Theorem 4]), there exists a so-called good curve C defined over F q such that (A, λ) is F q -isomorphic to (Jac(C), µ 0 ), where µ 0 denotes the canonical polarisation on Jac(C). A curve over F q is a good curve if it is either irreducible and non-singular or a non-irreducible stable curve whose generalised Jacobian variety is an abelian variety (cf. [12, Definition (13.1)]). In particular, the curve C is stable, and so semi-stable. Since the generalised Jacobian variety Jac(C) ∼ = Pic 0 C is an abelian variety, the torus appearing in the short exact sequence of Proposition 1.1 is trivial. Hence, there is an isomorphism Jac(C) ∼ = r i=1 Pic 0 X i , where X 1 , . . . , X r denote the normalisations of the irreducible component of C over F q . Since Jac(C) is absolutely simple, we conclude that r = 1, i.e., the curve C is irreducible, hence smooth.

We can therefore apply Theorem 9 of the appendix by Serre in [START_REF] Lauter | Geometric methods for improving the upper bounds on the number of rational points on algebraic curves over finite fields[END_REF] (see also the reformulation in [START_REF] Ritzenthaler | Explicit computations of Serre's obstruction for genus-3 curves and application to optimal curves[END_REF]Theorem 1.1]) and conclude that the curve C descends to F q . Indeed, there exists a smooth and geometrically irreducible curve C q defined over F q which is isomorphic to C over F q . Moreover, either (A, λ) or a quadratic twist of (A, λ) is isomorphic to (Jac(C q ), µ) over F q , where µ denotes the canonical polarisation of Jac(C q ). The characteristic polynomial of Jac(C q ) is P q (X) or P q (-X), since the twist may replace the Frobenius endomorphism with its negative.

Note that the polynomial P q (-X) is still an ordinary Weil polynomial which is irreducible modulo with non-zero trace, and Jac(C q ) is still ordinary and absolutely simple. This proves Theorem 3.1.

Remark 3.7. In the descent argument above, the existence of a non-trivial quadratic twist may occur in the non-hyperelliptic case only. This obstruction for an abelian variety over F q to be a Jacobian over F q was first stated by Serre in a Harvard course [START_REF] Serre | Rational points on curves over finite fields[END_REF]; it was derived from a precise reformulation of Torelli's theorem that Serre attributes to Weil [START_REF] Weil | Zum Beweis des Torellischen Satzes[END_REF]. Note that Sekiguchi investigated the descent of the curve in [START_REF] Sekiguchi | The coincidence of fields of moduli for nonhyperelliptic curves and for their Jacobian varieties[END_REF] and [START_REF] Sekiguchi | The coincidence of fields of moduli for nonhyperelliptic curves and for their Jacobian varieties[END_REF], but, as Serre pointed out to us, the non-hyperelliptic case was incorrect. According to MathSciNet review MR1002618 (90d:14032), together with Sekino, Sekiguchi corrected this error in [START_REF] Sekino | On the fields of definition for a curve and its Jacobian variety[END_REF].

Proof of the main theorem

The goal of this section is to prove Theorem 0.1, by collecting together the results from Sections 2 and 3. We keep the notation introduced in Subsection 1.1; in particular, we will consider genus 3 curves defined by polynomials which are of 3-hyperelliptic or quartic type. We will prove the following refinement of Theorem 0.1: Theorem 4.1. Let ≥ 13 be a prime number. For each prime number q > 1.82 2 , there exists fq (x, y) ∈ F q [x, y] of 3-hyperelliptic or quartic type, such that if f (x, y) ∈ Z[x, y] is a lift of fq (x, y), of the same type, satisfying the following two conditions for some prime number p ∈ {2, q, }:

(1) f (0, 0) = 0 or v p (f (0, 0)) > 2;

(2) f (x, y) is congruent modulo p 2 to:

y 2 -x(x -p)m(x)
if fq (x, y) is of hyperelliptic type x 4 + y 4 + x 2 -y 2 + px if fq (x, y) is of quartic type for some m(x) ∈ Z p [x] of degree 5 or 6 with simple non-zero roots modulo p; then the projective curve C defined over Q by the equation f (x, y) = 0 is a smooth projective geometrically irreducible genus 3 curve, such that the image of the Galois representation ρ Jac(C), attached to the -torsion of Jac(C) coincides with GSp 6 (F ).

