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SOME HYPERBOLIC THREE-MANIFOLDS

THAT BOUND GEOMETRICALLY

ALEXANDER KOLPAKOV, BRUNO MARTELLI, AND STEVEN TSCHANTZ

Abstract. A closed connected hyperbolic n-manifold bounds geometri-
cally if it is isometric to the geodesic boundary of a compact hyperbolic
(n+ 1)-manifold. A. Reid and D. Long have shown by arithmetic meth-
ods the existence of infinitely many manifolds that bound geometrically
in every dimension.

We construct here infinitely many explicit examples in dimension n =
3 using right-angled dodecahedra and 120-cells and a simple colouring
technique introduced by M. Davis and T. Januszkiewicz. Namely, for
every k > 1, we build an orientable compact closed 3-manifold tessellated
by 16k right-angled dodecahedra that bounds a 4-manifold tessellated
by 32k right-angled 120-cells.

A notable feature of this family is that the ratio between the volumes
of the 4-manifolds and their boundary components is constant and, in
particular, bounded.

1. Introduction

The study of hyperbolic manifolds that bound geometrically dates back to
the works of D. Long, A. Reid [11, 12] and B. Niemershiem [17], motivated
by a preceding work of M. Gromov [7, 8] and a question by F. Farrell and
S. Zdravkovska [4]. This question is also related to hyperbolic instantons,
as described by J. Ratcliffe and S. Tschantz [19, 20]. In particular, the
following problems are of particular interest:

Question 1.1. Which compact orientable hyperbolic n-manifold N can
represent the totally geodesic boundary of a compact orientable hyperbolic
(n+ 1)-manifold M ?

Question 1.2. Which compact orientable flat n-manifold N can represent
the cusp section of a single-cusped orientable hyperbolic (n + 1)-manifold
M ?

Once there exist such manifolds N and M , we say that N bounds M
geometrically. In this note, we shall concentrate on Question 1.1, devoted to
compact geometric boundaries. The recent progress on Question 1.2, that
involves cusp sections, is indicated by [10, 12, 14, 15]. However, this is still
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an open problem in dimensions ≥ 5. On the other hand, by a result of M.
Stover [21], an arithmetic orbifold in dimension ≥ 30 cannot have a single
cusp.

In [11], D. Long and A. Reid have shown that many closed hyperbolic
3-manifolds do not bound geometrically: a necessary condition is that the
eta invariant of the 3-manifold must be an integer. The first known closed
hyperbolic 3-manifold that bounds geometrically was constructed by J. Rat-
cliffe and S. Tschantz in [19] and has volume of order 200.

Then, D. Long and A. Reid produced in [13], by arithmetic techniques,
infinitely many orientable hyperbolic n-manifolds N that bound geometri-
cally an (n+1)-manifold M , in every dimension n > 2. Every such manifold
N is obtained as a cover of some n-orbifold ON geodesically immersed in
a suitable (n+ 1)-orbifold OM .

In this paper, we construct an explicit infinite family in dimension n = 3,
via a similar covering technique where the roles of ON and OM are played
by the right-angled dodecahedron D and 120-cell Z . These two compact
Coxeter right-angled regular polytopes exist in H3 and H4 respectively, and
the first is a facet of the second. The existence of suitable finite covers is
guaranteed here by assigning appropriate colourings to their facets, following
A. Vesnin [23, 24], M. Davis and T. Januszkiewicz [3], I. Izmestiev [9].

A colouring determines a manifold covering, and the main factual ob-
servation is that a colouring of the dodecahedron D can be enhanced in a
suitable way to a colouring of the right-angled hyperbolic Coxeter 120-cell
Z . We produce in this way a degree-32 orientable cover of Z that contains
four copies of a non-orientable degree-8 cover of D . By cutting along one
such non-orientable geodesic submanifold we get a hyperbolic four-manifold
N1 with connected geodesic boundary M1 = ∂N1.

