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SOME HYPERBOLIC THREE-MANIFOLDS THAT BOUND GEOMETRICALLY

A closed connected hyperbolic n-manifold bounds geometrically if it is isometric to the geodesic boundary of a compact hyperbolic (n + 1)-manifold. A. Reid and D. Long have shown by arithmetic methods the existence of infinitely many manifolds that bound geometrically in every dimension.

We construct here infinitely many explicit examples in dimension n = 3 using right-angled dodecahedra and 120-cells and a simple colouring technique introduced by M. Davis and T. Januszkiewicz. Namely, for every k 1, we build an orientable compact closed 3-manifold tessellated by 16k right-angled dodecahedra that bounds a 4-manifold tessellated by 32k right-angled 120-cells.

A notable feature of this family is that the ratio between the volumes of the 4-manifolds and their boundary components is constant and, in particular, bounded.

Introduction

The study of hyperbolic manifolds that bound geometrically dates back to the works of D. Long, A. Reid [START_REF] Long -A | On the geometric boundaries of hyperbolic 4-manifolds[END_REF][START_REF]All flat manifolds are cusps of hyperbolic orbifolds[END_REF] and B. Niemershiem [START_REF] Nimershiem | All flat three-manifolds appear as cusps of hyperbolic fourmanifolds[END_REF], motivated by a preceding work of M. Gromov [START_REF] Gromov | Manifolds of negative curvature[END_REF][START_REF]Almost flat manifolds[END_REF] and a question by F. Farrell and S. Zdravkovska [START_REF] Farrell -S | Do almost flat manifolds bound?[END_REF]. This question is also related to hyperbolic instantons, as described by J. Ratcliffe and S. Tschantz [START_REF] Ratcliffe -S | Gravitational instantons of constant curvature[END_REF][START_REF]On the growth of the number of hyperbolic gravitational instantons with respect to volume[END_REF]. In particular, the following problems are of particular interest: Question 1.1. Which compact orientable hyperbolic n-manifold N can represent the totally geodesic boundary of a compact orientable hyperbolic (n + 1)-manifold M ? Question 1.2. Which compact orientable flat n-manifold N can represent the cusp section of a single-cusped orientable hyperbolic (n + 1)-manifold M ?

Once there exist such manifolds N and M , we say that N bounds M geometrically. In this note, we shall concentrate on Question 1.1, devoted to compact geometric boundaries. The recent progress on Question 1.2, that involves cusp sections, is indicated by [START_REF] Kolpakov | Hyperbolic four-manifolds with one cusp[END_REF][START_REF]All flat manifolds are cusps of hyperbolic orbifolds[END_REF][START_REF] Mcreynolds | Controlling manifold covers of orbifolds[END_REF][START_REF] Mcreynolds -A | Collisions at infinity in hyperbolic manifolds[END_REF]. However, this is still

The first named author is supported by the SNSF researcher scholarship P300P2-151316. The second named author was supported by the Italian FIRB project "Geometry and topology of low-dimensional manifolds", RBFR10GHHH. an open problem in dimensions ≥ 5. On the other hand, by a result of M. Stover [START_REF] Stover | On the number of ends of rank one locally symmetric spaces[END_REF], an arithmetic orbifold in dimension ≥ 30 cannot have a single cusp.

In [START_REF] Long -A | On the geometric boundaries of hyperbolic 4-manifolds[END_REF], D. Long and A. Reid have shown that many closed hyperbolic 3-manifolds do not bound geometrically: a necessary condition is that the eta invariant of the 3-manifold must be an integer. The first known closed hyperbolic 3-manifold that bounds geometrically was constructed by J. Ratcliffe and S. Tschantz in [START_REF] Ratcliffe -S | Gravitational instantons of constant curvature[END_REF] and has volume of order 200.

Then, D. Long and A. Reid produced in [START_REF]Constructing hyperbolic manifolds which bound geometrically[END_REF], by arithmetic techniques, infinitely many orientable hyperbolic n-manifolds N that bound geometrically an (n+1)-manifold M , in every dimension n 2. Every such manifold N is obtained as a cover of some n-orbifold O N geodesically immersed in a suitable (n + 1)-orbifold O M .

