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Abstract

This paper is the continuity of Guo’s work [Phys.Rev., 2009, 046708] about a

lattice Boltzmann model for axis-symmetric flows. This is a radius weighted

LBM model: all the moments are proportional to the radial coordinate r. A

Taylor series analysis is performed on the discrete Boltzmann Model in order

to assess the consistency. The truncation error terms do not indicate any error

increase along the radial direction, but they contain a spurious term ur/r which

considerably reduces the model accuracy when radial velocity is non-null: sim-

ulation results highlight a reductions of the order of accuracy (from second to

first). A new axis boundary condition was created to improve the model accu-

racy and to cope with the spurious error term. It was assessed though several

test cases.
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Nomenclature

−→a acceleration

−→ck particle speeds

cs = 1/3 sound speed

p pressure

fk distribution functions

Rk force terms in LB equation

r radius coordinate

−→u speeds

Greek symbols

ν kinetic viscosity

ρ density

τ relaxation parameter

∆t time step

∆X space step

Subscripts

i, j node index

k particle velocity index

t Time

α, βγ Einstein notation indexes

r, z radial / vertical direction

1. Introduction

The lattice Boltzmann method (LB method) is a well understood method for

the simulation of fluid flows. Although it is limited to second order accuracy, it

can compete with traditional fluid simulation methods in terms of computational

performances, and simplicity of the implementation.

Historical origins of the method are found in the kinetic theory: as a conti-

nuity of Lattice Gas Cellular Automata (Frisch et al.[1], McNamara and Zanetti

[2]), or as a special discretization of the Boltzmann equation (He and Luo [3]).
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The use of lattice Boltzmann models is not restricted to the simulation of

the microscopic behaviour of fluids. The method is also a powerful numerical

tool for the simulation of partial differential equations. Thus, LB models exist

for various differential equations: Full Navier Stokes equations (Qian et al. [4]),

Poisson equation (Chai and Shi [5]), Fourier equation (Mishra [6]), etc... For

each LBM model, it is essential that the consistency is expressed at least in

one journal paper. Moreover, a truncation error analysis might be helpful for

the determination of the optimal model parameters, and for the interpretation

of the model behaviour under certain circumstances.

The consistency is assessed when the numerical equations tends toward the

appropriate partial differential equations as the discretization parameters ∆X

and ∆t decrease. The consistency of LB models is traditionally established

through the Chapman Enskog expansion. This method is an heritage from

the kinetic theory: it involves a scale separation (between acoustic and diffusive

transport) on the distribution functions and the differential operators. Although

the method is commonly used for recovering the zero order terms of the simu-

lated equations, it might become a very long and painful experience to use it

for recovering the truncation error terms unless restricted scaling hypothesis are

adopted (Zhao [7]).

An alternative method was proposed by Holdych [8]: the so-called ”Taylor

series analysis”. The method is an extension of Junk’s work [9] for τ = 1 to any

value of the relaxation parameter. It does not involve any scale separation that

might be confusing for LBM neophytes. It offers a clear an simple technique to

get to the zero order equations, and does not require much more effort to reach

the whole expression of truncation error terms. Despite its inherent simplicity,

the method is still not popular among the LBM community (Ginzburg [10]).

The present work was motivated by the need of a precise and reliable axis-

symmetric flow model, to simulate low-Rayleigh flows inside some cylindrical

capsules that contain phase change materials. The model which was selected is

the model proposed by Guo [11]. Most of the axis-symmetric LB models were

obtained by modifying existing Cartesian LB models in order to recover the
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additional terms in cylindrical Navier-Stokes equations. Halliday et al. [12],

Reis and Philipps [13, 14], and Chen et al. [15, 16, 17, 18] used virtual source

terms. Zhou [19, 20] used a radius-dependent relaxation time and a virtual

source term.

The way Guo built his model is radically different. The author started from

the continuous Boltzmann equation in cylindrical coordinates from Bergers [21].

He discretized the equations and obtained a new kind of LB model, where the

radius coordinate appears in all the moments definitions. From now, we refer to

this model as the Radius-Weighted Lattice Boltzmann model: RW-LB model.

Despite subsequent extensions of Guo’s model to thermal flows (Zheng et

al. [22]), and multi-relaxation time collision operator (Wang et al. [23]), the

consistency of the discrete model has never been clearly assessed. Guo [11]

applied the Chapman Enskog expansion to the continuous Boltzmann equations

from which he built the discrete RW-LB model. Moreover, the presence of the

radial coordinate in the moments definitions and the force term might modify

the truncation error terms: its effect on the model precision must be clearly

stated. This is the first purpose of the present paper, which is treated through

a Taylor series analysis.

The second purpose of the present paper concerns the boundary condition

near the symmetry axis. Guo proposed a ”mirror” boundary condition. This

boundary condition is acceptable for simulating a symmetry plane in Cartesian

coordinates. It is not necessarily suited for the RW-LB model. A new and more

appropriate boundary condition is defined in the subsequent sections.

The present paper is organized as follow. The Navier-Stokes equations for

axis-symmetric flows and the RW-LB model are quickly reminded in the first

two sections. Then, the consistency of the model is tested and the error terms

are expressed from the Taylor series analysis. An alternative axis boundary

condition is proposed in the fourth section. Finally, the model is tested with

the new boundary condition on several test cases.
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2. Macroscopic equations

Cylindrical formulations of the Navier-Stokes equations are found in every

fluid dynamics textbook. The following formulation facilitates the comparison

with the macroscopic equations obtained through the Taylor series analysis.

∂β(ruβ) = 0 (1)

∂t(ruα) + ∂αβ(ruαuβ) = −

1

ρ
∂α(rp) +

p

ρ
δαr . . .

· · ·+ ν
[

∂ββ(ruα)− ∂r(uα)−
uα

r
δαr

]

+
rF0α

ρ
(2)

In the present paper, we adopt the Einstein formulation for all the equations.

