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Abstract 

 

In this contribution, we focus on the extraordinarily high level of thermal insulation produced 

by nanoporous materials, which can achieve thermal conductivities down to a few 

 when they are evacuated down to a primary vacuum. Our objective here is to 

quantify the level of radiation heat transfer traveling through a nanoporous material in 

relation with its composition. Our model is based on the “non-gray anisotropically scattering 

Rosseland approximation”, which allows the definition of a “radiation thermal conductivity” 

expressed as a function of the optical properties (complex optical index spectra), mean sizes 

and volume fractions of the different populations of particles constituting the material. With 

the help of this simple model, one can draw interesting conclusions concerning the impacts of 

different parameters related to the microstructure of the nanoporous material on the amplitude 

of the radiation heat transfer. In the future, this model should help to orient the formulation of 

new nanoporous materials with optimized radiative properties. 

1mW.m .K− −1
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1. Introduction 

 

Nanoporous superinsulating materials (NSMs) are the subject of more and more interest for 

various applications (particularly in the aerospace and construction industries) due to their 

extraordinary power of thermal insulation [1-5]: whereas air (generally regarded as an 

excellent thermal insulator) has a thermal conductivity of  at ambient 

temperature and pressure, this thermal conductivity falls down to a few  for a 

NSM evacuated down to a primary vacuum. 

-1 -125 mW.m .K

-1 -1mW.m .K

Such a level of thermal insulation achieved by NSMs finds its explanation in the 

microstructure of these materials. Very porous (their porosity is of the order of 90%) and 

made of extremely fragmented solid matter (the main population of solid constituents is 

generally brought down to a nanometric scale), they force the conduction heat flux to travel 

through very tortuous routes made of a multitude of elementary thermal resistances located at 

the coalescences of neighboring nanoparticles. Furthermore, these materials include very 

small quantities of micrometric scale particles and fibers. Whereas it is generally accepted 

that the role of the fibers is essentially to provide mechanical reinforcement to the nanoporous 

structure, on the other hand the presence of the micrometric scale particles is to be related to 

the level of thermal radiation heat transfer traveling within the NSM: if adequately designed 

to provide opacity “at the right places in the infrared (IR) spectrum”, this microparticle 

2 



 

population can quite efficiently cut down the radiation heat flux in the course of its 

progression within the nanoporous structure. 

In this contribution, we wish (i) to develop a model capable to quantify the level of radiation 

heat transfer traveling through a NSM in relation with the composition (sizes, volume 

fractions and physical natures of the different populations of constituents) of the material, and 

then (ii) to exploit this model for the determination of the characteristics (size, volume 

fraction and optical properties) of the ideal microparticle population that will produce a 

maximum opacity “at the right places in the IR spectrum”, i. e. a minimum radiation heat flux 

through the nanoporous structure. To this purpose, we will proceed as follows. First, we will 

describe in more detail the microstructure of a typical NSM, and we will introduce an 

idealized, extremely simplified version of this material for our calculations. Then, we will 

present our thermal radiation model based on the “non-gray anisotropically scattering 

Rosseland approximation”. As a third step, we will use our model for the calculation of the 

transparence spectral bands of a NSM without microparticles, and we will discuss the 

different interaction phenomena susceptible to take place between the IR wavelengths and the 

microparticle population. Finally, studies concerning (i) the microparticle volume fraction 

necessary for a sufficient opacity of the NSM and (ii) a possible optimum size for the 

microparticle population will be presented. 

 

2. Description of the microstructure of a typical NSM and introduction of a simplified 

version of this material 

 

As introduced previously, a NSM is typically made of (i) nanometric scale particles joined to 

one another to form a nanoporous matrix, the ultradominant constituent of the material in 

terms of volume fraction (near 100%), (ii) a small volume fraction (of the order of 1%) of 
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micrometric scale particles expected to provide IR opacity to the NSM, and (iii) a small 

volume fraction (of the order of 1%) of micrometric scale fibers for reinforcement of the 

nanoporous structure. In the following of this paper, we will ignore the existence of the fiber 

population: this population being essentially associated to a mechanical function, we will 

suppose that it does not dramatically impact on the radiative properties of the NSM. 

The nanoparticles constituting the nanoporous matrix form the dominant population in terms 

of solid volume fraction (of the order of 5 to 10%), therefore they must be made of a material 

that is a good thermal insulator. In a large majority of cases, this material is chosen to be 

amorphous silicon oxyde  . 2a-SiO

Figure 1 is a TEM image at a micrometric scale (the surface covered by this image is 

approximately 8 µm ) of a particular NSM made of a nanoporous  matrix and 

of crystalline silicon carbide SiC microparticles: the nanoporous matrix appears as the gray 

phase, whereas the SiC microparticles are the dark inclusions. 

  10 µm× 2a-SiO
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1 µm

Figure 1: TEM image of a particular NSM made of a nanoporous  matrix and of 

crystalline SiC microparticles. The nanoporous matrix appears as the gray phase, whereas the 

SiC microparticles are the dark inclusions. The white zones as well as the parallel scratches 

apparent on this image are due to polishing imperfections. 

2a-SiO

 

The nanoporous matrix is extremely porous (its porosity is more than 90%), and a TEM 

observation focused on this matrix reveals its nanotexture, as shown in figure 2. This image 

being at a scale of the order of 100 nm (the surface covered by the image is approximately 

), stacks of coalesced  nanoparticles now appear (dark structures) as 

well as the 3-D nanoarchitecture that they constitute. A further TEM analysis focused on one 

nanoparticle stack allows an approximate evaluation of the average diameter of these  

particles: between 10 and 20 nm. 