In this paper, we construct an explicit infinite family in dimension n = 3, via a similar covering technique where the roles of O N and O M are played by the right-angled dodecahedron D and 120-cell Z . These two compact Coxeter right-angled regular polytopes exist in H 3 and H 4 respectively, and the first is a facet of the second. The existence of suitable finite covers is guaranteed here by assigning appropriate colourings to their facets, following A. Vesnin [START_REF] Yu | Three-dimensional hyperbolic manifolds of Löbell type[END_REF][START_REF]Three-dimensional hyperbolic manifolds with a common fundamental polyhedron[END_REF], M. Davis and T. Januszkiewicz [START_REF] Davis | Convex polytopes, Coxeter orbifolds and torus actions[END_REF], I. Izmestiev [START_REF] Izmestiev | Three-dimensional manifolds defined by coloring a simple polytope[END_REF].

A colouring determines a manifold covering, and the main factual observation is that a colouring of the dodecahedron D can be enhanced in a suitable way to a colouring of the right-angled hyperbolic Coxeter 120-cell Z . We produce in this way a degree-32 orientable cover of Z that contains four copies of a non-orientable degree-8 cover of D. By cutting along one such non-orientable geodesic submanifold we get a hyperbolic four-manifold N 1 with connected geodesic boundary

M 1 = ∂N 1 .
The colouring technique applied to a single polytope can produce only finitely many manifolds. To get infinitely many examples we assemble n copies of D and Z to get more complicated right-angled polytopes, to which the above construction easily extends. We finally obtain the following. Let V D ≈ 4.3062... and V Z = 34 3 π 2 be the volumes of D and Z , respectively. Theorem 1.3. For every n 1 there exists an orientable compact hyperbolic three-manifold N n of volume 16nV D which bounds geometrically an orientable compact hyperbolic four-manifold M n of volume 32nV Z .

The manifolds N n and M n are tessellated respectively by 16n right-angled dodecahedra and 32n right-angled 120-cells.

An interesting feature of this construction is that it provides manifolds N n and M n of controlled volume. In particular, we deduce the following.

Corollary 1.4. There are infinitely many hyperbolic three-manifolds N that bound geometrically some hyperbolic M with constant ratio:

Vol(M ) Vol(N ) = 2V Z V D < 53.
The manifold M 1 has volume 16V D ≈ 68.8992 and is to our knowledge the smallest closed hyperbolic 3-manifold known to bound geometrically.

Structure of the paper. In Section 2 we introduce right-angled polytopes as orbifolds, and a simple colouring technique from [START_REF] Davis | Convex polytopes, Coxeter orbifolds and torus actions[END_REF] that produces manifold coverings of small degree. Then we show how this colouring technique passes easily from dimension n to n + 1 and conversely, and may be used to produce n-manifolds that bound geometrically when n = 3. In Section 3 we assemble dodecahedra and 120-cells to produce the manifolds N k and M k of Theorem 1.3.

Colorings and covers of Coxeter orbifolds

A right-angled hyperbolic polytope P ⊂ H n may be interpreted as an orbifold with mirror boundary, where the mirrors correspond to its facets. As such an orbifold, it has a plenty of manifold coverings. A few of them may be constructed by colouring appropriately the facets of P as shown in [START_REF] Davis | Convex polytopes, Coxeter orbifolds and torus actions[END_REF][START_REF] Garrison -R | Small covers of the dodecahedron and the 120-cell[END_REF].

2.1. Colourings and manifold covers. Let P ⊂ H n be a convex compact right-angled polytope. Such objects exist only if 2 n 4, see [START_REF] Potyagailo -È | On right-angled reflection groups in hyperbolic spaces[END_REF]; the two important basic examples we consider here are the right-angled dodecahedron D ⊂ H 3 and the right-angled 120-cell Z ⊂ H 4 .