In equations 1 and 2, the summation index is β and α is a free index.

3. RW-LB model

The RW-LB model is a D2Q9 BGK model, where the moments and the

equilibrium distribution functions are multiples of the radial coordinate r. The

simulation domain is discretized into square grids. The grid size is ∆X . The

time step is ∆t. Each grid point is connected with itself and the eight neigh-

bouring nodes through nine particle velocities:

−→c 0 = (0; 0)∆X/∆t

−→c 1−4 = (0;±1)∆X/∆t, (±1, 0)∆X/∆t

−→c 5−9 = (±1;±1)∆X/∆t

(3)

The distribution functions f0−8 follow the governing equation:

fk(
−→x +−→c k∆t, t+∆t)− fk(

−→x , t) = − 1

τ
(fk − feq

k ) +∆t

(

1− 1

2τ

)

Rk (4)

The discrete relaxation time τ is related to the viscosity of the fluid through

ν = c2s∆t(τ − 0, 5), where c2s = ∆X2/
√
3∆t2 is the sound speed.
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feq
k is the discretized Maxwellian equilibrium distribution function multiplied

by r. It is given by Equation 5, where ωk is a weighting which depends on the

associated particle velocity: ω0 = 4/9, ω1−4 = 1/9, ω5−9 = 1/36.

feq
k = ρrωk

[

1 +
−→ck .−→u
c2s

+
(−→ck .−→u )2

2.c4s
−

−→u 2

2.c2s

]

(5)

The distribution functions fk are related to the macroscopic variables through

the first and second order moments:

∑

k

fk = rρ (6)

∑

k

ckα.fk = r

(

ρuα −∆t
Fα

2

)

(7)

For the source term Rk, two formulations are available. The first formula-

tion (Equation 8) is the He-type formulation (He et al. [24]) proposed by Guo

[11] for the original RW-LB model. The second formulation (Equation 9) is the

Guo-type formulation from Guo et al. [25]. Since both formulations have the

same zero-th, first, and second order moments, they lead to the same macro-

scopic equations and second order truncation error terms . Both formulations

are equivalent for this study. The second formulation is chosen to get lighter

expressions.

RHe

k =
(−→ck −−→u ) .

−→
F

ρrc2s
feq
k He-type (8)

Rk = ωk

[−→ck − −→u
c2s

+
−→ck .−→u
c4s

−→ck
]

.
(

r
−→
F
)

Guo-type (9)

The force Fα is the sum of the ”real” force applied to the fluid F0α, and a cor-

rective pseudo-force required to recover the cylindrical Navier Stokes equations

F ′

α:

Fα = F0α + F ′

α = F0α +

(
ρc2s
r

− ρν
2ur

r2

)

δαr (10)
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Please note that Equation 10 is an exact reformulation of the force term

given by Guo. The formulation given by Wang et al. [23] and Zheng et al. [22]

is wrong: they confused the continuous model relaxation time τ∗ = ν/c2s with

the discrete model relaxation time τ = τ∗/∆t+ 0.5

4. Consistency and truncation error

4.1. Scaling strategy

In LB models, the quantities ν, τ , ∆X and ∆t are connected through the

relation:

ν =
∆X2

3∆t

(
2τ − 1

2

)

(11)

Because of this relationship, it is impossible to modify ∆X (or ∆t) with-

out modifying other parameters of the model. Thus, whenever a study involves

mesh refinement of a LBM model (error analysis, consistency, local mesh refine-

ment...), it is important to clarify the condition of the mesh refinement: which

parameter remains constant? How does ∆t vary with ∆X?

The choice of the constant parameter concerns two reasonable options: either

the relaxation time τ is constant, or the Mach number Ma is constant. Both

parameters participate to the stability and the accuracy of the model. It is now

common knowledge that acceptable values of τ lies in a narrow range between

0.5 and 2, and that the Mach number should be as low as possible to avoid

compressibility effects.

The literature proposes two common scaling options. Let ∆X = 1/NX be

the reference small parameter. Acoustic scaling involves ∆t ∝ ∆X , and diffusive

scaling involves ∆t ∝ ∆X2 (Asinari et al. [26], Junk [9]).

The different mesh refinement strategies were evaluated by computing the

following quantities: reference velocity U0, model viscosity ν, Mach numberMa,

relaxation parameter τ and number of time steps Nt. Those calculation were

based on a fixed Reynolds number Re and non dimension simulated time κ:
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Ma =
U0

∆X/(
√
3∆t)

Re =
U0NX∆X

ν
κ =

U0Nt∆t

NX∆X
(12)

When the Mach number is fixed, we get τ − 0, 5 ∝ NX . We might reach

unreasonably high values of τ by refining the mesh. On the contrary, by fixing

τ , we get Ma ∝ 1/NX : we reduce the Mach number value by refining the mesh.

That’s why we choose to fix the value of τ during the mesh refinement.

Since the aim of the paper is not to compare the relative order of convergence

obtained through either acoustic or diffusive scaling, there was no such a strict

criterion for choosing between the scaling strategies. None of them leads to a

faster convergence, we always get

Nt =
κN2

X

Re(τ − 0.5)
(13)

We chose diffusive scaling based on recommendations from Holdych et al.

[8]. With this scaling strategy, the velocity does not depend on NX , and the

viscosity can be adjusted through the ratio ∆X2/∆t (Equation 11).

4.2. Taylor series analysis

A rigorous application of the Taylor series analysis to the RW-LB model is

detailed in appendix Appendix A. Here, we present the major results of the

calculations.

The Taylor series analysis leads to the modified equations of the numerical

scheme. For the continuity equation, we get:

∂α(ruα) =
(2τ − 1)2

12ν
∆X2

[

− r

ρν
(∂tp+ uα∂αp) + ν∂r

(ur

r

)]

+O(∆X4) (14)

and for the momentum equation, we get:
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0 = −∂t(ruα)− ∂β(ruαuβ)−
∂α(rp)

ρ
+

p

ρ
δαr . . .