The colouring technique applied to a single polytope can produce only
finitely many manifolds. To get infinitely many examples we assemble n
copies of D and Z to get more complicated right-angled polytopes, to which
the above construction easily extends. We finally obtain the following. Let
VD ≈ 4.3062... and VZ = 34

3 π
2 be the volumes of D and Z , respectively.

Theorem 1.3. For every n > 1 there exists an orientable compact hyper-
bolic three-manifold Nn of volume 16nVD which bounds geometrically an
orientable compact hyperbolic four-manifold Mn of volume 32nVZ .

The manifolds Nn and Mn are tessellated respectively by 16n right-angled
dodecahedra and 32n right-angled 120-cells.

An interesting feature of this construction is that it provides manifolds
Nn and Mn of controlled volume. In particular, we deduce the following.

Corollary 1.4. There are infinitely many hyperbolic three-manifolds N
that bound geometrically some hyperbolic M with constant ratio:

Vol(M )

Vol(N )
=

2VZ

VD
< 53.
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The manifold M1 has volume 16VD ≈ 68.8992 and is to our knowledge
the smallest closed hyperbolic 3-manifold known to bound geometrically.

Structure of the paper. In Section 2 we introduce right-angled polytopes
as orbifolds, and a simple colouring technique from [3] that produces mani-
fold coverings of small degree. Then we show how this colouring technique
passes easily from dimension n to n+ 1 and conversely, and may be used to
produce n-manifolds that bound geometrically when n = 3. In Section 3 we
assemble dodecahedra and 120-cells to produce the manifolds Nk and Mk

of Theorem 1.3.

2. Colorings and covers of Coxeter orbifolds

A right-angled hyperbolic polytope P ⊂ Hn may be interpreted as an
orbifold with mirror boundary, where the mirrors correspond to its facets.
As such an orbifold, it has a plenty of manifold coverings. A few of them
may be constructed by colouring appropriately the facets of P as shown in
[3, 6].

2.1. Colourings and manifold covers. Let P ⊂ Hn be a convex com-
pact right-angled polytope. Such objects exist only if 2 6 n 6 4, see [18];
the two important basic examples we consider here are the right-angled do-
decahedron D ⊂ H3 and the right-angled 120-cell Z ⊂ H4.

We consider P as an orbifold Hn/Γ. The group Γ is a right-angled Coxeter
group that may be presented as

Γ = 〈 rF | r2
F , [rF , rF ′ ] 〉

where F varies over all the facets of P and the pair F, F ′ varies over all the
pairs of adjacent facets. The isometry rF ∈ Isom(Hn) is a reflection in the
hyperplane containing F .

A right-angled polyhedron P is simple [25, Theorem 1.8], which means
that it looks combinatorially at every vertex v like the origin of an orthant
in Rn. In particular, v is the intersection of exactly n facets.

Let V be a finite-dimensional vector space over F2, thus isomorphic to
Fs2 for some s. A V -colouring (or simply, a colouring) λ is the assignment
of a vector λF ∈ V to each facet F of P (called its colour) such that the
following holds: at every vertex v, the n colours assigned to the n adjacent
facets around v are linearly independent vectors in V .

A colouring induces a group homomorphism λ : Γ→ V , defined by sending
rF to λF for every facet F . Its kernel Γλ = kerλ is a subgroup of Γ which
determines an orbifold Mλ = Hn/Γλ covering P.

Proposition 2.1. The orbifold Mλ is a manifold.

Proof. We follow [23, Lemma 1]. A torsion element in Γ fixes some face F
of the tessellation of Hn obtained by reflecting P in its own facets. Up to
conjugacy, we can suppose that F ⊂ P. The stabilizer of F is generated
by the reflections in the facets containing F (see [2, Theorem 12.3.4]) and
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is hence mapped injectively into V by λ. Thus, Γλ is torsion-free and Mλ is
a manifold. �

At each vertex v the colours λF of the n incident facets F are independent:
therefore the image of λ has dimension at least n and the covering Mλ →P
has degree |Γ : Γλ| > 2n; if the equality holds the manifold Mλ is called
a small cover of P. The manifold coverings of P of smallest degree are
precisely its small covers, see [6, Proposition 2.1].