Moreover, if ∈ {5, 7, 11}, the statement is true, replacing "For each prime number q" by "There exists an odd prime number q". Remark 4.2. Let ≥ 5 be a prime number. Note that it is easy to construct infinitely many polynomials f (x, y) satisfying the conclusion of Theorem 4.1: choose a polynomial f p (x, y) satisfying the conditions in Definition 2.1. Choose a prime q > 1.82 2 , and find a polynomial fq (x, y) that satisfies the conditions in Proposition 3.5 (e.g. by a computer search based on the method suggested after Theorem 0.1). Then it suffices to choose each coefficient of f (x, y) as a lift of the corresponding coefficient of fq (x, y) to an element of Z, which is congruent mod p 3 to the corresponding coefficient of f p (x, y). This also proves that Theorem 0.1 follows from Theorem 4.1.

Example 4.3.

(1) For = 13, we choose p = 7, q = 313. A computer search produces the polynomial fq (x, y) = y 2 -(x 7 + x -1), which defines a hyperelliptic genus 3 curve over F q . Let f p (x, y) = y 2 -x(x-7)(x -1)(x -2)(x -3)(x -4)(x -5). Using the Chinese Remainder Theorem we construct the hyperelliptic curve over Q with equation f (x, y) = 0, where

f (x, y) = y 2 -(x 7 -14085x 6 + 33804x 5 -27231x 4 + 27231x 3 -35995x 2 -33803x + 25039).
(2) For = 5, we choose p = 3, q = 97. Through a computer search we find the quartic polynomial fq (x, y) = x 4 + y 3 + x 3 y + xy 2 + 1 ∈ F q [x, y]. Take f p (x, y) = x 4 + y 4 + x 2 -y 2 + 3x. Then we obtain the plane quartic curve over Q with equation f (x, y) = 0, where f (x, y) = x 4 + 486x 3 y + y 4 + 486xy 2 -485x 2 + 485y 2 -1455x + 486.

The rest of the section is devoted to the proof of Theorem 4.1. For the convenience of the reader, we recall the contents of Theorem 3.10 from [START_REF] Arias-De-Reyna | Galois representations and Galois groups over Q[END_REF]: Let A be a principally polarised n-dimensional abelian variety defined over Q. Assume that A has semistable reduction of toric rank 1 at some prime number p. Denote by Φ p the group of connected components of the Néron model of A at p. Let q be a prime of good reduction of A and P q (X) = X 2n +aX 2n-1 +• • •+q n ∈ Z[X] the characteristic polynomial of the Frobenius endomorphism acting on the reduction of A at q. Then for all primes which do not divide 6pqa|Φ p | and such that the reduction of P q (X) mod is irreducible in F , the image of ρ A, coincides with GSp 2n (F ).

Proof of Theorem 4.1. Fix a prime ≥ 5. Let q and C q be a prime, respectively a genus 3 curve over F q , provided by Theorem 3.1. The curve C q is either a plane quartic or a hyperelliptic curve. More precisely, it is defined by an equation fq (x, y) = 0, where fq (x, y) ∈ F q [x, y] is a quartic type polynomial in the first case and a 3-hyperelliptic type polynomial otherwise (cf. Subsection 1.1). Note that if f (x, y) ∈ Z[x, y] is a quartic (resp. 3hyperelliptic type) polynomial which reduces to fq (x, y) modulo q, then it defines a smooth projective genus 3 curve over Q which is geometrically irreducible.