· · ·+ ν
[

∂ββ(ruα)− ∂r(uα)− δαr

(ur

r

)]

+ r
F0α

ρ
+∆X2ME +O(∆X4)

(15)

where the momentum truncation error ME is expressed in Equation A.37 of

appendix Appendix A.

The zero order elements of Equations 14 and 15 are identical to the cylindri-

cal Navier Stokes Equations 1 and 2. The consistency of the model is assessed

wherever the truncation error do not reach infinite values.

One concern that might arise with the RW-LB model is the repartition of

the error along the radial coordinate, due to the presence of r in the definition

of the moments. The expression of the error terms can give us some answers

about this concern. There are two kinds of error terms in Equations 14 and

A.37. The first ones are functions of rp or r−→u . The other ones are functions of

ur/r.

The first kind of error terms are functions of quantities that are proportional

to r. However, Equations 14 and 15 govern the evolution of rρ and rρ−→u , which

are also proportional to r. The r-proportionality in the error and the main

equation terms compensate each other. The first kind of error terms should not

involve any increasing trend along the radius coordinate.

If the radial velocity ur is null, the error terms depending on ur/r are null and

there is no singularity near the axis. However, with non-zero radial velocities,

the term ur/r reaches extreme values near r = 0, the error terms can not

be neglected along the symmetry axis. For that reason, we conclude that the

consistency of the model is assessed with no restriction if ur is null; it is assessed

in all the model except at the axis location when ur is not null. This restriction

is not limiting: axis-symmetric simulations are performed on a half-section of

the cylindrical domain, and the symmetry axis is treated with proper boundary

conditions. The accuracy of the model near the axis depends on the quality of
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the boundary condition.

Finally, let’s consider the evolution of the total mass contained in the simu-

lation domain. The mass is locally preserved during collisions, because the zero

order momentum of the collision operator is null. During the streaming process,

the quantity ρr is propagated: the total mass being proportional to
∑

i,j(ρr)ij ,

it is exactly preserved by the streaming operator. Thus, despite the presence of

truncation error terms in the continuity equation, the total mass of the system

is exactly preserved by the model, provided that the boundary conditions are

mass conservative.

5. Axis boundary condition

The axis boundary condition is performed on the axis boundary nodes.

Those boundary nodes are located a half step ahead from the symmetry axis. To

analyse the dynamic that is modelled by the axis boundary condition, we define

the ghost nodes as the nodes located symmetrically to the boundary nodes with

respect to the axis (Figure 1). Thus, the radius is r = ∆X/2 on the boundary

nodes, it is r = −∆X/2 on the ghost nodes.

The boundary condition should act as if the macroscopic flow was exactly

symmetric on both sides of the axis. Let ρ, (ur, uz), and (ar, az) be the density,

velocity, and acceleration on a boundary node. Let ρ̃, (ũr, ũz), and (ãr, ãz) be

the same quantities on the corresponding ghost node. The boundary condition

should act as if those quantities were equal to ρ, (−ur, uz), and (−ar, az) (Figure

2).

The symmetry of the acceleration is already ensured by the definition of the

axis force in Equation 10. Indeed the real force F0α is symmetric by definition,

and the virtual force F ′

r is an odd function of the radius r and radial velocity ur.

If the symmetry is ensured for the density and the velocity, we get ãr = −ar,

and ãz = az.

The boundary condition is applied during the streaming process. Before

the streaming process, distribution functions on the boundary node are post-
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Symmetry

axis

Simulation domainGhost nodes

j

j+1

j-1

Figure 1: Boundary node and ghost node near the symmetry axis

collision distribution functions f∗

k . They are related to the node density ρ,

velocities (ur, uz) and accelerations −→a =
−→
F /ρ through:







∑

f∗

k =
∆X

2
ρ

∑

ckrf
∗

k =
∆X

2
ρ

(

ur +
∆t

2
ar

)

∑

ckzf
∗

k =
∆X

2
ρ

(

uz +
∆t

2
az

)

(16)

5.1. Mirror boundary conditions

Guo [11] proposes a ”mirror” type boundary condition (mirror BC) at the

axis location. The mirror boundary condition allocates the outgoing distribution

functions f∗

3 , f
∗

6 and f∗

7 to the surrounding unknown distribution functions (in

the nodes j − 1, j and j + 1) as follow:







(
f+
5

)

j+1
= (f∗

6 )j
(
f+
1

)

j
= (f∗

3 )j
(
f+
8

)

j−1
= (f∗

7 )j

(17)
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Figure 2: Target behaviour for the axis boundary condition

The mirror boundary condition acts as if, before the streaming, the ghost

node distribution functions were a rotation around the vertical axis of tbhe

boundary node distribution functions. This behaviour is represented in Figure

3.

Figure 3: Ghost node distribution function for the mirror boundary condition

Now we can compute the macroscopic quantities ρ̃ and (ũr, ũz) at the ghost

node location before the streaming process. Recalling that the radius is r =

−∆X/2, we get:
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





ρ̃ =

∑
f∗

k

−∆X/2
= −ρ

(

ũr +
∆t

2
ãr

)

=
−∑ ckrf

∗

k

(−∆X/2)ρ̃
= −

(

ur +
∆t

2
ar

)

(

ũz +
∆t

2
ãz

)

=

∑
ckzf

∗

k

(−∆X/2)ρ̃
=

(

uz +
∆t

2
az

)

(18)

The symmetry is broken for the density. Although the ghost node velocities

are correct, the mirror BC simulates opposite densities on both sides of the

symmetry axis. It is not suited for the RW-LB model

5.2. The radius weighted mirror boundary condition

The radius weighted mirror boundary condition (RW Mirror BC) is a mod-

ified version of the mirror boundary condition which ensures the symmetry of

the whole set of macroscopic quantities. To do so, we multiply by −1 the value

of the distribution functions that cross the boundary;







(

f̃+
5

)

j+1
= (−f∗

6 )j
(

f̃+
1

)

j
= (−f∗

3 )j
(

f̃+
8

)

j−1
= (−f∗

7 )j

(19)

The RW-mirror BC acts as if, before the streaming, the ghost node dis-

tribution functions were a rotation around the vertical axis of the boundary

node distribution functions, and if all the values were multiplied by −1. This

behaviour is represented in Figure 3.