500 nm  650 nm× 2a-SiO

2a-SiO
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100 nm

Figure 2: TEM image of the nanoporous  matrix appearing in figure 1. 2a-SiO

 

Pretending to develop a radiative heat transfer model within the NSM that respects the chaotic 

3-D nanostructure of the  matrix appears to be quite unrealistic. As a consequence, we 

will in the following greatly reduce the complexity the problem to be solved by simply 

ignoring the nanostructure of the matrix: we will separate the elementary bricks constituting 

the matrix, i. e. the  nanoparticles, from one another and disperse this nanoparticle 

population randomly in space. In other words, the real NSM presenting a structured 

nanoporous matrix will from now on be replaced in our calculations by a virtual material 

presumed radiatively equivalent to the NSM and made of the following 2 particle populations: 

(i) a population of  nanoparticles characterized by an average diameter of 10 nm and a 

2a-SiO

2a-SiO

2a-SiO
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volume fraction of 10%, and (ii) a population of microparticles the characteristics of which 

(material, average diameter and volume fraction) are to be determined. 

 

3. “Non-gray anisotropically scattering Rosseland approximation” based thermal 

radiation model 

 

3.1. Notion of radiation thermal conductivity 

 

The ambition of the work presented here being essentially to compare material solutions and 

to derive directions towards enhanced thermal insulation efficiencies of NSMs, the notion of 

radiation thermal conductivity, based on the Rosseland diffusion approximation, appears to be 

quite convenient. 

The Rosseland diffusion approximation applies when (i) the sample is optically thick, and (ii) 

the scattering phenomenon within the material is isotropic. Under these 2 circumstances, the 

radiative flux  traversing the sample can be expressed under the following form [6]: Rϕ

 

( )2 0
R

0

d n L (T)4 1 d
3 dT

∞
ν ν

ν

⎡ ⎤π⎢ϕ = − ν ∇
β⎢ ⎥⎣ ⎦

∫ T⎥  (1) 

 

in which ν is the optical frequency, νβ  the extinction coefficient spectrum of the material, nν  

its refraction index spectrum, T the temperature and  the spectral blackbody emissive 

power distribution (commonly known as Planck’s law) at temperature T. The structure of 

relation (1), very similar to Fourier’s law of conduction, leads to the introduction of a 

“radiation thermal conductivity”  function of temperature T and expressed as: 

0L (T)ν

Rk (T)
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( )2 0
R

0

d n L (T)4 1k (T) d
3 dT

∞
ν ν

ν

π
=

β∫ ν  (2) 

 

When the material is gray, expression (2) simplifies greatly and becomes: 

 

2 3
R 16n Tk (T)

3
σ

=
β

 (3) 

 

where σ is the Stefan-Boltzmann constant ( ). In the case of a non-gray 

material (which is the case of our NSMs), the general expression (2) of  can be 

rewritten in the following manner: 

-8 -2 -45.67 10  W.m .K

Rk (T)
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0
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T
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Cexp 1

T

−

∞
λ

λ

−

∞

⎛ ⎞
λ ⎜ ⎟λ⎝ ⎠ λ

β ⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟λσ ⎝ ⎠⎣= =

β β ⎛ ⎞
λ ⎜ ⎟λ⎝ ⎠

⎦

λ
⎡ ⎤⎛ ⎞

−⎢ ⎥⎜ ⎟λ⎝ ⎠⎣ ⎦

∫

∫

 (4) 

 

where λ is the wavelength and  the second constant of Planck’s law (14388 µm ). 

Comparing expressions (3) and (4) of the radiation thermal conductivity for a gray and a non-

gray material, one notices that the quantity 

2C .K

2n /β , independent of the wavelength for a gray 

material, is replaced by an average value of the 2n /λ λβ  spectrum, noted 2n /β  in formula 

8 



 

(4), for a non-gray material, the weight function T ( )ω λ  on which the calculation of the 

average value 2n /β  is based having the following expression: 

 

6 2

T 2

2

Cexp
T

( )
Cexp 1

T

− ⎛ ⎞
λ ⎜ ⎟λ⎝ ⎠ω λ =
⎡ ⎤⎛ ⎞

−⎢ ⎥⎜ ⎟λ⎝ ⎠⎣ ⎦

 (5) 

 

As mentioned previously, the Rosseland diffusion approximation applies when the scattering 

phenomenon within the material can be considered to be isotropic. This condition may not be 

fulfilled with our NSMs, the microparticles that they contain having sizes of the same order of 

magnitude as the IR wavelengths. To circumvent this difficulty, Chu et al [7] recommend to 

replace the  spectrum appearing in the expression (4) of  by an effective extinction 

coefficient spectrum 

λβ
Rk (T)

e
λβ  defined by: 

 

e gλ λ λβ = β − σλ  (6) 

 

where  and  are the asymmetry factor and scattering coefficient spectra of the material. 

As a consequence, the evaluations that we will make throughout this paper of the radiation 

thermal conductivities  of our NSMs will be based on the following formula: 

gλ λσ

Rk (T)

 

2

T e3
0R

T
0

n( ) d
16 Tk (T)

3 ( ) d

∞
λ

λ
∞

ω λ λ
βσ

=
ω λ λ

∫
∫

 (7) 
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3.2. Optical and radiative homogenization of a NSM 

 

To perform a  evaluation as described above, one needs the refraction index (Rk (T) nλ ) as 

well as the effective extinction coefficient ( e
λβ ) spectra of the NSM under study. In the 

general case of a NSM made of several populations of randomly distributed particles 

superimposed in air, each population of particles brings its own optical (complex optical 

index spectrum of the material constituting the particles) and radiative (effective extinction 

coefficient spectrum of the population) characteristics to the ensemble, and the calculation of 

the optical and radiative characteristics of the NSM must rely on these inputs. 