We consider P as an orbifold H n / Γ . The group Γ is a right-angled Coxeter group that may be presented as

Γ = r F | r 2
F , [r F , r F ] where F varies over all the facets of P and the pair F, F varies over all the pairs of adjacent facets. The isometry r F ∈ Isom(H n ) is a reflection in the hyperplane containing F .

A right-angled polyhedron P is simple [25, Theorem 1.8], which means that it looks combinatorially at every vertex v like the origin of an orthant in R n . In particular, v is the intersection of exactly n facets.

Let V be a finite-dimensional vector space over F 2 , thus isomorphic to F s 2 for some s. A V -colouring (or simply, a colouring) λ is the assignment of a vector λ F ∈ V to each facet F of P (called its colour ) such that the following holds: at every vertex v, the n colours assigned to the n adjacent facets around v are linearly independent vectors in V .

A colouring induces a group homomorphism λ : Γ → V , defined by sending r F to λ F for every facet F . Its kernel Γ λ = ker λ is a subgroup of Γ which determines an orbifold M λ = H n / Γ λ covering P.

Proposition 2.1. The orbifold M λ is a manifold.

Proof. We follow [23, Lemma 1]. A torsion element in Γ fixes some face F of the tessellation of H n obtained by reflecting P in its own facets. Up to conjugacy, we can suppose that F ⊂ P. The stabilizer of F is generated by the reflections in the facets containing F (see [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]Theorem 12.3.4]) and is hence mapped injectively into V by λ. Thus, Γ λ is torsion-free and M λ is a manifold.

At each vertex v the colours λ F of the n incident facets F are independent: therefore the image of λ has dimension at least n and the covering M λ → P has degree |Γ : Γ λ | 2 n ; if the equality holds the manifold M λ is called a small cover of P. The manifold coverings of P of smallest degree are precisely its small covers, see [START_REF] Garrison -R | Small covers of the dodecahedron and the 120-cell[END_REF]Proposition 2.1].

We say that the colouring spans V if the vectors λ F span V as F varies, which is equivalent to the map λ : Γ → V being surjective. In that case the covering M λ → P has degree |Γ :

Γ λ | = 2 dim V .
2.2. k-colourings. Here, we give an example: recall that a k-colouring of a polytope is the assignment of a colour from the set {1, . . . , k} to each facet so that two adjacent facets have distinct colours. A k-colouring for P produces an F k 2 -colouring that spans F k 2 : simply replace each colour i ∈ {1, . . . , k} with the element e i of the canonical basis for F k 2 . Example 2.2. The dodecahedron has precisely one four-colouring, up to symmetries. This induces an F 3 2 -colouring (of lower dimension 3 rather than 4) on the hyperbolic right-angled dodecahedron D described in [START_REF] Yu | Three-dimensional hyperbolic manifolds of Löbell type[END_REF] and hence a manifold covering having degree 2 3 = 8.

Example 2.3. The 120-cell has a five-colouring (in fact, ten five-colourings up to symmetries [START_REF] Fisk | Coloring the 600-cell[END_REF]). Each produces a manifold covering of the hyperbolic right-angled 120-cell Z of degree 2 5 = 32.

Orientable coverings.

The following lemma gives an orientability criterion analogous to that for small covers in [START_REF] Nakayama | The orientability of small covers and coloring simple polytopes[END_REF] or Löbell manifolds in [23, Lemma 2]. Let λ be a V -colouring of a right-angled polytope P. Lemma 2.4. Suppose λ spans V . The manifold M λ is orientable if and only if, for some isomorphism V ∼ = F s 2 , each colour λ F has an odd number of 1's.

Proof. Let Γ + Γ be the index two subgroup consisting of orientationpreserving isometries. Then Γ + is the kernel of the homomorphism φ : Γ → F 2 that sends r F to 1 for every facet F .

The manifold M λ is orientable if and only if Γ λ is contained in Γ + , and this in turn holds if and only if there is a homomorphism χ : V → F 2 such that φ = χ • λ. The latter is equivalent to the existence of an isomorphism V ∼ = F s 2 that transforms λ F into a vector with an odd number of 1's for each F . Indeed, if such an isomorphism exists, then χ can be taken to be the sum of the coordinates of a vector.

