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Introduction

Nanoporous superinsulating materials (NSMs) are the subject of more and more interest for various applications (particularly in the aerospace and construction industries) due to their extraordinary power of thermal insulation [1][2][3][4][5]: whereas air (generally regarded as an excellent thermal insulator) has a thermal conductivity of at ambient temperature and pressure, this thermal conductivity falls down to a few for a NSM evacuated down to a primary vacuum.

-1 -1 25 mW.m .K -1 -1 mW.m .K Such a level of thermal insulation achieved by NSMs finds its explanation in the microstructure of these materials. Very porous (their porosity is of the order of 90%) and made of extremely fragmented solid matter (the main population of solid constituents is generally brought down to a nanometric scale), they force the conduction heat flux to travel through very tortuous routes made of a multitude of elementary thermal resistances located at the coalescences of neighboring nanoparticles. Furthermore, these materials include very small quantities of micrometric scale particles and fibers. Whereas it is generally accepted that the role of the fibers is essentially to provide mechanical reinforcement to the nanoporous structure, on the other hand the presence of the micrometric scale particles is to be related to the level of thermal radiation heat transfer traveling within the NSM: if adequately designed to provide opacity "at the right places in the infrared (IR) spectrum", this microparticle population can quite efficiently cut down the radiation heat flux in the course of its progression within the nanoporous structure.

In this contribution, we wish (i) to develop a model capable to quantify the level of radiation heat transfer traveling through a NSM in relation with the composition (sizes, volume fractions and physical natures of the different populations of constituents) of the material, and then (ii) to exploit this model for the determination of the characteristics (size, volume fraction and optical properties) of the ideal microparticle population that will produce a maximum opacity "at the right places in the IR spectrum", i. e. a minimum radiation heat flux through the nanoporous structure. To this purpose, we will proceed as follows. First, we will describe in more detail the microstructure of a typical NSM, and we will introduce an idealized, extremely simplified version of this material for our calculations. Then, we will present our thermal radiation model based on the "non-gray anisotropically scattering Rosseland approximation". As a third step, we will use our model for the calculation of the transparence spectral bands of a NSM without microparticles, and we will discuss the different interaction phenomena susceptible to take place between the IR wavelengths and the microparticle population. Finally, studies concerning (i) the microparticle volume fraction necessary for a sufficient opacity of the NSM and (ii) a possible optimum size for the microparticle population will be presented.

Description of the microstructure of a typical NSM and introduction of a simplified version of this material

As introduced previously, a NSM is typically made of (i) nanometric scale particles joined to one another to form a nanoporous matrix, the ultradominant constituent of the material in terms of volume fraction (near 100%), (ii) a small volume fraction (of the order of 1%) of micrometric scale particles expected to provide IR opacity to the NSM, and (iii) a small volume fraction (of the order of 1%) of micrometric scale fibers for reinforcement of the nanoporous structure. In the following of this paper, we will ignore the existence of the fiber population: this population being essentially associated to a mechanical function, we will suppose that it does not dramatically impact on the radiative properties of the NSM.

The nanoparticles constituting the nanoporous matrix form the dominant population in terms of solid volume fraction (of the order of 5 to 10%), therefore they must be made of a material that is a good thermal insulator. In a large majority of cases, this material is chosen to be amorphous silicon oxyde . The nanoporous matrix is extremely porous (its porosity is more than 90%), and a TEM observation focused on this matrix reveals its nanotexture, as shown in figure 2. This image being at a scale of the order of 100 nm (the surface covered by the image is approximately ), stacks of coalesced nanoparticles now appear (dark structures) as well as the 3-D nanoarchitecture that they constitute. A further TEM analysis focused on one nanoparticle stack allows an approximate evaluation of the average diameter of these particles: between 10 and 20 nm. Pretending to develop a radiative heat transfer model within the NSM that respects the chaotic 3-D nanostructure of the matrix appears to be quite unrealistic. As a consequence, we will in the following greatly reduce the complexity the problem to be solved by simply ignoring the nanostructure of the matrix: we will separate the elementary bricks constituting the matrix, i. e. the nanoparticles, from one another and disperse this nanoparticle population randomly in space. In other words, the real NSM presenting a structured nanoporous matrix will from now on be replaced in our calculations by a virtual material presumed radiatively equivalent to the NSM and made of the following 2 particle populations:

(i) a population of nanoparticles characterized by an average diameter of 10 nm and a 

Notion of radiation thermal conductivity

The ambition of the work presented here being essentially to compare material solutions and to derive directions towards enhanced thermal insulation efficiencies of NSMs, the notion of radiation thermal conductivity, based on the Rosseland diffusion approximation, appears to be quite convenient.