We perform the optical homogenization of our NSMs via Rayleigh’s extended rule of 

mixtures [8]. Applied to relative dielectric permittivities λε  defined by  

where  and  are the refraction and extinction indices, this rule yields: 

( )2n jkλ λ λε = −

nλ kλ

 

m h i h

im h i
i

f
2 2

λ λ λ λ

λ λ λ

ε − ε ε − ε
=

ε + ε ε + ε∑ h
λ

 (8) 

 

where (i) the superscripts m, h and i indicate quantities referring to the mixture, to the host 

material and to the different populations of inclusions respectively, and (ii) the  are the 

volume fractions of the different populations of inclusions. 

if

In the case of our NSMs, the host material is air (of dielectric permeability  equal to 1), and 

2 populations of particles are to be considered: on the one hand the  nanoparticle 

population, and on the other hand the microparticle population. Under these circumstances, 

transforming formula (8) yields the following expression for the relative dielectric 

permittivity  of the NSM: 

h
λε

2a-SiO

λε
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np np µp µp

np µp

np µp

np µp

3f 3f
2 2

3f 3f
2 2

λ λ

λ
λ

λ λ

ε ε
Π + +

+ ε + ε
ε =

Π + +
+ ε + ε

λ

1

 (9) 

 

In this formula, the superscripts np and µp refer to the nanoparticle and microparticle 

populations respectively, and Π ,  and  are the porosity of the NSM and the 

nanoparticle and microparticle volume fractions within the material (these 3 quantities 

verifying ). Expression (9) allows the calculation of the  spectrum of the 

NSM, and subsequently its  spectrum through the relation . 

npf µpf

np µpf fΠ + + = λε

nλ ( )2n jkλ λ λε = −

Our procedure for the radiative homogenization of our NSMs relies on the principle of 

addition of cross-sections. An effective extinction coefficient being regarded as an effective 

extinction cross-section per unit volume, this quantity is cumulative, so that the effective 

extinction coefficient spectrum  of a NSM can be evaluated simply by addition of the e
λβ

e
λβ  

spectra related to the nanoparticle and microparticle populations constituting the material: 

 

e e - np e - µ
λ λ λβ = β + β p  (10) 

 

with the obvious notations introduced previously. 

 

3.3. Determination of the optical and radiative properties of the nanoparticle and 

microparticle populations 

 

The optical properties of the 2 particle populations (i. e. the complex optical index spectra of 

the 2 materials constituting these 2 populations) are taken from [9]. 
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The process of evaluation of the radiative properties of the 2 particle populations (i. e. the 2 

effective extinction coefficient spectra e - np
λβ  and  related to these 2 populations) consists 

in several steps. First we resort to the Mie theory, which accounts for the interaction of a 

monochromatic electromagnetic wave with a single solid particle. Mie formulae for a particle 

of spherical shape are given in [6]. The inputs of this calculation are on the one hand the size 

parameter  defined by  where d and λ are the particle diameter and the 

irradiation wavelength respectively, and on the other hand the complex optical index 

e - µp
λβ

xλ x d /λ = π λ

n jkλ λ−  

of the material constituting the particle at the irradiation wavelength λ. Applying the formulas 

of the Mie theory leads to the evaluation of several quantities: on the one hand the spectral 

absorption, scattering and extinction cross-sections (respectively abssλ ,  and , with 

obvious notations) produced by the particle (these 3 cross-sections verifying ), 

and on the other hand the spectral scattering phase function 

scasλ
extsλ

abs sca exts s sλ λ+ = λ

( )λΦ θ  and the associated spectral 

asymmetry factor g . λ

As a second step, based on the characteristics of the interaction of the monochromatic 

electromagnetic wave with a single particle (results obtained above), we proceed to the 

calculation of the cross-sections, the phase function and the asymmetry factor when the 

interaction is no more with a single particle but with a population of particles of volume 

fraction f. If the particles constituting the population are of uniform size (assumption that we 

make throughout this paper for all the particle populations that we deal with), it is known [6] 

that the spectral scattering phase function ( )λΦ θ  and hence the associated spectral 

asymmetry factor  are unchanged when referring either to a single particle or to a whole 

population. Concerning the spectral absorption, scattering and extinction cross-sections 

(respectively ,  and ) produced by a volume V occupied by the particle population, 

gλ

absSλ
scaSλ

extSλ
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a very straightforward calculation based on the principle of summation of cross-sections 

yields: 

 

abs sca ext
abs sca ext abs sca

3 3 3

6f Vs 6f Vs 6f VsS , S and S S
d d d

λ λ λ
λ λ λ= = = =

π π π
Sλ λ+  (11) 

 

so that the spectral absorption, scattering and extinction coefficients (respectively , λκ λσ  and 

) produced by the particle population, defined as the related cumulated cross-sections per 

unit volume, have the following expressions: 

λβ

 

abs abs sca sca ext ext

3 3 3

S 6f s S 6f s S 6f s, and
V d V d V d
λ λ λ λ λ λ

λ λ λκ = = σ = = β = = = κ + σ
π π π λ λ

1

 (12) 

 

In the preceding developments the principle of summation of cross-sections is assumed to be 

valid, which may not be the case especially when the volume fraction f of the particle 

population is important. Here the phenomenon of dependent scattering has to be taken into 

consideration: this phenomenon leads to a decrease in the scattering efficiency [10] and a 

simultaneous increase in the absorption efficiency. These tendencies are integrated in our 

model via very simple correction terms that have been validated (either theoretically or 

experimentally) over the volume fraction domain f 0.<  [11]. Formulas (12) are replaced by: 

 

abs sca2 4

3 4 3 2

6f s 6f s(1 2f ) (1 f ), and
d (1 f ) d (1 2f )
λ λ

λ λ

+ −
κ = σ = β = κ + σ

π − π + λ λ λ  (13) 
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3.4. Summary of our procedure for the evaluation of the radiation thermal 

conductivities of our NSMs 

 

The NSM under study is supposed to be made (i) of a population of  nanoparticles 

characterized by a complex optical index spectrum 

2a-SiO

np npn jkλ λ−  equal to the spectrum of 

 , an uniform diameter  and a volume fraction , and (ii) of a 

population of microparticles characterized by a complex optical index spectrum  , 

an uniform diameter  and a volume fraction  

2a-SiO npd 10 nm= npf 10%=

µp µpn jkλ λ−

µpd µpf .