Let now p ∈ {2, q, } be a prime. Assume that f (x, y) ∈ Z[x, y] is a polynomial of the same type as fq (x, y) which is congruent to fq (x, y) modulo q and also satisfies the two conditions of the statement of Theorem 4.1 for this p. We claim that the curve C defined over Q by the equation f (x, y) = 0 satisfies all the conditions of the explicit surjectivity result of ([2, Theorem 3.10]). Namely, Proposition 2.2 implies that C is a smooth projective geometrically connected curve of genus 3 with stable reduction. Moreover, according to Proposition 2.3, the Jacobian Jac(C) is a principally polarised 3-dimensional abelian variety over Q, and its Néron model has semistable reduction at p with toric rank equal to 1. Furthermore, the component group Φ p of the Néron model of Jac(C) at p has order 2. Finally, by the choice of q and C q provided by Theorem 3.1, q is a prime of good reduction of Jac(C) such that the Frobenius endomorphism of the special fibre at q has Weil polynomial P q (X) = X 6 + aX 5 + bX 4 + cX 3 + qbX 2 + q 2 aX + q 3 , which is irreducible modulo . Since the prime does not divide 6pqa|Φ p |, we conclude that the image of the Galois representation ρ Jac(C), attached to the -torsion of Jac(C) coincides with GSp 6 (F ) by Theorem 3.10 from [START_REF] Arias-De-Reyna | Galois representations and Galois groups over Q[END_REF].

Counting irreducible Weil polynomials of degree 6

In this section, we will prove Proposition 3.5 stated in Section 3. At the end of the section we present some examples.

This proof is based on Proposition 5.1 as well as Lemmas 5.3 and 5.4 below.

Let and q be distinct prime numbers. Consider a polynomial of the form ( * ) P q (X) = X 6 + aX 5 + bX 4 + cX 3 + qbX 2 + q 2 aX + q 3 ∈ Z[X].

Proposition 5.1 ensures that for q 2 , every polynomial ( * ) with coefficients in ] -, [ is a Weil polynomial. Then Lemmas 5.3 and 5.4 allow us to show that the number of such polynomials which are irreducible modulo is strictly positive.

Proposition 5.1. Let and q be two prime numbers.

(1) Suppose that q > 1.67 2 . Then every polynomial

X 4 + uX 3 + vX 2 + uqX + q 2 ∈ Z[X]
with integers u, v of absolute value < is a Weil q-polynomial. (2) Suppose that q > 1.82 2 . Then every polynomial P q (X) = X 6 + aX 5 + bX 4 + cX 3 + qbX 2 + q 2 aX + q 3 ∈ Z[X],

with integers a, b, c of absolute value < , is a Weil q-polynomial.

Remark 5.2. The power in is optimal, but the constants 1.67 and 1.82 are not.

Let D * - 6 be the number of polynomials of the form P q (X) = X 6 + aX 5 + bX 4 + cX 3 + qbX 2 + q 2 aX + q 3 ∈ Z[X] with a, b, c in [-( -1)/2, ( -1)/2], a, c = 0 and whose discriminant ∆ Pq is not a square modulo , and R 6 the number of such polynomials which are Weil polynomials and are reducible modulo . Denoting by . the Legendre symbol, we have:

Lemma 5.3. Let > 3, then D * - 6 ≥ 1 2 ( -1) 2 -1 -q + 1 2 ( - 1) q 1 --1 -( -1). Lemma 5.4. Let > 3, then R 6 ≤ 3 8 3 -5 8 2 q -2 + 3 2 q + 5 8 -3 8 q -1 2 .
We postpone the proofs of Proposition 5.1 as well as Lemmas 5.3 and 5.4 to the following subsections but now use those statements to prove Proposition 3.5. Before that, let us recall a result of Stickelberger, as proven by Carlitz in [START_REF] Carlitz | A theorem of Stickelberger[END_REF], which will also be useful for proving Lemmas 5.3 and 5.4:

For any monic polynomial P (X) of degree n with coefficients in Z, and any odd prime number not dividing its discriminant ∆ P , the number s of irreducible factors of P (X) modulo satisfies (5.1) ∆ P = (-1) n-s .