Conversely, suppose such an isomorphism does not exist. Since the vectors λ F span V we may take some of them as a basis for V and write them as e 1 = (1, 0, 0, . . . , 0), e 2 = (0, 1, 0, . . . , 0), . . . , e s = (0, . . . , 0, 0, 1). By hypothesis, there exists a facet F such that λ F has an even number of 1's.

Up to reordering, we may write λ F = 2k i=1 e i for some k. Now we can see that the homomorphism χ does not exist, since its existence would imply 1 = φ(r F ) = 2k i=1 φ(e i ) = 2k i=1 1 = 0. Corollary 2.5. Let there be facets F , F and F of P such that λ F + λ F + λ F = 0. Then λ is a non-orientable colouring.

Proof. For a vector

v = (v 1 , v 2 , . . . , v s ) ∈ F s 2 let (v) := s i=1 v i .
Suppose that λ is orientable, so there exists an isomorphism V ∼ = F s 2 , such that each λ F has an odd number of 1's. Then we arrive at a contradiction, since 0 = (0) = (λ

F + λ F + λ F ) = (λ F ) + (λ F ) + (λ F ) = 1.
Example 2.6. The manifolds in Examples 2.2 and 2.3 are orientable.

Example 2.7. Consider the 25 small covers of the hyperbolic right-angled dodecahedron D found by A. Garrison and R. Scott in [START_REF] Garrison -R | Small covers of the dodecahedron and the 120-cell[END_REF]. The list is complete, up to isometries between the corresponding manifolds. Using the orientability criterion one sees immediately from [6, Table 1] that 24 of them are non-orientable and exactly 1 is orientable and corresponds to Example 2.2. Another example carried out in [START_REF] Garrison -R | Small covers of the dodecahedron and the 120-cell[END_REF] is a small cover of the hyperbolic right-angled 120-cell Z . This cover is again non-orientable. There is no classification of small covers of Z known at present.

Induced colouring.

A facet F of a n-dimensional right-angled polytope P ⊂ H n is a (n -1)-dimensional right-angled polytope. A V -colouring λ of P induces a W -colouring µ of F with W = V / λ F : simply assign to every face of F the colour of the facet of P that is incident to it. The following lemma generalises [6, Proposition 2.3].

Lemma 2.8. The manifold M µ is contained in M λ as a totally geodesic sub-manifold, so that the cover M λ → P restricts to the cover M µ → F .

Proof. Let Γ be the Coxeter group of P and H n-1 ⊂ H n be the hyperplane containing F . We regard F as the orbifold H n-1 / Γ F where Γ F is the Coxeter group of F . The following natural diagram commutes:

0 / / r F / / Γ ∩ Stab(H n-1 ) f / / λ Γ F / / µ 0 V π / / V / λ F
The first line is an exact sequence. We deduce easily that f restricts to an isomorphism f : ker λ ∩ Stab(H n-1 ) -→ ker µ.

Hence M µ = H n-1 / Γ λ ∩Stab(H n-1 ) is naturally contained in M λ = H n / Γ λ .
The pre-image of F in M λ with respect to the regular covering M λ → P consists of possibly several copies of M µ . 2.5. Extended colouring. Conversely, we can also extend a colouring from a facet to the whole polytope. We say that two colourings λ and λ on P are equivalent if they have isomorphic kernels Γ λ ∼ = Γ λ (cf. the definition before [START_REF] Garrison -R | Small covers of the dodecahedron and the 120-cell[END_REF]Proposition 2.4]).

Proposition 2.9. Let F be a facet of a compact right-angled polytope P ⊂ H n . Every colouring of F is equivalent to one induced by an orientable colouring of P.