The determination of the refraction index spectrum nλ  of the NSM is performed in 3 steps: (i) 

evaluation of the relative dielectric permittivity spectra of the 2 materials constituting the 2 

populations via the formulas  and ( )2np np npn jkλ λ λε = − ( )2µp µp µpn jkλ λ λε = − , (ii) calculation of the 

relative dielectric permittivity spectrum λε  of the NSM using formula (9), and (iii) derivation 

of the refraction index spectrum nλ  of the NSM by the resolution of the equation 

. ( )2n jkλ λ λε = −

The determination of the effective extinction coefficient spectrum  of the NSM is 

performed in 4 steps: (i) evaluation via the Mie theory of the elementary spectral cross-

sections , ,  and  as well as the spectral asymmetry factors 

e
λβ

abs - npsλ
sca - npsλ

abs - µpsλ
sca - µpsλ

npgλ  and 

 produced by the 2 populations, (ii) calculation of the absorption and scattering coefficient 

spectra , ,  and  produced by the 2 populations using expressions (13), (iii) 

derivation of the effective extinction coefficient spectra 

µpgλ

np
λκ

np
λσ

µp
λκ

µp
λσ

e - np
λβ  and  of the 2 populations 

using the formulas: 

e - µp
λβ
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( ) ( )e - np np np np np np np e - µp µp µp µp µp µp µpg 1 g and g 1 gλ λ λ λ λ λ λ λ λ λ λ λ λβ = β − σ = κ + − σ β = β − σ = κ + − σλ  (14) 

 

and (iv) evaluation of the effective extinction coefficient spectrum e
λβ  of the NSM via the 

addition formula (10). 

Once the  and nλ
e
λβ  spectra of the NSM have been determined, the radiation thermal 

conductivity  of the material at a given temperature T is evaluated by numerical 

integration of expression (7). 

Rk (T)

 

4. Determination of the characteristics of the ideal microparticle population 

 

4.1. Extinction properties of the nanoporous  matrix 2a - SiO

 

In this section, we consider a NSM made of exclusively the  nanoparticle population 

(the characteristics of which are recalled here: uniform diameter  and volume 

fraction ). 

2a-SiO

npd 10 nm=

npf 10%=

Before proceeding to the n ,  and  evaluations as described above, we must 

determine the spectral interval [

λ
e
λβ

Rk (T)

]1 2;λ λ  that is relevant to the calculations. Clearly, the 

bounds of this interval result from the features of the weight function T ( )ω λ  appearing in the 

expression (7) of the radiation thermal conductivity . This function  has a shape 

that is very similar to the one of Planck’s law , and a numerical analysis shows (i) that 

1% of the total weight  lies within the spectral interval 

Rk (T) T ( )ω λ

0L (T)λ

T
0

( ) d
∞

ω λ λ∫ 1251 µm.K0 ;
T

⎡ ⎤
⎢ ⎥⎣ ⎦

, and 
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(ii) that 1% of the total weight T
0

( ) d
∞

ω λ λ∫  lies within the spectral interval 

15967 µm.K ;
T

⎡ ∞⎢⎣ ⎣
⎡
⎢ . In other words, the spectral interval 1251 µm.K 15967 µm.K;

T T
⎡ ⎤
⎢ ⎥⎣ ⎦

 

contains 98% of the total weight T
0

( ) d
∞

ω λ λ∫  and hence can be regarded as the relevant 

spectral interval [ ]1 2(T) ; (T)λ λ  for the calculations. At room temperature , this 

interval [

T 300K=

]1 2(T) ; (T)λ λ  is approximately [ ]4 µm ; 54 µm . 

The  nanoparticles being very small compared to the IR wavelengths, the size 

parameters  are also very small, and the interaction between the IR wavelengths 

and the nanoparticle population degenerates into the well-known Rayleigh scattering 

phenomenon [6]. Under these circumstances, the ultradominant mode of extinction is 

absorption ( ), so that the effective extinction spectrum 

2a-SiO

np npx d /λ = π λ

np np
λσ << κλ

e - np
λβ  of the nanoparticle 

population is equal to its absorption spectrum np
λκ  and is in direct relation with the extinction 

index spectrum  of  . npkλ 2a-SiO

The complex optical index spectrum np npn jkλ λ−  of  is taken from [9], and the 2a-SiO npkλ  

component of this spectrum is reproduced in figure 3. In this figure are also plotted 2 vertical 

dashed lines indicating the bounds of the relevant spectral interval at room temperature. 

 appears to be very transparent (2a-SiO np 4k 10−
λ ≤ ) for wavelengths between 0.16 µm and 4.1 

µm: this spectral band can then be expected to contribute strongly to the radiation thermal 

conductivity  of the nanoporous  matrix. On the other hand, this spectral band 

overlaps very little with the relevant spectral interval at room temperature (the overlap is 

limited to [

Rk (T) 2a-SiO

]4 µm ; 4.1µm ), so that the main contribution to the radiation thermal conductivity 
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Rk (T)  of the nanoporous  matrix at room temperature can be expected to come from a 

narrow spectral interval centered at . 