The Rosseland diffusion approximation applies when (i) the sample is optically thick, and (ii) the scattering phenomenon within the material is isotropic. Under these 2 circumstances, the radiative flux traversing the sample can be expressed under the following form [START_REF] Modest | Radiative Heat Transfer[END_REF]: R ϕ ( )
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in which ν is the optical frequency, ν β the extinction coefficient spectrum of the material, n ν its refraction index spectrum, T the temperature and the spectral blackbody emissive power distribution (commonly known as Planck's law) at temperature T. The structure of relation (1), very similar to Fourier's law of conduction, leads to the introduction of a "radiation thermal conductivity" function of temperature T and expressed as:
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When the material is gray, expression (2) simplifies greatly and becomes:
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)
where σ is the Stefan-Boltzmann constant ( ). In the case of a non-gray material (which is the case of our NSMs), the general expression (2) of can be rewritten in the following manner:
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where λ is the wavelength and the second constant of Planck's law (14388 µm ).

Comparing expressions (3) and (4) of the radiation thermal conductivity for a gray and a nongray material, one notices that the quantity 2 C .K 2 n /β , independent of the wavelength for a gray material, is replaced by an average value of the 2 n / λ λ β spectrum, noted 2 n /β in formula (4), for a non-gray material, the weight function T ( ) ω λ on which the calculation of the average value 2 n /β is based having the following expression:
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As mentioned previously, the Rosseland diffusion approximation applies when the scattering phenomenon within the material can be considered to be isotropic. This condition may not be fulfilled with our NSMs, the microparticles that they contain having sizes of the same order of magnitude as the IR wavelengths. To circumvent this difficulty, Chu et al [START_REF] Chu | [END_REF] recommend to replace the spectrum appearing in the expression (4) of by an effective extinction coefficient spectrum 

where and are the asymmetry factor and scattering coefficient spectra of the material.

As a consequence, the evaluations that we will make throughout this paper of the radiation thermal conductivities of our NSMs will be based on the following formula:
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Optical and radiative homogenization of a NSM

To perform a evaluation as described above, one needs the refraction index ( R k (T) n λ ) as well as the effective extinction coefficient ( e λ β ) spectra of the NSM under study. In the general case of a NSM made of several populations of randomly distributed particles superimposed in air, each population of particles brings its own optical (complex optical index spectrum of the material constituting the particles) and radiative (effective extinction coefficient spectrum of the population) characteristics to the ensemble, and the calculation of the optical and radiative characteristics of the NSM must rely on these inputs.

We perform the optical homogenization of our NSMs via Rayleigh's extended rule of mixtures [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF]. Applied to relative dielectric permittivities λ ε defined by where and are the refraction and extinction indices, this rule yields:
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where (i) the superscripts m, h and i indicate quantities referring to the mixture, to the host material and to the different populations of inclusions respectively, and (ii) the are the volume fractions of the different populations of inclusions. i f

In the case of our NSMs, the host material is air (of dielectric permeability equal to 1), and 2 populations of particles are to be considered: on the one hand the nanoparticle population, and on the other hand the microparticle population. Under these circumstances, transforming formula (8) yields the following expression for the relative dielectric permittivity of the NSM:
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In this formula, the superscripts np and µp refer to the nanoparticle and microparticle populations respectively, and Π , and are the porosity of the NSM and the nanoparticle and microparticle volume fractions within the material (these 3 quantities verifying ). Expression [START_REF]optical properties of graphite: Handbook of Optical Constants of Solids II[END_REF] allows the calculation of the spectrum of the NSM, and subsequently its spectrum through the relation . 

with the obvious notations introduced previously.