Proof of Proposition 3.5. Let > 3 be a prime number. It follows from Stickelberger's result that if P q (X) as in ( * ) is irreducible modulo , then

∆ Pq = -1.
Hence by Proposition 5.1, when q > 1.82 2 , we find that

(D * - 6 -R 6
) is exactly the number of degree 6 ordinary Weil polynomials which have non-zero trace modulo and are irreducible modulo .

By Lemmas 5.3 and 5.4, we have

D * - 6 -R 6 ≥ 1 8 3 + 1 8 2 q - 1 2 -q - 3 2 2 + 1 2 -q + 15 8 - 5 8 q ,
which is strictly positive for all q, provided that ≥ 13. For = 3, 5, 7 or 11, direct computations of (D * - 6 -R 6 ) using Sage show that q = 19 for = 3, q = 47 for = 5, q = 97 for = 7, q = 223 for = 11 will answer to the conditions of Proposition 3.5. Actually, computations indicate that for = 5, 7, 11, (D * - 6 -R 6 ) should be strictly positive for any prime number q and for = 3, it should be strictly positive for all prime numbers q which are not squares modulo (see Remark 3.6). 5.1. Proof of Proposition 5.1. Recall that and q are two prime numbers.

We first consider degree 4 polynomials. One can prove that a polynomial X 4 + uX 3 + vX 2 + uqX + q 2 ∈ Z[X] is a q-Weil polynomial if and only if the integers u, v satisfy the following inequalities:

(1) |u| ≤ 4 √ q, (2) 2|u| √ q -2q ≤ v ≤ u 2 4 + 2q. Let q > 1.67 2 and Q(X) = X 4 + uX 3 + vX 2 + uqX + q 2 ∈ Z[X] with |u| < , |v| < . Then q ≥ 1 16
2 and, since ≥ 2, we have q ≥ 1 4 2 ≥ 1 2 so (1) and the right hand side inequality in (2) are satisfied. Finally, q ≥

1 + 1 2 √ 3 2 2 so √ q ≥ 1 + 1 2 √ q
and the left hand side inequality in (2) is satisfied. This proves that Q(X) is a Weil polynomial and the first part of the proposition. Now we turn to degree 6 polynomials. The proof is similar to the degree 4 case. According to Haloui [11, Theorem 1.1], a degree 6 polynomial of the form ( * ) is a Weil polynomial if its coefficients satisfy the following inequalities:

(

1) |a| < 6 √ q, (2) 4 √ q|a| -9q < b ≤ a 2 3 + 3q, (3) -2a 3 27 + ab 3 +qa-2 27 (a 2 -3b 2 +9q) 3 2 ≤ c ≤ -2a 3 27 + ab 3 +qa+ 2 27 (a 2 -3b 2 +9q) 3 2 , (4) -2qa -2 √ qb -2q √ q < c < -2qa + 2 √ qb + 2q √ q.
Let q > 1.82 2 and P q (X) a polynomial of the form ( * ) with |a|, |b|, |c| < . Then we note:

• We have q > 1 36 2 , so < 6 √ q and (1) is satisfied. • The right hand side inequality of ( 2) is satisfied since ≤ 3q. Moreover we have q > (1 + 17/8) 2 ≥ 4 2 (1 + 1 + 9/4 ) 2 /81. Hence 9q -4 √ q -> 0 and the left hand inequality of ( 2) is satisfied.

• A sufficient condition to have both inequalities in (3) is 2 3 + 9 2 + 27q -2(-3 2 + 9q) has only one real root with approximate value 0.805, we find that A ≤ B, because q ≥ 1.243 2 . • Since q > 1.82 2 and ≥ 2, we have

1 2q + 1 √ q + 1 ≤ 1 22 + 1 √ 11 + 1 < √ q.
Hence, -2q -2 √ q + 2q √ q -> 0 and (4) is satisfied.

This proves that P q (X) is a Weil polynomial and the second part of the proposition.

5.2. Proofs of Lemmas 5.3 and 5.4. In this section, > 2, q = are prime numbers and we, somewhat abusively, denote with the same letter an integer in [-( -1)/2, ( -1)/2] and its image in F . We will repeatedly use the following elementary lemma.