2a-SiO

4 µmλ =

 

0.1 1 4 10 100 1000
10-5

10-4

10-3

10-2

10-1

100

101

0.1 1 10 54100 1000

   
  k

   
  

 λ (µm)

 

 

 

Figure 3: extinction index spectrum of  (taken from [9]). 2a-SiO

 

As seen previously, the evaluation of the radiation thermal conductivity  results from 

the integration over the whole spectrum of the quantity 

Rk (T)

2
T ( ) n / e

λ λω λ β

e

 (refer to formula (7)). 

After calculation of the n  and  spectra of the nanoporous  matrix through the 

procedure described in section 3., one obtains the 

λ
e
λβ 2a-SiO

2
T ( ) n /λ λω λ β  spectrum (at room 

temperature) of figure 4. This plot confirms that the wavelengths contributing to the radiation 

thermal conductivity  of the nanoporous  matrix at room temperature are 

located essentially around 4 µm: a numerical analysis reveals that 60% of the integral 

Rk (T) 2a-SiO
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2

T e
0

n( ) d
∞

λ

λ

ω λ λ
β∫  is provided by the spectral band [ ]3.4 µm ; 5.6 µm . From this calculation 

one derives an immediate consequence concerning the microparticle population that is 

inserted into a NSM in order to cut down its radiation thermal conductivity  at room 

temperature: for an improved efficiency, this microparticle population should be designed to 

provide a strong extinction around 4 µm. 

Rk (T)
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Figure 4: calculated  spectrum of the nanoporous  matrix at room 

temperature. 

2
T ( ) n /λω λ βe

λ

e
λ

2a-SiO

 

The  spectrum of figure 4 allows the numerical evaluation (via formula (7)) of 

the radiation thermal conductivity  of the nanoporous  matrix at room 

temperature: . Compared to the order of magnitude of the effective thermal 

conductivity of a NSM related to solid heat conduction (a few  under primary 

2
T ( ) n /λω λ β

Rk (T) 2a-SiO

-1 -16.6 mW.m .K

-1 -1mW.m .K
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vacuum), this value of  for the radiation thermal conductivity is quite 

important and must be reduced by the proper choice of the characteristics (i. e. material, 

diameter and volume fraction) of the microparticle population. 

-1 -16.6 mW.m .K

 

4.2. Study of the interaction phenomena between the IR wavelengths and the 

microparticle population and of their impacts on the radiation thermal 

conductivity of a NSM 

 

As written above, for an improved efficiency of radiative insulation of a NSM, the 

microparticle population that it contains should be designed to provide a strong extinction 

around 4 µm. There are 2 ways to provide extinction: absorption and scattering. In order to 

decorrelate the impacts of these 2 extinction modes on the 2
T ( ) n / e

λ λω λ β  spectrum of a NSM, 

we have selected 2 materials presenting extremely different optical extinction properties 

around 4 µm: (i) at one extreme,  , very transparent around 4 µm (  at this 

wavelength), and (ii) at the other extreme, graphite, very opaque around 4 µm (  at this 

wavelength) (the extinction index spectrum of graphite (taken from [9]) is plotted in figure 5). 

2a-SiO -5k 6 10λ =

k 4λ =

 

19 



 

0.1 1 4 10 100
10-1

100

101

102

   
  k

   
  

 λ (µm)

 

 

Figure 5: extinction index spectrum of graphite (taken from [9]). 

 

We have calculated the  spectra (at room temperature) of the 2 NSMs constituted 

on the one hand of the same nanoparticle population (material =  , uniform diameter 

, volume fraction ) and on the other hand of 2 microparticle 

populations (uniform diameter , volume fraction ) differing only by the 

nature of the material constituting the microparticles (  or graphite). These 2 

 spectra are plotted on the graphs of figures 6 and 7 (figure 7 is an enlargement 

of figure 6) together with the 

2
T ( ) n /λω λ βe

λ

%

e
λ

e

2a-SiO

npd 10 nm= npf 10%=

µpd 1 µm= µpf 1=

2a-SiO

2
T ( ) n /λω λ β

2
T ( ) n /λ λω λ β  spectrum of the nanoporous  matrix 

(previously exhibited in figure 4). 
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Figure 6: calculated 2
T ( ) n /λ

e
λω λ β  spectra (at room temperature) (i) of the NSM containing a 

 microparticle population (solid line), and (ii) of the NSM containing a graphite 

microparticle population (dashed line). The grey solid line represents the  

spectrum of the nanoporous  matrix (previously exhibited in figure 4). 
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Figure 7: enlargement of figure 6. 

 

Quite clearly, the addition of microparticles (whatever their nature) to the nanoporous matrix 

results in significantly reduced values of the 2
T ( ) n / e

λ λω λ β  spectrum and hence in a 

significantly lower value of the radiation thermal conductivity : whereas this parameter 

was  for the nanoporous  matrix, it falls down to  when 

 microparticles are incorporated into the matrix, and to  when the 

 microparticles are replaced by graphite microparticles. The role of the microparticle 

population within a NSM is therefore clearly demonstrated: whatever its nature, it contributes 

to cut down the radiation thermal conductivity of the NSM by providing extinction to the 

ensemble. 