Determination of the optical and radiative properties of the nanoparticle and microparticle populations

The optical properties of the 2 particle populations (i. e. the complex optical index spectra of the 2 materials constituting these 2 populations) are taken from [START_REF]optical properties of graphite: Handbook of Optical Constants of Solids II[END_REF].

The process of evaluation of the radiative properties of the 2 particle populations (i. e. the 2 effective extinction coefficient spectra e -np λ β and related to these 2 populations) consists in several steps. First we resort to the Mie theory, which accounts for the interaction of a monochromatic electromagnetic wave with a single solid particle. Mie formulae for a particle of spherical shape are given in [START_REF] Modest | Radiative Heat Transfer[END_REF]. The inputs of this calculation are on the one hand the size parameter defined by where d and λ are the particle diameter and the irradiation wavelength respectively, and on the other hand the complex optical index As a second step, based on the characteristics of the interaction of the monochromatic electromagnetic wave with a single particle (results obtained above), we proceed to the calculation of the cross-sections, the phase function and the asymmetry factor when the interaction is no more with a single particle but with a population of particles of volume fraction f. If the particles constituting the population are of uniform size (assumption that we make throughout this paper for all the particle populations that we deal with), it is known [START_REF] Modest | Radiative Heat Transfer[END_REF] that the spectral scattering phase function 
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so that the spectral absorption, scattering and extinction coefficients (respectively ,

λ κ λ σ and
) produced by the particle population, defined as the related cumulated cross-sections per unit volume, have the following expressions:
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In the preceding developments the principle of summation of cross-sections is assumed to be valid, which may not be the case especially when the volume fraction f of the particle population is important. Here the phenomenon of dependent scattering has to be taken into consideration: this phenomenon leads to a decrease in the scattering efficiency [START_REF] Kaviany | Principles of Heat Transfer in Porous Media[END_REF] and a simultaneous increase in the absorption efficiency. These tendencies are integrated in our model via very simple correction terms that have been validated (either theoretically or experimentally) over the volume fraction domain f 0. < [START_REF] Chu | [END_REF]. Formulas (12) are replaced by:
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Summary of our procedure for the evaluation of the radiation thermal conductivities of our NSMs

The NSM under study is supposed to be made (i) of a population of nanoparticles characterized by a complex optical index spectrum 
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and (iv) evaluation of the effective extinction coefficient spectrum e λ β of the NSM via the addition formula [START_REF] Kaviany | Principles of Heat Transfer in Porous Media[END_REF].

Once the and n λ e λ β spectra of the NSM have been determined, the radiation thermal conductivity of the material at a given temperature T is evaluated by numerical integration of expression [START_REF] Chu | [END_REF]. ; λ λ that is relevant to the calculations. Clearly, the bounds of this interval result from the features of the weight function T ( ) ω λ appearing in the expression [START_REF] Chu | [END_REF] of the radiation thermal conductivity . This function has a shape that is very similar to the one of Planck's law , and a numerical analysis shows (i) that 1% of the total weight lies within the spectral interval The nanoparticles being very small compared to the IR wavelengths, the size parameters are also very small, and the interaction between the IR wavelengths and the nanoparticle population degenerates into the well-known Rayleigh scattering phenomenon [START_REF] Modest | Radiative Heat Transfer[END_REF]. Under these circumstances, the ultradominant mode of extinction is absorption ( ), so that the effective extinction spectrum wavelength) (the extinction index spectrum of graphite (taken from [START_REF]optical properties of graphite: Handbook of Optical Constants of Solids II[END_REF]) is plotted in figure 5). 

R k (T) T ( ) ω λ 0 L (T) λ T 0 ( ) d ∞ ω λ λ ∫ 1251 µm.K 0 ; T ⎡ ⎤ ⎢ ⎥ ⎣ ⎦ , and ( 

Order of magnitude of the volume fraction of the microparticle population

The radiation thermal conductivity model described previously can give interesting information concerning the order of magnitude of the microparticle population volume fraction that is necessary for an efficient cut down of the radiation heat flux through a NSM.