5.2.2. Proof of Lemma 5.4. Recall that R 6 denotes the number of Weil polynomials P q (X) = X 6 + aX 5 + bX 4 + cX 3 + qbX 2 + q 2 aX + q 3 with coefficients in [-( -1)/2, ( -1)/2], a, c = 0, non-square discriminant modulo and which are reducible modulo . We may drop the conditions a = 0, c = 0 to bound R 6 . By Stickelberger's result (see (5.1)), a monic degree 6 polynomial in Z[X] with non-square discriminant modulo has 1, 3 or 5 distinct irreducible factors in F [X]. Hence, the factorisation in F [X] of a polynomial P q (X) as above is of one of the following types (note that a root α of P q (X) in F is in F if and only q/α is also in F ):

(1) P q (X) ≡ (X -α)(X -q α )(X -β)(X -q β )(X 2 -CX + q), with C 2 -4q non-square modulo and α = q/α, β = q/β and {α, q/α} = {β, q/β}; equivalently P q (X) ≡ (X 2 -AX + q)(X 2 -BX + q)(X 2 -CX + q) where the first two quadratic polynomials are distinct and both reducible and the third one is irreducible;

(2) P q (X) ≡ (X -α)(X -q α )Q(X), where α = q/α and the irreducible factor Q(X) is the reduction of a degree 4 Weil polynomial;

(3) P q (X) is the product of three distinct irreducible quadratic polynomials, i.e., P q (X) ≡ (X 2 -CX + q)Q(X) where X 2 -CX + q is irreducible and Q(X) is the reduction of a degree 4 Weil polynomial which has two distinct irreducible factors, both of which are distinct from X 2 -CX + q.

We will count the number of polynomials of each type. Type 1. By Lemma 5.5, there are 1 2 -q irreducible quadratic polynomials X 2 -CX + q. Also by Lemma 5.5, there are 1 2 -2 -q choices for reducible X 2 -AX + q without a double root and then there are -2 -q -1 choices for reducible X 2 -BX + q without a double root and distinct from X 2 -AX + q. It follows that there are 1 16 -q q -2 -q -4 such polynomials. Type 2. By Proposition 5.6 and Lemma 5.5, the number of polynomials with decomposition of this type is 1 2 -q -2 N 4 ≤ 1 8 ( + 1)( -1) -q -2 .

Type 3. Proposition 5.6 and Lemma 5.5 imply that there are

≤ 1 2 - q T 4 ≤ 1 8 - q 2 
( -3) + 1 16 ( -1)( + 1) -q polynomials of this type. 3Summing these three upper bounds yields the lemma.

5.2.3. Proof of Lemma 5.3. The discriminant of P q (X) is ∆ Pq = q 6 Γ 2 δ, where δ = (c + 2aq) 2 -4q(b + q) 2 and Γ = 8qa Computation of M . Since > 2 and q ∈ F * , for any fixed c ∈ F × , the map (a, b) → (c + 2aq, b + q) is a bijection from F * × F to F \{c} × F . From this and Lemma 5.5 we deduce that

M = c∈F * (x, y) ∈ F 2 ; x = c, x 2 -4qy 2 = -1 = c∈F * (x, y) ∈ F 2 ; x 2 -4qy 2 = -1 - c∈F * y ∈ F ; c 2 -4qy 2 = -1 = 1 2 ( -1) 2 - q - c∈F * M c ,

  there exist a(x) = 1 + xc(x) ∈ F p [[x]] and b(y) = 1 + yd(y) ∈ F p [[y]] such that 1 + x 2 = a(x) 2 and 1 -y 2 = b(y) 2 , by ([17, Chap. 1, Exercise 3.9]). Then we have

  [17, Chap. 10, Proposition 3.15-(a)]). Let e denote the thickness of the ordinary double point of C Fp (as defined in [17, Chap. 10, Defini-tion3.23]). Then by [17, Chap. 10, Corollary 3.25], the geometric special fibre C min,Fp of C min × Z sh