Proof. Let λ be a V -colouring of the facet F . Fix an isomorphism V ∼ = F s 2 . Define W = F 2 ⊕ F s 2 ⊕ F f 2
where f is the number of facets of P that are not adjacent to F . We define a W -colouring µ of P as follows:

• set µ F = (1, 0, 0); • set µ G = ( (λ G∩F ) + 1, λ G∩F , 0) where (v) = s i=1 v i , for every facet G adjacent to F ; • set µ G i = (0, 0, e i ) for the remaining facets G 1 , . . . G f .
Indeed, the map µ is a colouring: the linear independence condition is satisfied at each vertex. Moreover, each vector µ F , µ G , µ G i has an odd number of 1's. Finally, by construction µ| F is equivalent to λ.

We call the colouring µ an extension of λ.

2.6.

A more efficient extension. Proposition 2.9 shows how to extend a V -colouring of a facet F to an orientable W -colouring of the polytope P. The proof shows that the dimension of W can grow considerably during the process, since dim W = dim V + 1 + f where f is the number of facets of P not adjacent to F .

We may use Proposition 2.9 with P being the right-angled 120-cell and F its dodecahedral facet. However, in this case we could find examples where both V and W have smaller dimension via computer. The following was proved by using "Mathematica". Proposition 2.10. Each of the 24 non-orientable F 3 2 -colourings of D from [6, Table 1] is equivalent to one induced by an orientable F 5 2 -colouring of Z . Proof. The Mathematica program code given in [START_REF] Tschantz | Mathematica program code available on-line at the author's web[END_REF] takes a non-orientable F 3 2 -colouring of D and produces an orientable F 5 2 -colouring of Z , as required.

Each vector v = (v 1 , v 2 , . . . , v s ) ∈ F s 2 is encoded by the binary number n v = v 1 • 2 0 + v 2 • 2 1 + • • • + v s • 2 s-1
. Let P 0 := D, be the right-angled dodecahedron. We enumerate its faces exactly as shown in [6, Figure 3] and the corresponding 12-tuple of numbers encodes its colouring. Let P i , i = 1, . . . , 12 be the dodecahedral facets incident to P 0 at the respective faces F i , i = 1, . . . , 12. We start extending the colouring of P 0 := D as follows:

• set λ P 0 = (0, 0, 0, 0, 1);

• if µ F i = v = (v 1 , v 2 , v 3 ), then λ P i := (v 1 , v 2 , v 3 , 0, (v) + 1).
We obtain a 13-tuple, which is the initial segment of the colouring of Z . Then the Mathematica code [START_REF] Tschantz | Mathematica program code available on-line at the author's web[END_REF] attempts to produce an orientable 120-tuple, which encodes the entire colouring.

We were not able to find any orientable F 4 2 -colouring of Z extending a non-orientable F 3 2 -colouring of D: our examples are not small covers. Let now M λ be the manifold obtained by one F 5 2 -colouring λ of Z : it covers Z with degree 2 5 = 32. The colouring λ restricts to a non-orientable colouring µ of the facet D, which gives rise, by Lemma 2.8, to a nonorientable codimension-1 geodesic submanifold M µ ⊂ M λ , covering D with degree 2 3 = 8.

In complete analogy to [START_REF]Constructing hyperbolic manifolds which bound geometrically[END_REF]Lemma 3.2], by cutting M λ along M µ we get a compact orientable hyperbolic manifold tessellated by 32 right-angled 120-cells having a geodesic boundary isometric to a connected manifold M µ that double-covers M µ and is hence tessellated by 2 • 2 3 = 16 right-angled dodecahedra.

To prove Theorem 1.3 it only remains to extend this argument from one 120-cell to an appropriate assembling of n ≥ 2 distinct 120-cells.

Assembling right-angled dodecahedra and 120-cells

Here, we assemble right-angled dodecahedra and 120-cells in order to construct more complicated convex compact right-angled convex compact polytopes.

3.1. Connected sum of polytopes. Let P 1 and P 2 be two right-angled polytopes in H n . If there is an isometry between two facets of P 1 and P 2 , we may use it to glue them: the result is a new right-angled polytope in H n which we call a connected sum of P 1 and P 2 along these facets.

3.2.