The macroscopic density and velocities now correspond to the targeted val-

ues:







ρ̃ =

∑
(−f∗

k )

−∆X/2
= ρ

(

ũr +
∆t

2
ãr

)

=
−∑ ckr(−f∗

k )

(−∆X/2)ρ̃
= −

(

ur +
∆t

2
ar

)

(

ũz +
∆t

2
ãz

)

=

∑
ckz(−f∗

k )

(−∆X/2)ρ̃
=

(

uz +
∆t

2
az

)

(20)
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x-1

Figure 4: Ghost node distribution function for the RW-mirror boundary condition

However, the formulas from Equation 19 are not sufficient to get a good

quality boundary conditions. Indeed, during the streaming process the domain

looses f∗

3 + f∗

6 + f∗

7 from each boundary node and gets in return −f∗

3 − f∗

6 − f∗

7 .

There is a net mass loss ρ′r = 2(f∗

3 +f∗

6 +f∗

7 ). This quantity must be re-injected

into the simulation domain to ensure the mass conservation.

The mass correction is performed in such a way that the post-streaming

velocities and accelerations are not affected. Just after the streaming, the mass

at the boundary node is ρ̃r =
∑

f̃+
k . This mass must be modified to (ρ̃+ ρ′)r.

We use:

f+
k = f̃+

k ×
(

1 +
ρ′r

ρ̃r

)

(21)

The RW-Mirror boundary condition involves two steps: a streaming process

(Equation 19) and a mass correction (Equation 21). It ensures the symmetry of

the macroscopic quantities, and the mass conservation in the simulation domain.

5.3. Additional observations

Axis symmetric simulations are normally performed on a simulation domain

that covers a half section [0, R] of the cylindrical domain, with proper bound-

ary conditions near the symmetry axis. To observe the way the distribution
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functions are naturally arranged by the RW model around the axis location, we

performed simulations on a whole section [−R,R] of the cylindrical domain.

Symmetry axis

W
a
ll

Periodic boundary

condition

Figure 5: Simulation domain for the preliminary simulations of the Poiseuille flow

Two test cases were simulated: the Poiseuille Hagen flow (Figure 5), and the

side driven cylinder. Those test cases are described in detail in sections 7.2 and

7.5. We compared the distribution functions on the nodes located near the axis:

on the right side (r = ∆X/2), and on the left side (r = −∆X/2). For both test

cases, the relative arrangement between the left and right nodes is identical to

the relative arrangement proposed by the RW-mirror boundary condition. The

left node distribution functions were a rotation around the vertical axis of the

right node distribution functions, with all the values multiplied by −1 (figure

4). The RW-mirror BC mimics the natural behaviour of the model near the

axis.

Moreover, from the full section simulations, we could observe the effect of the

error singularity as we approach the axis at r = 0. The solution of the Poiseuille

Hagen flow has a zero radial velocity: the singular term ∂r (ur/r) in equation

14 is null. The simulation results were in good agreement with the analytical

results, and no mass deviation was observed. However, the Side driven cavity

flow implies radial velocity components: the singular term ∂r (ur/r) in equation

14 is non null. We observed from the simulations a strong deviation of the total

mass.
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Thus, the mass correction of the RW-mirror BC compensates the natural

mass deviation caused by the singular error term in the continuity equation.

6. Model implementation

Dellar [27] interprets the 2nd order LB scheme as a Strang Splitting proce-

dure. Let S be the streaming operator, and C the collision operator. Dellar

recommends the following sequence of operations for the computation of Nt

time-steps:

fk(n.∆t) = C1/2S

(Nt−1)×C.S.
︷ ︸︸ ︷

CS . . . CS C1/2 (fk(0)) (22)

The initial density, velocity, and force are respectively ρini,
−→u ini and

−→
F0ini.

At t = 0, the distribution functions are at the equilibrium state: fk(0) =

feq
k (ρini,

−→u ini). After the first half-collision, we get:

C1/2(fk(0)) = feq
k (ρini,

−→u ini) +
∆t

2
Rk(

−→u ini,
−→
F0 ini +

−→
F ′

ini) (23)

where
−→
F ′

ini is calculated, using Equation 10, with the initial density and radial

velocity.

Then, the streaming and collision operators are applied successively Nt − 1

times. The streaming operator S splits-up into two steps:

• Normal streaming inside the computational domain

• Correction at the boundary nodes

We used half-way bounce-back boundary conditions along the solid walls.

The collision operator C splits-up into three steps:

• Calculation of the macroscopic quantities from pre-collision distribution

functions.
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• Calculation of the equilibrium distribution functions (Equation 5), the vir-

tual correcting force
−→
F ′ (Equation 10), and the forcing terms Rk (Equation

9)

• Collision (RHS of of Equation 4).