Rk (T)

-1 -16.6 mW.m .K 2a-SiO -1 -11.7 mW.m .K

2a-SiO -1 -10.7 mW.m .K

2a-SiO

In the case of the  microparticle population, the constitutive material being very 

transparent for wavelengths under 4 µm, no absorption can be expected from this population 

2a-SiO
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over this wavelength interval. In order to confirm this point, referring to the expression of the 

effective extinction coefficient ( )e 1 gλ λ λ λβ = κ + − σ  , we have calculated an effective albedo 

spectrum  for the  microparticle population, this spectrum e
λΩ 2a-SiO e

λΩ  being defined by: 

 

( ) ( )
( )

e
e

1 g 1 g
1 g

λ λ λ λ
λ

λ λ λ

− σ − σ
Ω = =

β κ + − λσ

%

 (15) 

 

The  spectrum of the  microparticle population (  and ) is 

plotted on the graph of figure 8. The 

e
λΩ 2a-SiO µpd 1 µm= µpf 1=

e
λΩ  values of this population are equal to 1 for 

wavelengths under 4 µm, which proves that the  microparticle population provides 

extinction to the NSM over this spectral band exclusively through the scattering phenomenon. 
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Figure 8: effective albedo  spectra (i) of the  microparticle population (  

and ) (solid line), and (ii) of the graphite microparticle population (same  and 

) (dashed line). 
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λΩ 2a-SiO µpd 1 µ= m
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The case of the graphite microparticle population is different in that graphite is strongly 

absorbing at IR wavelengths. One can then anticipate that this population provides extinction 

through the superposition of the scattering and absorption phenomena. The  spectrum of 

the graphite microparticle population (  and ), also plotted on the graph of 

figure 8, confirms this point: around 4 µm, the effective albedos have values around 0.5, 

which means that scattering and absorption participate at identical levels to the overall 

extinction provided by the graphite microparticle population. 

e
λΩ

µpd 1 µm= µpf 1=

Scattering being the only source of extinction for the  microparticle population, one 

expects the level of IR opacity provided by this population to be lower than the one provided 

2a-SiO
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by the graphite microparticle population, for which absorption also contributes to the overall 

extinction. The plot of figure 9, showing the effective extinction coefficient  spectra of the 

2  and graphite microparticle populations, corroborates this argument: except over the 

 phonon absorption band located between 9 µm and 21 µm, the  values of the 

graphite population are significantly higher than the ones of the  population, resulting 

in a lower value of the radiation thermal conductivity  of the NSM when made of the 

graphite microparticle population. However, it is to be underlined that, although the addition 

of absorption to the extinction phenomenon (by the replacement of the  population by 

a graphite population) appears to be quite efficient in cutting down the radiation thermal 

conductivity (this parameter passes from  to  when the  

microparticles are replaced by graphite microparticles), the scattering phenomenon itself as a 

source of extinction is also very productive: the radiation thermal conductivity of the 

nanoporous  matrix passes from  to  when  

microparticles are incorporated into the matrix. 
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Figure 9: effective extinction coefficient e
λβ  spectra (i) of the  microparticle 

population (  and ) (solid line), and (ii) of the graphite microparticle 

population (same  and ) (dashed line). 
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5. Order of magnitude of the volume fraction of the microparticle population 

 

The radiation thermal conductivity model described previously can give interesting 

information concerning the order of magnitude of the microparticle population volume 

fraction that is necessary for an efficient cut down of the radiation heat flux through a NSM. 

In this section, we focus on 2 particular NSMs made of the same  nanoparticle 

population (  and ) and of 2 microparticle populations of identical 

diameters ( ) differing only by the nature of the material constituting the 

microparticles:  for NSM1 and graphite for NSM2. The plot of figure 10 shows the 

2a-SiO

npd 10 nm= npf 10%=

µpd 1 µm=

2a-SiO
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evolution of the radiation thermal conductivities  (at room temperature) of these 2 

NSMs versus the microparticle population volume fractions . This figure clearly indicates 

that the quantity  falls down considerably as soon as a tiny microparticle population is 

inserted into the NSM: a value of the microparticle population volume fraction  as small 

as 1‰ produces a radiation thermal conductivity  that is divided by a factor of 2.3 for 

NSM1 and of 5.6 for NSM2. On the other hand, once this rapid evolution of  versus 

 is passed away, the radiation thermal conductivity  decreases very slowly with the 

volume fraction , so that, based on this behavior of the  curve, it appears 

counterproductive to incorporate an important volume fraction of microparticles into a NSM: 

an augmented value of the parameter  (say a few % instead of a few ‰) will have virtually 

no impact on the radiation thermal conductivity  but on the other hand could possibly 

affect (via the percolation phenomenon) the solid thermal conductivity of the material. 
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Figure 10: dependence of the radiation thermal conductivity  of a NSM (at T ) 

as a function of the microparticle population volume fraction . The circles and the solid 

curve refer to a NSM made of a  nanoparticle population (  and ) 

and of a  microparticle population ( ). The squares and the dashed curve 

refer to a NSM made of the same  nanoparticle population and of a graphite 

microparticle population with an unchanged microparticle diameter ( ). The circles 

and squares correspond to values produced by our model, and the solid and dashed curves are 

fits of these 2 series of data. 
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6. Optimum size for the microparticle population 

 

As said earlier, for an improved efficiency of radiative insulation of a NSM, the microparticle 

population that it contains should be designed to provide a strong extinction around 4 µm. If 
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the material constituting this microparticle population is given, its extinction index spectrum 

and related absorption bands or peaks are also given, and in no way the average diameter 

of the microparticle population will change the spectral locations of these absorption sources. 

On the other hand, it is well-known that the value of the parameter  impacts on the spectral 

location of the scattering phenomenon, so that it may reasonably be expected that an optimum 

microparticle population diameter  exists for which the scattering phenomenon is 

positioned exactly over the tracked wavelength of 4 µm. 