Assembling. An assembling of right-angled dodecahedra (or 120-cells) is a right-angled polytope constructed from a finite sequence P 1 #P 2 #P 3 # . . . #P k of connected sums performed from the left to the right, where each P i is a right-angled dodecahedron (or 120-cell). 1]. Face colours are encoded by binary numbers 3.3. Proof of Theorem 1.3. We have described all the ingredients necessary to prove Theorem 1.3.

By Proposition 2.10, pick an orientable F 5 2 -colouring of the right-angled 120-cell Z that induces a non-orientable F 3 2 -colouring of one dodecahedral facet D.

Then assemble n copies of D as

P = D 1 #D 2 # . . . #D n
and consider, as in Lemma 3.1, the resulting right-angled polyhedron P as a facet of a a right-angled polytope Q made of n copies of the right-angled 120-cell, each having a D i as a facet. Every time we assemble a new copy of D i , we give D i the colouring of the adjacent dodecahedron, mirrored along the glued pentagonal face, and we do the same with each corresponding new 120-cell Z i . The resulting polytope Q inherits an orientable F 5 2 -colouring λ that induces a non-orientable F 3 2colouring µ of P, if P is assembled appropriately. Indeed, each of the 24 non-orientable colourings of D has three faces F , F and F satisfying the conditions of Corollary 2.5. Moreover, we can find a fourth face F * which is disjoint from each of them. These properties are easily verifiable by using [6, Table 1]. Then, we start assembling D i 's by forming a connected sum along F * . Then the colouring of the resulting polytope P again satisfies Corollary 2.5 and hence is non-orientable, as required.

By cutting M λ along M µ we get a compact orientable hyperbolic manifold tessellated by 32n right-angled 120-cells having a geodesic boundary that is isometric to a connected manifold M µ that double-covers M µ and is hence tessellated by 2 • 2 3 n = 16n right-angled dodecahedra.

We conclude the paper by providing an example of the construction carried in the proof above.

Example 3.2. Let us choose a non-orientable colouring µ of the dodecahedron D from [6, Table 1], say the one having the maximal symmetry group (Z 2 × Z 2 ) Z 6 . This is an F 3 2 -colouring depicted in Fig. 1, with face colours encoded by binary numbers in the decimal range 1, . . . , 7. Here, the grey shaded faces of D are exactly the faces F , F and F , satisfying the conditions of Corollary 2.5. The face F * , along which we take a connected sum in the proof of Theorem 1.3, has a chequerboard shading. Now, we take a connected sum of D 1 := D along F * with its isometric copy D 2 , having the same colouring. Then we can choose a face of D 1 #D 2 , distinct from any of F , F or F and continue assembling until we use all n given copies of D, which produce a polyhedron P = D 1 # . . . #D n . The faces F , F and F of D 1 still remain among those of P. Thus, the colouring of P is again non-orientable by Corollary 2.5.

Finally, by applying Proposition 2.9 and Lemma 3.1, we obtain a fourdimensional polytope P with an orientable F 5 2 -colouring, that induces a nonorientable colouring on one of its facets, which is isometric to P. Indeed, the non-orientable F 3 2 -colouring of each D i can be extended by Proposition 2.9 to an orientable F 5 2 -colouring of a 120-cell Z i . Then, by Lemma 3.1, P = D 1 # . . . #D n is a facet of a polytope P = Z 1 # . . . #Z n . Since the colourings of D i 's match under taking connected sums, the colourings of Z i 's also match. The polytope P gives rise to a covering manifold with totally geodesic boundary, as described in the proof of Theorem 1.3.

Lemma 3 . 1 .

 31 An assembling of k right-angled dodecahedra is a facet of an assembling of k right-angled 120-cells. Proof. Consider H 3 inside H 4 as a geodesic hyperplane. Consider D ⊂ H 3 as a facet of Z ⊂ H 4 . Every time we attach a new copy D i of D in H 3 , we correspondingly attach a new copy Z i of Z having D i as a facet.
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 1 Figure 1. A non-orientable colouring of D from [6, Table 1]. Face colours are encoded by binary numbers