Since 1 + 2 - 2 + 2 4a(0) 2 ≡

 12222 x 2 + p 2 s(x) and 1 -y 2 have constant terms which are squares in Z × p , the formal power series are squares in Z p [[x]], resp. Z p [[y]]. So f (x, y) again has the desired form. Next, we show that e = 2 for ±f (x, y) of the form (2.1). In R[[x, y]], we have ±f (x, y) = xa(x) + p α 2a(x) yb(y) -p 2 g(x, y) 2b(y) p 2 c(x, y), where c(x, y) = p r-2 β -α 2 4a(x) 2 + p 2 g(x,y) 2 4b(y) 2 . Since either β = 0 or r > 2 and α 0 (mod p), the constant term γ of the formal power series c(x, y) belongs to R × . It follows that γ -1 c(x, y) is the square of some formal power series d(x, y) ∈ R[[x, y]] × . Defining the variables + p 2 g(x, y) 2b(y)d(x, y) and v = xa(x) d(x, y) + p α 2a(x)d(x, y) + yb(y) d(x, y) -p 2 g(x, y) 2b(y)d(x, y) , we get O U ×R,P ∼ = R[[u, v]]/(uv ± p 2 γ). Since γ ∈ R × , it follows that e = 2.

4 + 9q 2 a 2 - 3 -- 1 -- 1 ≥- 1 W

 423111 42qa 2 b + a 2 b 2 -4a 3 c + 108q 108q 2 b + 36qb 2 -4b 3 + 54qac + 18abc -27c 2 .Hence, we haveD * - 6 = (a, b, c); a, c = 0, Γ ≡ 0 mod and δ = -1 = (a, b, c); a, c = 0, δ = (a, b, c); a, c = 0, Γ ≡ 0 mod and δ = M -W, where M = (a, b, c); a, c = 0, δ = = {(a, b, c); a = 0, Γ ≡ 0 mod } .

  We say that C has semistable reduction (resp. stable reduction) if C has a model C over R which is a semistable (resp. stable) scheme over R. If such a stable model exists, it is unique up to isomorphism and we call it the stable model of C over R (cf. [17, Chap.10, Definition 3.27 and Theorem 3.34]). If the curve C has genus g ≥ 1, then it admits a minimal regular model C min over R, unique up to unique isomorphism. Moreover, C min is semistable if and only if C has semistable reduction, and if g ≥ 2, this is equivalent to C having stable reduction (cf. [17, Chap. 10, Theorem 3.34], or [20, Theorem 3.1.1] when R is strictly henselian).

  and y = t -4 w (cf.[START_REF] Liu | Algebraic geometry and arithmetic curves[END_REF] Chap. 10, Example 3.5]). In Case (Q), the geometric special fibre is Proj(F p [X, Y, Z]/( F (X, Y, Z))). In both cases, the defining polynomials are irreducible over F p . Hence, C Fp is integral, i.e. reduced and irreducible.Next, we prove that C Fp has only one ordinary double point as singularity. For Case (H), see e.g. [17, Chap. 10, Examples 3.4, 3.5 and 3.29]. For Case (Q), we proceed analogously: first consider the open affine subscheme of C Fp defined by U

  3/2 + 27 ≤ 0. A computation shows that this inequality is equivalent to A ≤ B, with

	A = 6 28 729	+	1 81		+	7 108 2 +	1 6 3 +	1 4 4 ,
	B = q 3 1 -	5 4	2 q	+	4 q 2			8 27	-	1 6	-	1 2 2	.
	Since ≥ 2, we have A ≤ 4537 46656	6 and B ≥ q 3 1 -5 4	2 q + 19 216	4 q 2 .
	Furthermore, since the polynomial		
	4537 46656	X 3 -	19 216	X 2 +	5 4	X -1

In this article, we will say that a curve over a field K is an algebraic variety over K whose irreducible components are of dimension 1. (In particular, a curve can be singular.)

When K is not algebraically closed nor a finite field, the situation can be more complicated (cf.[START_REF] Lercier | Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects[END_REF] Section 4.1]).