We say that the colouring spans V if the vectors λF span V as F varies,
which is equivalent to the map λ : Γ→ V being surjective. In that case the
covering Mλ →P has degree |Γ : Γλ| = 2 dimV .

2.2. k-colourings. Here, we give an example: recall that a k-colouring of a
polytope is the assignment of a colour from the set {1, . . . , k} to each facet so
that two adjacent facets have distinct colours. A k-colouring for P produces
an Fk2-colouring that spans Fk2: simply replace each colour i ∈ {1, . . . , k} with
the element ei of the canonical basis for Fk2.

Example 2.2. The dodecahedron has precisely one four-colouring, up to
symmetries. This induces an F3

2-colouring (of lower dimension 3 rather than
4) on the hyperbolic right-angled dodecahedron D described in [23] and
hence a manifold covering having degree 23 = 8.

Example 2.3. The 120-cell has a five-colouring (in fact, ten five-colourings
up to symmetries [5]). Each produces a manifold covering of the hyperbolic
right-angled 120-cell Z of degree 25 = 32.

2.3. Orientable coverings. The following lemma gives an orientability cri-
terion analogous to that for small covers in [16] or Löbell manifolds in [23,
Lemma 2]. Let λ be a V -colouring of a right-angled polytope P.

Lemma 2.4. Suppose λ spans V . The manifold Mλ is orientable if and
only if, for some isomorphism V ∼= Fs2, each colour λF has an odd number
of 1’s.

Proof. Let Γ+ / Γ be the index two subgroup consisting of orientation-
preserving isometries. Then Γ+ is the kernel of the homomorphism φ : Γ→
F2 that sends rF to 1 for every facet F .

The manifold Mλ is orientable if and only if Γλ is contained in Γ+, and
this in turn holds if and only if there is a homomorphism χ : V → F2 such
that φ = χ ◦ λ. The latter is equivalent to the existence of an isomorphism
V ∼= Fs2 that transforms λF into a vector with an odd number of 1’s for each
F . Indeed, if such an isomorphism exists, then χ can be taken to be the
sum of the coordinates of a vector.

Conversely, suppose such an isomorphism does not exist. Since the vectors
λF span V we may take some of them as a basis for V and write them
as e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , es = (0, . . . , 0, 0, 1). By
hypothesis, there exists a facet F such that λF has an even number of 1’s.
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Up to reordering, we may write λF =
∑2k

i=1 ei for some k. Now we can see
that the homomorphism χ does not exist, since its existence would imply

1 = φ(rF ) =
∑2k

i=1 φ(ei) =
∑2k

i=1 1 = 0. �

Corollary 2.5. Let there be facets F , F ′ and F ′′ of P such that λF +λF ′+
λF ′′ = 0. Then λ is a non-orientable colouring.

Proof. For a vector v = (v1, v2, . . . , vs) ∈ Fs2 let ε(v) :=
∑s

i=1 vi. Suppose
that λ is orientable, so there exists an isomorphism V ∼= Fs2, such that each
λF has an odd number of 1’s. Then we arrive at a contradiction, since
0 = ε(0) = ε(λF + λF ′ + λF ′′) = ε(λF ) + ε(λF ′) + ε(λF ′′) = 1. �

Example 2.6. The manifolds in Examples 2.2 and 2.3 are orientable.

Example 2.7. Consider the 25 small covers of the hyperbolic right-angled
dodecahedron D found by A. Garrison and R. Scott in [6]. The list is
complete, up to isometries between the corresponding manifolds. Using the
orientability criterion one sees immediately from [6, Table 1] that 24 of them
are non-orientable and exactly 1 is orientable and corresponds to Example
2.2. Another example carried out in [6] is a small cover of the hyperbolic
right-angled 120-cell Z . This cover is again non-orientable. There is no
classification of small covers of Z known at present.