The determination of the macroscopic quantities ρ and −→u is performed from

pre-collision distribution functions fk. The density is directly deduced from the

zero-th order moment:

ρ =

∑

k fk
r

(24)

For the velocity, it is slightly more complicated because the force term
−→
F =

−→
F0 +

−→
F ′ depends on the radial velocity ur. The first order moment is inverted

to get the velocities in the r and z directions:

ur =
1

rρ+∆tρνr

(
∑

k

ckrfk +
∆t

2

(
rF0r + ρc2s

)

)

uz =
1

rρ

(
∑

k

ckzfk +
∆t

2
rF0z

) (25)

At the end of the simulation, the available distribution functions are post

collision distribution functions f∗

k . Their first order moment is different from

Equation 7:

∑

k

ckαf
∗

k = r

(

ρuα +∆t
Fα

2

)

(26)

Thus, the macroscopic velocities are obtained through:

ur =
1

rρ−∆tρνr

(
∑

k

ckrf
∗

k − ∆t

2

(
rF0r + ρc2s

)

)

uz =
1

rρ

(
∑

k

ckzf
∗

k − ∆t

2
rF0z

) (27)
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7. Test Cases

The RW-LBM model is confronted to four test cases. The primary goal of

those simulations is to compare the performances of the mirror boundary con-

dition and the RW-mirror boundary conditions. The influence of the parameter

τ on the model accuracy is investigated with the fourth test case.

The first test case is the Poiseuille Hagen flow. Then, we test the Wormersley

flow because of its transitional behaviour. Those two test cases have analytical

solutions with zero radial velocities. However, we emphasized the importance

of the radial velocity on the error near the symmetry axis. So we investigate

two more test cases: the Rayleigh Benard flow, and a made-up test case: the

side driven cylinder.

7.1. Stopping criterion

The convergence error εc is the error between two axial velocity fields sepa-

rated by 500 time steps:

εc =

√
√
√
√

1

NZ .NR

∑

i

∑

j

|uz,ij(t)− uz,ij(t− 500∆t)|2

|uz,ij(t)|2
(28)

Each simulation of a steady state system ended up with a convergence error

below 10−10. For each of those simulations, the number of time steps we used

is indicated through a non-dimension simulation time value κ. The definition

of κ depends on the simulated system.

The initial density is: ρ0 = 1. The total mass deviation ∆M is expressed in

29. It did not exceed 10−15 during all the simulations. The mass conservation

is ensured by the model.

∆M =

∑

i

∑

j ρijri∆X2

R2H
− 1 (29)
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7.2. Poiseuille Hagen Flow

The Poiseuille Hagen flow is a flow inside a vertical cylinder, driven by a

homogeneous vertical force
−→
F0 = −F0z.

−→ez . The simulated system is drawn in

Figure 6. The symmetry axis is on the left. Half-way bounce-back boundary

condition is applied on the right. Periodic boundary conditions are applied

between the top and bottom limits of the domain.

Symmetry axis

W
a
ll

Periodic boundary

condition

Figure 6: Simulation domain of the Poiseuille Hagen flow

The analytical solution is ũr(r) = 0, and ũz(r) given by Equation 30, where

U0 is the velocity at the axis location (Figure 7).

ũz(r) = −U0

(

1− r2

R2

)

= −F0zR
2

4ρν

(

1− r2

R2

)

(30)

The dynamics of a Poiseuille Hagen flow is fully characterized by the Reynolds

number Re = 2RU0/ν. We used the following settings: Re = 10, τ = 0.75,

κ = (Nt∆t)U0/R = 100, R = 1 and ∆t/∆X2 = 1. Density variations and

horizontal velocities were close to the machine precision for all simulations.

The bottom axis of Figure 7 show the repartition of the axial velocity error

along the radial coordinate, for the Mirror and the RW-Mirror boundary con-

ditions. The error values are identical near the solid wall. They are due to the

half way bounce-back scheme which, when used with a BGK model, causes a

slight deviation of the wall location. This phenomenon is explained by Noble et

al. [28] and Hecht and Harting [29].
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Figure 7: Poiseuille Hagen flow velocity profile for NR = 64 and Re = 10. Bottom axis:

distribution of the axial velocity error along the radial coordinate

With the RW-Mirror BC, the error keeps at the same level all across the

flow stream. The errors due to the flow model and the axis BC are negligible

compared to the initial error near the wall. The present result is very encour-

aging, because is assesses the consistency between the RW-LB model and the

RW-Mirror boundary condition. Here, since there is no radial velocity, the

mass correction in Equation 21 is null. The RW-Mirror BC reflects exactly the

behaviour of the RW-LB model on the other side of the axis.

The error repartition which is obtained using the Mirror-BC is much worse.

The error deviates strongly when approaching the axis.

To determine the degree of accuracy of the models, we compute the error ε

on the axis axial velocity:
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ε =

∣
∣U0 − uk

z0

∣
∣

U0
(31)

The axial velocity uz0 = uz(r = 0) is extrapolated from the two neighbouring

velocity values uz,0 and uz,1, with a second order extrapolation scheme assuming

∂uz/∂r(0) = 0:

uz0 =
9

8
uz,0 −

1

8
uz,1 (32)

The error ε is represented as a function of the radial resolution NR in Figure

8. For both boundary conditions, we get ε ∝ ∆X2, the model is second order

accurate. The axis velocity predictions are more precise with the RW-Mirror

BC for all mesh sizes.
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Figure 8: Grid dependency on the axis velocity for the Poiseuille flow

7.3. Womersley Flow

The Womersley flow is the flow inside a tube, driven by an oscillatory axial

force:

−→
F0 = −F0z cos(ω.t)

−→ez (33)
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The reference velocity is U0 = F0zR
2/(4ρν). The dynamic of the systems

depends on the Reynolds number Re = 2RU0/ν and the Womersley number α =

R
√

ω/ν. The analytical solution has a zero radial velocity, and an axial velocity

given by Equation 34, where J0 is the zero order complex Bessel function.

ũz(r, t) = abs




4U0

α2i



1−
J0

(√

iω/ν.r
)

J0

(√

iω/ν.R
)



 exp(iωt)



 (34)

The parameters we used for the simulations are: Re = 1200, α = 20, τ = 0.6,

R = 1 and ∆t/∆X2 = 1. The simulations were run over 400 periods to reach

the periodic regime.