µpd  

µpd

µpd

For the purpose of illustration, let us first consider a microparticle population made of 

graphite and of volume fraction  equal to 1‰ . For 5 different values (100 nm, 300 nm, 1 

µm, 3 µm and 10 µm) of the uniform diameter  of this population (the volume fraction 

being held constant at 1‰), we have calculated the resulting effective albedo  and 

effective extinction coefficient  spectra produced by the population. For each value of 

the diameter , these 2 spectra  and  are plotted versus the size parameter 

 on the graphs of figures 11 and 12. 
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Figure 11: effective albedo  spectra of 5 graphite microparticle populations of identical 

volume fractions ( ) differing only by the microparticle uniform diameter  (100 

nm, 300 nm, 1 µm, 3 µm and 10 µm). The 5  spectra are plotted versus the size 

parameters . The arrow on the figure indicates increasing values of . 
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Figure 12: effective extinction coefficient  spectra of 5 graphite microparticle 

populations of identical volume fractions ( ) differing only by the microparticle 

uniform diameter  (100 nm, 300 nm, 1 µm, 3 µm and 10 µm). The 5  spectra are 

plotted versus the size parameters 

e - µp
λβ

µpf 1‰=

µpd e - µp
λβ

µp µpx d /λ = π λ

)

. Each spectrum contains a circle indicating 

the point (  where the wavelength λ is 4 µm. The arrow on the figure indicates 

increasing values of . 

µp e - µpx ;λ λβ

µpd

 

The plot of figure 11 reveals maxima of the 5  curves that are all located at e - µp
λΩ µpx 1λ ≈  

(when these maxima appear). This means that, a diameter  being given for the graphite 

microparticle population, the fraction of the overall extinction produced by this population 

through the scattering phenomenon is maximum at wavelengths λ of the order of . In the 

particular case studied here, this increase in the rate of participation of the scattering for 

µpd

µpdπ
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µpxλ ≈1 comes with an increase in the overall extinction over this size parameter domain, as 

shown on the graph of figure 12: similarly to the curves of figure 11, the 5 effective extinction 

coefficient  spectra displayed in figure 12 exhibit maxima that are all located at e - µp
λβ

µpx 1λ ≈  

(when these maxima appear). Moreover, for each of the 5  spectra of this plot, we have 

positioned a circle indicating the location of the tracked wavelength of 4 µm, and these 5 

circles clearly reveal the existence of an optimum graphite microparticle diameter producing a 

maximum effective extinction coefficient  at 

e - µp
λβ

e - µp
λβ 4 µmλ = : this optimum diameter is 

probably such that its related size parameter at 4 µmλ =  is equal to 1. 

The squares and the dashed curve of figure 13 show the evolution as a function of the 

microparticle diameter  of the radiation thermal conductivity  at T  of a 

NSM made of a  nanoparticle population (  and ) and of a 

graphite microparticle population ( ) (  values on the right scale). When the 

diameter  is very small compared to IR wavelengths, the size parameters are very small 

compared to 1, and virtually no scattering is produced by the microparticle population. The 

level of radiation thermal conductivity  is then dictated by the absorption phenomenon 

only, and is independent of the microparticle diameter . Let us note here the 

extraordinarily high absorption efficiency of the graphite particles: very small (10 nm or less 

in size) and added to the nanoporous  matrix with a volume fraction as tiny as 1‰ , 

they result in a decrease in the radiation thermal conductivity of the ensemble by a factor of 3 

(we recall that the radiation thermal conductivity of the nanoporous  matrix is 

appromimately  at room temperature). Increasing the diameter , one 

reaches a certain threshold (of approximately 100 nm) beyond which the scattering 

phenomenon starts to contribute consequently to the extinction process. It follows that the 

µpd Rk (T) 300K=

2a-SiO npd 10 nm= npf 10%=

µpf 1‰= Rk (T)

µpd
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µpd
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radiation thermal conductivity  starts to decrease steadily until it reaches a minimum 

value when the scattering phenomenon operates exactly over the main transparence spectral 

band (located around ) of the nanoporous  matrix. The optimum 

microparticle diameter introduced above is thus quite apparent on the graph of figure 13: the 

choice of this particular diameter for the graphite microparticle population can lead to a 

decrease in the radiation thermal conductivity of the NSM by a factor of almost 2. Finally, the 

value of the optimum microparticle diameter can be estimated from figure 13 to be 

approximately 1.6 µm. This value is in fairly good agreement with the one (1.3 µm) expected 

from the “  at ” criterion stated above. 
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4 µmλ = 2a-SiO
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Figure 13: dependence of the radiation thermal conductivity  of a NSM (at T ) 

as a function of the microparticle population diameter . The circles and the solid curve 

refer to a NSM made of a  nanoparticle population (  and ) and 

of a  microparticle population ( ) (  values on the left scale). The 

squares and the dashed curve refer to a NSM made of the same  nanoparticle 

population and of a graphite microparticle population with an unchanged volume fraction 

( ) (  values on the right scale). The circles and squares correspond to values 

produced by our model, and the solid and dashed curves are fits of these 2 series of data. 
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In the case of a microparticle population made of  , things are more difficult to analyze 

because of the complex shape of the extinction index spectrum of the material. The equivalent 

of figure 12 applied to  microparticle populations yields the graph of figure 14: this 

graph is not as easy to read as the one of figure 12, but at least it clearly indicates, through the 

2a-SiO

2a-SiO
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5 circles located on the 5  spectra at the parameter sizes where the wavelength λ is 4 µm, 

that once again an optimum microparticle diameter exists, located around the value of 3 µm, 

for which the extinction produced by the  microparticle population – exclusively 

through the scattering phenomenon – hits the 

e - µp
λβ

2a-SiO

4 µmλ ≈  IR zone in the most efficient way. 