2.4. Induced colouring. A facet F of a n-dimensional right-angled poly-
tope P ⊂ Hn is a (n−1)-dimensional right-angled polytope. A V -colouring
λ of P induces a W -colouring µ of F with W = V/〈λF 〉: simply assign to
every face of F the colour of the facet of P that is incident to it. The
following lemma generalises [6, Proposition 2.3].

Lemma 2.8. The manifold Mµ is contained in Mλ as a totally geodesic
sub-manifold, so that the cover Mλ →P restricts to the cover Mµ → F .

Proof. Let Γ be the Coxeter group of P and Hn−1 ⊂ Hn be the hyperplane
containing F . We regard F as the orbifold Hn−1/ΓF where ΓF is the Coxeter
group of F . The following natural diagram commutes:

0 // 〈rF 〉 // Γ ∩ Stab(Hn−1)
f //

λ

��

ΓF //

µ

��

0

V π
// V/〈λF 〉

The first line is an exact sequence. We deduce easily that f restricts to an
isomorphism

f : kerλ ∩ Stab(Hn−1) −→ kerµ.

Hence Mµ = Hn−1/Γλ∩Stab(Hn−1) is naturally contained in Mλ = Hn/Γλ . �

The pre-image of F in Mλ with respect to the regular covering Mλ →P
consists of possibly several copies of Mµ.
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2.5. Extended colouring. Conversely, we can also extend a colouring from
a facet to the whole polytope. We say that two colourings λ and λ′ on P
are equivalent if they have isomorphic kernels Γλ ∼= Γλ′ (cf. the definition
before [6, Proposition 2.4]).

Proposition 2.9. Let F be a facet of a compact right-angled polytope P ⊂
Hn. Every colouring of F is equivalent to one induced by an orientable
colouring of P.

Proof. Let λ be a V -colouring of the facet F . Fix an isomorphism V ∼= Fs2.

Define W = F2⊕Fs2⊕Ff2 where f is the number of facets of P that are not
adjacent to F . We define a W -colouring µ of P as follows:

• set µF = (1,0,0);
• set µG = (ε(λG∩F ) + 1, λG∩F ,0) where ε(v) =

∑s
i=1 vi, for every

facet G adjacent to F ;
• set µGi = (0,0, ei) for the remaining facets G1, . . . Gf .

Indeed, the map µ is a colouring: the linear independence condition is sat-
isfied at each vertex. Moreover, each vector µF , µG, µGi has an odd number
of 1’s. Finally, by construction µ|F is equivalent to λ. �

We call the colouring µ an extension of λ.

2.6. A more efficient extension. Proposition 2.9 shows how to extend a
V -colouring of a facet F to an orientable W -colouring of the polytope P.
The proof shows that the dimension of W can grow considerably during the
process, since dimW = dimV + 1 + f where f is the number of facets of P
not adjacent to F .

We may use Proposition 2.9 with P being the right-angled 120-cell and F
its dodecahedral facet. However, in this case we could find examples where
both V and W have smaller dimension via computer. The following was
proved by using “Mathematica”.

Proposition 2.10. Each of the 24 non-orientable F3
2-colourings of D from

[6, Table 1] is equivalent to one induced by an orientable F5
2-colouring of Z .

Proof. The Mathematica program code given in [22] takes a non-orientable
F3

2-colouring of D and produces an orientable F5
2-colouring of Z , as required.

Each vector v = (v1, v2, . . . , vs) ∈ Fs2 is encoded by the binary number
nv = v1 · 20 + v2 · 21 + · · · + vs · 2s−1. Let P0 := D , be the right-angled
dodecahedron. We enumerate its faces exactly as shown in [6, Figure 3]
and the corresponding 12-tuple of numbers encodes its colouring. Let Pi,
i = 1, . . . , 12 be the dodecahedral facets incident to P0 at the respective
faces Fi, i = 1, . . . , 12. We start extending the colouring of P0 := D as
follows:

• set λP0 = (0, 0, 0, 0, 1);
• if µFi = v = (v1, v2, v3), then λPi := (v1, v2, v3, 0, ε(v) + 1).
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We obtain a 13-tuple, which is the initial segment of the colouring of
Z . Then the Mathematica code [22] attempts to produce an orientable
120-tuple, which encodes the entire colouring. �

We were not able to find any orientable F4
2-colouring of Z extending a

non-orientable F3
2-colouring of D : our examples are not small covers.