In this section, we focus on 2 particular NSMs made of the same nanoparticle population ( and ) and of 2 microparticle populations of identical diameters ( ) differing only by the nature of the material constituting the microparticles: for NSM1 and graphite for NSM2. The plot of figure 10 shows the 

Optimum size for the microparticle population

As said earlier, for an improved efficiency of radiative insulation of a NSM, the microparticle population that it contains should be designed to provide a strong extinction around 4 µm. If the material constituting this microparticle population is given, its extinction index spectrum and related absorption bands or peaks are also given, and in no way the average diameter of the microparticle population will change the spectral locations of these absorption sources.

On the other hand, it is well-known that the value of the parameter impacts on the spectral location of the scattering phenomenon, so that it may reasonably be expected that an optimum microparticle population diameter exists for which the scattering phenomenon is positioned exactly over the tracked wavelength of 4 µm. (when these maxima appear). This means that, a diameter being given for the graphite microparticle population, the fraction of the overall extinction produced by this population through the scattering phenomenon is maximum at wavelengths λ of the order of . In the particular case studied here, this increase in the rate of participation of the scattering for 
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 1 Figure 1 is a TEM image at a micrometric scale (the surface covered by this image is
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 1 Figure 1: TEM image of a particular NSM made of a nanoporous matrix and of
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 2 Figure 2: TEM image of the nanoporous matrix appearing in figure 1.

  volume fraction of 10%, and (ii) a population of microparticles the characteristics of which (material, average diameter and volume fraction) are to be determined.3. "Non-gray anisotropically scattering Rosseland approximation" based thermal radiation model

  Our procedure for the radiative homogenization of our NSMs relies on the principle of addition of cross-sections. An effective extinction coefficient being regarded as an effective extinction cross-section per unit volume, this quantity is cumulative, so that the effective extinction coefficient spectrum of a NSM can be evaluated simply by addition of the

  constituting the particle at the irradiation wavelength λ. Applying the formulas of the Mie theory leads to the evaluation of several quantities: on the one hand the spectral absorption, scattering and extinction cross-sections (respectively abs s λ , and , with obvious notations) produced by the particle (these 3 cross-sections verifying ), and on the other hand the spectral scattering phase function

  hence the associated spectral asymmetry factor are unchanged when referring either to a single particle or to a whole population. Concerning the spectral absorption, scattering and extinction cross-sections (respectively , and ) produced by a volume V occupied by the particle population, calculation based on the principle of summation of cross-

  spectrum of , an uniform diameter and a volume fraction , and (ii) of a population of microparticles characterized by a complex optical index spectrum , determination of the refraction index spectrum n λ of the NSM is performed in 3 steps: (i) evaluation of the relative dielectric permittivity spectra of the 2 materials constituting the 2 populations via the formulas and ) calculation of the relative dielectric permittivity spectrum λ ε of the NSM using formula (9), and (iii) derivation of the refraction index spectrum n λ of the NSM by the resolution of the equation . The determination of the effective extinction coefficient spectrum of the NSM is performed in 4 steps: (i) evaluation via the Mie theory of the elementary spectral crossproduced by the 2 populations, (ii) calculation of the absorption and scattering coefficient spectra , , and produced by the 2 populations using expressions (13), (iii) derivation of the effective extinction coefficient spectra
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 4 Determination of the characteristics of the ideal microparticle population 4.1. Extinction properties of the nanoporous matrix 2 a -SiOIn this section, we consider a NSM made of exclusively the nanoparticle population (the characteristics of which are recalled here: uniform diameter and Before proceeding to the n , and evaluations as described above, we must determine the spectral interval [
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 3 Figure3: extinction index spectrum of (taken from[START_REF]optical properties of graphite: Handbook of Optical Constants of Solids II[END_REF]).
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 42422 Figure 4: calculated spectrum of the nanoporous matrix at room
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 562 Figure5: extinction index spectrum of graphite (taken from[START_REF]optical properties of graphite: Handbook of Optical Constants of Solids II[END_REF]).
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 10 Figure 10: dependence of the radiation thermal conductivity of a NSM (at T )
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 1112 Figure 11: effective albedo spectra of 5 graphite microparticle populations of identical
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 1137 Figure 13: dependence of the radiation thermal conductivity of a NSM (at T )