Simulated axial velocity profiles are drawn for four moments of the oscilla-

tory process in Figures 9 (mirror boundary conditions) and 10 (radius weighted

mirror boundary conditions). In each figure, the simulation results are con-

fronted to the theoretical profiles. In Figure 9, the mirror boundary causes a

deviation of the velocity profile near r = 0 (circled area). This deviation is null

with the Radius weighted boundary condition.
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Figure 9: Typical solution for the wormersley flow with α = 20. Mirror boundary conditions

(NR = 32)

The error ε was computed from the axial velocity during the last simulated

period:
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conditions (NR = 32)

ε =
1

NtT

NtT∑

k

∣
∣ũz(0, tk)− uk

z0

∣
∣

|ũz(0, tk)|
(35)

It is represented as a function of the radial resolution NR in Figure 11. It

is difficult to extract any order accuracy from those curves. The precision is

generally improved during the mesh refinement. Axis velocity predictions are

on average 500 times more precise with the RW-mirror BC.
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Figure 11: Error on the axis velocity for the Wormersley flow
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7.4. Rayleigh Benard convection

The choice of the Rayleigh Benard convection flow is motivated by the pres-

ence of non-zero radial velocity, and the existence of reference results in the

literature.

The fluid, initially at rest, is enclosed inside a vertical cylinder, with a hot

temperature Th at the bottom, a cold temperature Tc at the top, and adiabatic

conditions on the surrounding wall (Figure 12). The Boussinesq force
−→
F0 =

ρgβ(T − Tm)−→ez drags a toroidal flow inside the cylinder.

Symmetry axis

Figure 12: Simulated system for the Rayleigh Benard convection

The flow model is coupled with an energy conservation model. The energy

conservation model was built on the same grid than the flow model. At each time

step, the temperature values on the lattice sites are updated using Equation 36.

The spatial derivatives ∂̃r,∂̃z, ∂̃
2
r and ∂̃2

z are centred discrete derivatives. They

are second order accurate in ∆X .

T k+1 = T k +∆t

[

−ur∂̃rT
k − uz∂̃zT

k + α

(

∂̃2
rT

k + ∂̃2
zT

k +
∂̃rT

k

r

)]

(36)

The reference velocity is U0 =
√

gβ(Th − Tc)H . The following criteria were

fulfilled in order to ensure the stability of the energy conservation model (see

Tannehill et al. [30]):
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• Diffusive criterion: α∆t
∆X2 ≤ 1

4

• Two dimensions Courant Friedrichs Lewi criterion: U0∆t
∆X ≤ 1

2

• Mixed criterion:
U2

0
∆t
α ≪ 1

The dynamics of the system is fully characterized by three dimensionless

numbers: Rayleigh Ra = gβ(Th−Tc)H
3

αν , Prandtl Pr = ν
α , and shape factor

Γ = R/H . The parameters we used were: Ra = 5000, Pr = 0.7, Γ = 1,

τ = 0.55, R = 1, ∆t/∆X2 = 1 and κ = αNt∆t/R2 = 14.

The reference result given by Lemembre and Petit [31] is the maximum

dimensionless axis velocity: uz0,max/U0 = 0.351. The small number of digits

of this reference result is due to the weakly oscillatory nature of the toroidal

flow. The simulation results are compared to the reference value in Figure 13.

The models with both boundary conditions converge toward the right velocity

value. However, the precision is far better with the RW-mirror BC than with

the mirror BC.
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Figure 13: Maximum axis velocity for Rayleigh Benard convection

The direction of the fluid rotation depends on the initial temperature T ini.

If T ini is cold, the fluid rotation is clockwise, and the center of the toroidal roll

is slightly shifted upward. If T ini is hot, the cold top temperature implies a

decrease of the buoyancy: the rotation is anti-clockwise, and the center of the

toroidal roll is shifted downward. This phenomenon was correctly reproduced
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by the RW LMB model. Velocity streamlines are drawn on Figure 14(a) for an

initial cold temperature, and on Figure 14(b) for an initial hot temperature.

(a)

(b)

Figure 14: Velocity streamlines for Rayleigh-Benard convection:14(a) initial cold temperature,

14(b) initial hot temperature

7.5. Side driven cylinder

To fully characterize the RW LBM model, we need a test case with a non

zero radial velocity, which does not require any coupling with other conservation

models. That’s why we investigate the side driven cylinder flow. The side driven

cylinder is a vertical cylinder with solid walls on the top and bottom surfaces.

The fluid is driven by an axial velocity U0 which is imposed on the side of the

cylinder (see fig. 15)
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Symmetry axis

Wall

Wall

Figure 15: Simulated system for the side driven cavity

We fix z = 0 at the bottom of the system. A weighting is applied on the

side wall velocity to avoid discontinuity issues near the corners.

U ′

0(z) = U0 ×
[

1−
(
2z

H
− 1

)18
]2

(37)

The dynamic of the system is entirely defined by two dimensionless numbers:

Reynolds number Re = U0H/ν, and a shape factor: Γ = H/R. We performed

the simulations for Re = 50 and Γ = 2, with the following settings: τ = 0.6,

R = 1, ∆t/∆X2 = 1, and κ = Nt∆tU0/H = 30.

We got the reference velocity values from much finer simulations performed

on a finite volume model based on the axis-symmetric Navier-Stokes equations.

For those simulations, we used a steady state model, with a pressure-velocity

coupling scheme which offers a second order accuracy for the pressure, and a

third order accuracy for the momentum, through the MUSCLE scheme. The

reference results (ũr, ũz) were obtained with a regular square mesh of 1024×2048

cells. A fourth order spline interpolation technique was used to move reference

and LBM velocity values to the same locations for comparisons.

The lines z = 0.5, z = 1 and z = 1.5 are identified in Figure 15. The radial

and axial velocity profiles along those lines are represented in Figure 16, where
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the reference results are drawn in black. Absolute error repartitions are drawn

in the bottom axis.