Let now Mλ be the manifold obtained by one F5
2-colouring λ of Z : it

covers Z with degree 25 = 32. The colouring λ restricts to a non-orientable
colouring µ of the facet D , which gives rise, by Lemma 2.8, to a non-
orientable codimension-1 geodesic submanifold Mµ ⊂ Mλ, covering D with
degree 23 = 8.

In complete analogy to [13, Lemma 3.2], by cutting Mλ along Mµ we
get a compact orientable hyperbolic manifold tessellated by 32 right-angled

120-cells having a geodesic boundary isometric to a connected manifold M̃µ

that double-covers Mµ and is hence tessellated by 2 · 23 = 16 right-angled
dodecahedra.

To prove Theorem 1.3 it only remains to extend this argument from one
120-cell to an appropriate assembling of n ≥ 2 distinct 120-cells.

3. Assembling right-angled dodecahedra and 120-cells

Here, we assemble right-angled dodecahedra and 120-cells in order to
construct more complicated convex compact right-angled convex compact
polytopes.

3.1. Connected sum of polytopes. Let P1 and P2 be two right-angled
polytopes in Hn. If there is an isometry between two facets of P1 and P2,
we may use it to glue them: the result is a new right-angled polytope in Hn

which we call a connected sum of P1 and P2 along these facets.

3.2. Assembling. An assembling of right-angled dodecahedra (or 120-cells)
is a right-angled polytope constructed from a finite sequence

P1#P2#P3# . . .#Pk

of connected sums performed from the left to the right, where each Pi is a
right-angled dodecahedron (or 120-cell).

Lemma 3.1. An assembling of k right-angled dodecahedra is a facet of an
assembling of k right-angled 120-cells.

Proof. Consider H3 inside H4 as a geodesic hyperplane. Consider D ⊂ H3

as a facet of Z ⊂ H4. Every time we attach a new copy Di of D in H3, we
correspondingly attach a new copy Zi of Z having Di as a facet. �
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Figure 1. A non-orientable colouring of D from [6, Table 1].
Face colours are encoded by binary numbers

3.3. Proof of Theorem 1.3. We have described all the ingredients neces-
sary to prove Theorem 1.3.

By Proposition 2.10, pick an orientable F5
2-colouring of the right-angled

120-cell Z that induces a non-orientable F3
2-colouring of one dodecahedral

facet D .
Then assemble n copies of D as

P = D1#D2# . . .#Dn

and consider, as in Lemma 3.1, the resulting right-angled polyhedron P as
a facet of a a right-angled polytope Q made of n copies of the right-angled
120-cell, each having a Di as a facet.

Every time we assemble a new copy of Di, we give Di the colouring of the
adjacent dodecahedron, mirrored along the glued pentagonal face, and we do
the same with each corresponding new 120-cell Zi. The resulting polytope
Q inherits an orientable F5

2-colouring λ that induces a non-orientable F3
2-

colouring µ of P, if P is assembled appropriately. Indeed, each of the 24
non-orientable colourings of D has three faces F , F ′ and F ′′ satisfying the
conditions of Corollary 2.5. Moreover, we can find a fourth face F ∗ which
is disjoint from each of them. These properties are easily verifiable by using
[6, Table 1]. Then, we start assembling Di’s by forming a connected sum
along F ∗. Then the colouring of the resulting polytope P again satisfies
Corollary 2.5 and hence is non-orientable, as required.