This point is corroborated by the circles and the solid curve of figure 13, which show the 

evolution as a function of the microparticle diameter  of the radiation thermal conductivity 

 at  of a NSM made of a  nanoparticle population (  and 

) and of a  microparticle population ( ) (  values on the left 

scale). For very small values of the microparticle diameter , neither scattering nor 

absorption are produced by the  microparticle population, so that the radiation thermal 

conductivity  of the NSM is equal to the one of the nanoporous  matrix 

( ). The optimum diameter for the  microparticle population 

(corresponding to an optimum spectral localization of the scattering phenomenon) is around 3 

µm, and the choice of this particular microparticle diameter leads to a decrease in the 

radiation thermal conductivity of the NSM by a factor of 3. 
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Figure 14: effective extinction coefficient  spectra of 5  microparticle 

populations of identical volume fractions ( ) differing only by the microparticle 

uniform diameter  (100 nm, 300 nm, 1 µm, 3 µm and 10 µm). The 5  spectra are 

plotted versus the size parameters 

e - µp
λβ 2a-SiO

µpf 1‰=

µpd e - µp
λβ
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)

. Each spectrum contains a circle indicating 

the point (  where the wavelength λ is 4 µm. The arrow on the figure indicates 

increasing values of . 

µp e - µpx ;λ λβ

µpd

 

7. Summary and perspectives 

 

In the first part of this contribution, we have presented a model for the evaluation of the 

radiation heat transfer traveling through NSMs in relation with the compositions (sizes, 

volume fractions and physical natures of the different populations of constituents) of these 

materials. Our model is very rudimentary: it relies on the Rosseland diffusion approximation 
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and the related notion of radiation thermal conductivity. Nevertheless, we have extended the 

field of application of this theory in order to integrate spectral dependencies of the radiative 

properties of the constituents as well as anisotropic scattering effects in our calculations. 

Besides, the notion of radiation thermal conductivity being based on the concepts of 

refraction index and effective extinction coefficient spectra, we have detailed the principles of 

the optical and radiative homogenization techniques that we employ for the determination of 

these 2 spectra in the case of a NSM of known composition. 

In the second part of this paper, we have used our model (i) to get a better understanding of 

the different radiative transfer phenomena that take place within NSMs, and (ii) if possible, to 

derive directions towards enhanced radiative insulation efficiencies of these materials. First, 

we have demonstrated that a nanoporous  matrix presents an unacceptable 

transparence behavior over a narrow spectral band located around 4 µm, and we have 

deduced that an efficient microparticle population, i. e. a microparticle population able to cut 

down the radiation thermal conductivity of the matrix, must provide a strong extinction over 

this transparence spectral domain. Then, in order to decorrelate the scattering and absorption 

phenomena in the extinction process, we have selected, for the constitution of the 

microparticle populations, 2 materials presenting extremely different optical properties 

around the tracked wavelength of 4 µm: on the one hand,  , very transparent, and on 

the other hand, graphite, very opaque. The different series of calculations that we have 

performed on the 2 NSMs described above (the first NSM being made of a nanoporous 

 matrix and of a  microparticle population, and the second NSM being made of 

the same nanoporous  matrix and of a graphite microparticle population) have brought 

us to the following conclusions: (i) whatever the material constituting the microparticle 

population, provided the average diameter  of this population is of the right order of 

magnitude (see below), the presence of the microparticle population within the nanoporous 

2a-SiO
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µpd

37 



 

2a-SiO  matrix contributes to an efficient cut down of the radiation thermal conductivity of the 

NSM; (ii) if the material constituting the microparticle population is transparent around 4 µm, 

extinction is produced by the microparticles exclusively via the scattering phenomenon; (iii) 

if, on the other hand, the material is opaque around 4 µm, both scattering and absorption 

contribute to the extinction process, resulting in an optimized efficiency of the microparticle 

population in terms of opacity production; (iv) the scattering phenomenon from a 

microparticle population of uniform diameter  impacting the spectral domain around a 

wavelength λ given by , it follows that the diameter  of the microparticles must 

be of the order of 1 µm (in order the scattering phenomenon to track the  

wavelengths) and that an optimum diameter  exists for which the scattering process hits 

the  IR zone in the most efficient way; (v) finally, the radiation thermal conductivity 

of a NSM falls down considerably as soon as a volume fraction as small as 1‰ of the 

microparticle population is inserted into the material. All these conclusions will be exploited 

in the near future: they should guide us towards the formulation of new NSMs with optimized 

radiative properties. 

µpd

µpd / 1π λ ≈ µpd

4 µmλ ≈

µpd

4 µmλ ≈

Obviously, the modeling strategy that we have chosen is extremely basic. Investigation of the 

radiation heat transfer and of the interaction of this radiation mode with the conduction mode 

within nanoporous superinsulating materials is actually a vast research subject involving 

numerous activities in various fields such as radiative homogenization, coupled radiation and 

conduction heat transfer within semitransparent materials and thermal characterization. As far 

as heat transfer modeling is concerned, we will concentrate in the future on several studies 

related to the radiative homogenization theme: (i) impact of the nanometric scale of the 

 particles on the features of their dielectric permittivity function (the phonons within 

such tiny particles having quasi-ballistic behaviors); (ii) effect of a non-uniform distribution 

2a-SiO
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of the  nanoparticle diameters on the effective radiative properties of the nanoporous 

 matrix (during the fabrication process, the  nanoparticles coalesce to one 

another and form agglomerates the sizes of which can reach several hundreds of nm); (iii) 

deeper analysis of the dependent nature of the scattering phenomenon, especially within the 

nanoporous  matrix; (iv) finally, integration of the fibers in the radiative 

homogenization procedure. 
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