The error values are much greater for the side driven cavity flow (around

10-15% with NR = 64) than for the Poiseuille Hagen flow (less than 0.1%, see

fig. 7). The present test case is stiffer, due to non-null radial velocity, and

velocity gradients in both radial and axial directions.

The distinction between Mirror and RW-mirror BC is perceptible near the

axis (circled areas). With the RW-Mirror BC, the radial velocity error tends

toward zero and the axial velocity error stabilizes. With the Mirror BC, there

is a distortion of the error profiles near the axis.
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Figure 16: Axial and radial velocity profiles along the lines y = 0.5, y = 1 and y = 1.5, for

NR = 64 and Re = 50. Reference profiles are drawn in black, simulated profiles with the

RW-mirror and mirror boundary conditions are respectively in solid lines and dashed lines.

The corresponding error are reported on the curves below.
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The global simulation error ε is computed from the axial velocity profiles

at the axis location r = 0 (Equation 38), where uz0,j are extrapolated values

(Equation 32).

ε =
1

NZ

∑

j

|uz0,j − ũz0,j |
U0

(38)

The error ε is drawn in figure 17 for several mesh sizes. The convergence

is now first order. This is an issue, because the truncation error analysis does

not highlight any first order error term. It seems that the spurious terms ur/r

become so great near the axis that they influence the convergence rate of the

model.
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Figure 17: Axis axial velocity error for the side driven cylinder flow

The effect of the relaxation parameter τ is investigated in Figure 18. We

set R = 1, U0 = 1, NR = 32 and ν = 2/Re, with Re = 5, Re = 10 or

Re = 100. Since ν is fixed and τ is varying, the ratio ∆t/∆X2 is varying from

one simulation to another.

For high Reynolds numbers (Re = 50, Re = 100), the trend is clear: the

closer is the relaxation parameter to 0.5, the more precise is the model. Here,

the value ν = 1/Re being very small, the dominant error terms in Equations 14

and A.37 are multiples of (2τ − 1). The error is minimized when τ approaches

29
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Figure 18: Effect of the relaxation parameter τ on the model precision.

For Re = 5, the minimal error occurs near τ = 6.5. The dominant error

terms in 14 and A.37 are no more the multiples of (2τ − 1), because the terms

in 6τ2− 6τ +1 (root τ ≈ 0.789) and 12τ2− 12τ +1 (root τ ≈ 0.908) are getting

bigger. The optimal value of τ is then shifted upward. This observation is in

concordance with the analysis of the classical BGK model made by Holdych [8].

Conclusions

The present paper offers a deep and critical analysis of the RW-LB model,

based the expression of its generalized equation. The generalized equation as-

sesses the consistency of the model. All the error terms are multiples of ∆X2

or more: the model is second order accurate. However, we identified spurious

error terms ur/r which may considerably reduce the model precision when ur

is not null.

The fact that the spurious terms might reach extreme values near the axis

motivated an investigation about the axis boundary condition. This investiga-

tion resulted in the definition of a new boundary condition which mimics the

natural behaviour of the model when ur = 0, and compensates the mass loss
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when ur 6= 0. The new boundary condition clearly provides more accurate

simulation results.

The spurious error terms have no effect on the simulations results when

ur = 0. We recovered the second order accuracy that we expected from the

generalized equation. However, our last simulation results showed that strong

values of ur reduced the order of accuracy of the model. We still don’t know

how to quantify this reduction, this is a work to be continued.

Anyway, despite those limitations, the RW-LB model still has the great

advantage over any other model that the collision process is purely local. It

remains an alternative to any Navier Stokes discretization when an exceptional

precision is not necessarily needed.
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Appendix A. Taylor series analysis

Appendix A.1. Native Expression

The first step of the Taylor series analysis is to build the native expression

of the model. The native expression is when the distribution functions fk(
−→x , t)

are expressed as a function of macroscopic quantities ρ, p, −→u , and
−→
F at the

time t and coordinate −→x .

To distinguish the time step ∆t and space step ∆X , the particle velocities

−→ck are formulated as the product of an amplitude ∆X/∆t and a direction vector

−→wk. For the sake of clarity, we adopt the following formulation:

fk(n) = fk(
−→x + n−→ck∆t, t+ n∆t) = fk(

−→x + n∆X−→w k, t+ n∆t) (A.1)

We start with the LBM Equation 4:
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fk(1)− fk = − 1

τ
(fk − feq

k ) + ∆t

(

1− 1

2τ

)

Rk (A.2)

By simply shifting the time continuum by −∆t, we get:

fk =

(

1− 1

τ

)

fk(−1) +
1

τ
feq
k (−1) + ∆t

(

1− 1

2τ

)

Rk(−1) (A.3)

This expression is applied recursively over an infinite number of time steps.

By this process, all the unknown distribution functions fk(−n) are replaced by

equilibrium distribution functions feq
k (−n) and source terms Rk(−n):

fk =
1

τ

∞∑

n=1

(

1− 1

τ

)n−1

feq
k (−n)+

∆t

(

1− 1

2τ

) ∞∑

n=1

(

1− 1

τ

)n−1

Rk(−n) (A.4)

feq
k and Rk are directly related to the macroscopic quantities ρ, p, −→u , and

−→
F . Equation A.4 expresses fk(

−→x , t) as a function of the macroscopic quantities

at the previous time steps. We use Taylor series expansion to express them at

the present time:

feq
k (−n) = feq

k +

∞∑

m=1

1

m!

[

−n∆t∂t − n∆X−→wk.
−→∇
]m

feq
k

Rk(−n) = Rk +

∞∑

m=1

1

m!