The first inequality is due to the fact that we do not take into account that X 2 -CX+q has to be distinct from the factors of Q(X).
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Lemma 5.5. Let D ∈ F * and ε ∈ {-1, 1}. We have

and (x, y) ∈ F 2 ;

x 2 -Dy 2 = ε = 1 2 ( -1) -D .

5.2.1.

Estimates on the number of degree 4 Weil polynomials modulo .

Proposition 5.6.

(1) For ε ∈ {-1, 1}, we denote by D ε 4 the number of degree 4 polynomials of the form X 4 +uX 3 +vX 2 +uqX +q 2 ∈ F [X] with discriminant ∆ such that ∆ = ε. Then

(2) The number N 4 of degree 4 Weil polynomials with coefficients in [-( -1)/2, ( -1)/2] which are irreducible modulo satisfies

(3) The number T 4 of degree 4 Weil polynomials with coefficients in [-( -1)/2, ( -1)/2] with exactly two irreducible factors modulo satisfies

Moreover, if q > 1.67 2 , Inequalities (5.2) and (5.3) are equalities.

Proof.

(1) First, we compute D ε 4 . The polynomial Q(X) = X 4 + uX 3 + vX 2 + uqX + q 2 has discriminant ∆ = q 2 κ 2 δ, where

Since q ∈ F * , we have ∆ = κ 2 δ . Moreover, notice that if κ = 0 then δ = (v -6q) 2 .

It follows that

Since the map (u, v) → (v + 2q, 2u) is a bijection on F 2 (because = 2), by Lemma 5.5 we have

for any ε ∈ {±1}. This gives the result for D - 4 . The result for D + 4 follows from:

(2) Next, we bound the quantity N 4 . By Stickelberger's result (see (5.1)), a monic degree 4 polynomial in Z[X] has non-square discriminant modulo if and only if it has one or three distinct irreducible factors in F [X]. In the latter case, the polynomial has the form

with X 2 -B X + q irreducible in F [X] and α = q/α in F * . By Lemma 5.5, there are 1 4 -2 -q q such polynomials with three irreducible factors. It follows that

( -1)( + 1).

(3) Finally, we bound the quantity T 4 . As above, Stickelberger's result implies that a degree 4 Weil polynomial Q(X) in Z[X] has exactly two distinct irreducible factors modulo if and only if

Weil polynomials with coefficients in [-( -1)/2, ( -1)/2] whose reduction modulo has four distinct roots in F . It follows that

When q > 1.67 2 , these upper bounds for N 4 and T 4 are equalities, since in this case, by Proposition 5.1, every polynomial of the form X 4 + uX 3 + vX 2 + uqX + q 2 with |u|, |v| < is a Weil polynomial.

where

the last equality following from Lemma 5.5. This gives

Moreover, since > 3, the map b → 3(b -3q) is a bijection on F . So we have

using Lemma 5.5 (the second term is the contribution of y = 0). This yields W = ( -1) and computing M -W concludes the proof.

5.3.

Examples. This section contains examples of Weil polynomials satisfying the conditions in Proposition 3.5. They were obtained using Sage.

• = 3, q = 19: P q (X) = X 6 + X 5 + X 3 + 361X + 6859;

4 More precisely, we have Γ

• = 5, q = 47: P q (X) = X 6 +X 5 +X 4 +X 3 +47X 2 +2209X +103823; • = 7, q = 97: P q (X) = X 6 + X 5 + 3X 3 + 9409X + 912673; • = 11, q = 223: P q (X) = X 6 + X 5 + 5X 3 + 49729X + 11089567; • = 13: q = 311: P q (X) = X 6 + X 5 + 3X 3 + 96721X + 30080231; q = 313: P q (X) = X 6 + X 5 + 4X 3 + 97969X + 30664297; q = 317: P q (X) = X 6 + X 5 + X 3 + 100489X + 31855013; q = 331: P q (X) = X 6 + X 5 + 3X 3 + 109561X + 36264691.