By cutting Mλ along Mµ we get a compact orientable hyperbolic manifold
tessellated by 32n right-angled 120-cells having a geodesic boundary that is

isometric to a connected manifold M̃µ that double-covers Mµ and is hence
tessellated by 2 · 23n = 16n right-angled dodecahedra. �

We conclude the paper by providing an example of the construction car-
ried in the proof above.
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Example 3.2. Let us choose a non-orientable colouring µ of the dodecahe-
dron D from [6, Table 1], say the one having the maximal symmetry group
(Z2×Z2)nZ6. This is an F3

2-colouring depicted in Fig. 1, with face colours
encoded by binary numbers in the decimal range 1, . . . , 7. Here, the grey
shaded faces of D are exactly the faces F , F ′ and F ′′, satisfying the condi-
tions of Corollary 2.5. The face F ∗, along which we take a connected sum
in the proof of Theorem 1.3, has a chequerboard shading. Now, we take a
connected sum of D1 := D along F ∗ with its isometric copy D2, having the
same colouring. Then we can choose a face of D1#D2, distinct from any of
F , F ′ or F ′′ and continue assembling until we use all n given copies of D ,
which produce a polyhedron P = D1# . . .#Dn. The faces F , F ′ and F ′′

of D1 still remain among those of P. Thus, the colouring of P is again
non-orientable by Corollary 2.5.

Finally, by applying Proposition 2.9 and Lemma 3.1, we obtain a four-

dimensional polytope P̃ with an orientable F5
2-colouring, that induces a non-

orientable colouring on one of its facets, which is isometric to P. Indeed,
the non-orientable F3

2-colouring of each Di can be extended by Proposition
2.9 to an orientable F5

2-colouring of a 120-cell Zi. Then, by Lemma 3.1,

P = D1# . . .#Dn is a facet of a polytope P̃ = Z1# . . .#Zn. Since the
colourings of Di’s match under taking connected sums, the colourings of Zi’s

also match. The polytope P̃ gives rise to a covering manifold with totally
geodesic boundary, as described in the proof of Theorem 1.3.
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(1970), 413–440.

[2] M. Davis, The geometry and topology of Coxeter groups, Princeton Univ. Press,
(2008), 1–594.

[3] M. Davis – T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus ac-
tions, Duke Math. J. 62 (1991), 417–451.

[4] F.T. Farrell – S. Zdravkovska, Do almost flat manifolds bound?, Michigan Math.
J. 30 (1983), 199–208.

[5] S. Fisk, Coloring the 600-cell, arXiv:0802.2533
[6] A. Garrison – R. Scott, Small covers of the dodecahedron and the 120-cell, Proc.

Amer. Math. Soc. 131 (2003), 963–971.
[7] M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1987), 223–

230.
[8] , Almost flat manifolds, J. Differential Geom. 13 (1978), 231–241.
[9] I.V. Izmestiev, Three-dimensional manifolds defined by coloring a simple polytope,

Math. Notes 69 (2001), 340–346.
[10] A. Kolpakov – B. Martelli, Hyperbolic four-manifolds with one cusp, Geom.

Funct. Anal. (2013), on-line first.
[11] D.D. Long – A.W. Reid, On the geometric boundaries of hyperbolic 4-manifolds,

Geom. Topol. 4 (2000) 171–178.
[12] , All flat manifolds are cusps of hyperbolic orbifolds, Alg. Geom. Topol. 2

(2002), 285–296.
[13] , Constructing hyperbolic manifolds which bound geometrically, Math. Re-

search Lett. 8 (2001), 443–456.



10 ALEXANDER KOLPAKOV, BRUNO MARTELLI, AND STEVEN TSCHANTZ

[14] D.B. McReynolds, Controlling manifold covers of orbifolds, Math. Res. Lett. 16
(2009), 651–662.

[15] D.B. McReynolds – A.W. Reid – M. Stover, Collisions at infinity in hyperbolic
manifolds, Math. Proc. Cambridge Philos. Soc. 155 (2013), 459–463.

[16] H. Nakayama – Y. Nishimura, The orientability of small covers and coloring simple
polytopes, Osaka J. Math. 42 (2005), 243–256.

[17] B.E. Nimershiem, All flat three-manifolds appear as cusps of hyperbolic four-
manifolds, Topology and Its Appl. 90 (1998), 109–133.
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