[

−n∆t∂t − n∆X−→wk.
−→∇
]m

Rk

(A.5)

Those expressions are introduced in A.4:

fk =
1

τ

∞∑

n=1

(

1− 1

τ

)n−1

feq
k +∆t

(

1− 1

2τ

) ∞∑

n=1

∞∑

m=1

(

1− 1

τ

)n−1

Rk

+
1

τ

∞∑

n=1

∞∑

m=1

(

1− 1

τ

)n−1
(−n)m

m!

[

∆t∂t +∆X−→wk.
−→∇
]m

feq
k

+∆t

(

1− 1

2τ

) ∞∑

n=1

(

1− 1

τ

)n−1
(−n)m

m!

[

∆t∂t +∆X−→wk.
−→∇
]m

Rk

(A.6)

32



We introduce the function p[τ,m] which is defined as:

p[τ,m] =
1

τ2

∞∑

n=1

(

1− 1

τ

)n−1

(−n)m (A.7)

The function p[τ,m] has a formal expression for the first values of m:

p[τ, 0] = 1/τ

p[τ, 1] = −1 p[τ, 2] = 2τ − 1

p[τ, 3] = −6τ2 + 6τ − 1 p[τ, 4] = 24τ3 − 36τ2 + 14τ − 1

(A.8)

Equation A.6 is then reduced to the following expression:

fk =feq
k +∆t

(

τ − 1

2

)

Rk

+ τ
∞∑

m=1

p[τ,m]

m!

[

∆t∂t +∆X−→wk.
−→∇
]m

feq
k

+∆tτ
(2τ − 1)

2

∞∑

m=1

p[τ,m]

m!

[

∆t∂t +∆X−→wk.
−→∇
]m

Rk

(A.9)

Finally, we expand the global differential operators:

[

∆t∂t +∆X−→wk.
−→∇
]m

=

m∑

q=0

m!

q!(m− q)!
∆tm−q∆Xq[∂t]

m−q
(−→wk.

−→∇
)q

(A.10)

The previous equation becomes:

fk = feq
k +∆t

(2τ − 1)

2
Rk

+∆tτ

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!
∆tm−q−1∆Xq[∂t]

m−q
(−→wk.

−→∇
)q

feq
k

+∆tτ

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!

(
2τ − 1

2

)

∆tm−q∆Xq[∂t]
m−q

(−→wk.
−→∇
)q

Rk

(A.11)
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In Equation A.11, the distribution functions fk(
−→x , t) are entirely defined

from the macroscopic quantities at the time t and the coordinate −→x . We kept

one term τ∆t at the beginning of each sum to simplify subsequent calculations.

Appendix A.2. Explicit expressions of the equilibrium distribution functions and

force terms

To select the dominant terms in Equation A.11, we must expand the expres-

sion of feq
k and Rk as functions of ∆t and ∆X . For that purpose, we consider

c2s = ∆X2/3∆t2 and −→ck = (∆X/∆t)−→wk.

The first element of feq
k is directly expressed as a function of the pressure p

through the density / pressure relationship for incompressible flows:

ρ =
p

c2s
=

3∆t2

∆X2 p (A.12)

With this artefact, the pressure p appears naturally in the momentum equa-

tion. We expand feq
k and Rk:

feq
k = ωkr

[

p

c2s
+ ρ

−→ck .−→u
c2s

+ ρ
(−→ck .−→u )2

2c4s
− ρ

−→u 2

2c2s

]

= ωkr

[
3∆t2

∆X2 p+
3∆t

∆X
ρ−→wk.

−→u +
9∆t2

2∆X2 ρ(
−→wk.

−→u )2 − 3∆t2

2∆X2 ρ
−→u 2
]

=
∆t2

∆X2

[

3ωkrp+
9ωk

2
ρr(−→wk.

−→u )2 − 3ωk

2
ρr−→u 2

]

+
∆t

∆X
[3ωkρr

−→wk.
−→u ]

=
∆t2

∆X2 [Afk] +
∆t

∆X
[Bfk]

(A.13)
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Rk = ωkr

[−→ck .
−→
F

c2s
+

(−→ck .−→u )(−→ck .
−→
F )

c4s
−

−→u .
−→
F

c2s

]

= ωkr

[
3∆t

∆X
−→wk.

−→
F +

9∆t2

∆X2 (
−→wk.

−→u )(−→wk.
−→
F )− 3∆t2

∆X2
−→u .

−→
F

]

=
∆t2

∆X2

[

9ωkr(
−→wk.

−→u )(−→wk.
−→
F )− 3ωkr

−→u .
−→
F
]

+
∆t

∆X

[

3ωkr
−→wk.

−→
F
]

=
∆t2

∆X2 [ARk] +
∆t

∆X
[BRk]

(A.14)

In both expanded expressions, we get some terms that are multiples of

∆t2/∆X2, and on term which is a multiple of ∆t/∆X. The ∆t2/∆X2 elements

contain an even number of −→wk. The ∆t/∆X element contain and odd number

of −→wk. This distinction is important given that the odd-order momentums in

−→wk are null. For the even order moments:

∑

k

ωk = 1

∑

k

ωkwkαwkβ =







1/3 if 2r or 2z

0 if rz

∑

k

ωkwkαwkβwkγwkτ =







1/3 if 4r or 4z

0 if r3z or z3r

1/9 if 2z2r

∑

k

ωkwkαwkβwkγwkτwkξwkκ =







1/3 if 6r or 6z

0 if r5z or z5r or 3r3z

1/9 if 4r2z or 4z2r

(A.15)

We get from A.11:
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fk = feq
k +∆t

(2τ − 1)

2
Rk

+∆tτ

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!
∆tm−q+1∆Xq−2[∂t]

m−q
(−→wk.

−→∇
)q

Afk

+∆tτ

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!

(
2τ − 1

2

)

∆tm−q+2∆Xq−2[∂t]
m−q

(−→wk.
−→∇
)q

ARk

+∆tτ
∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!
∆tm−q∆Xq−1[∂t]

m−q
(−→wk.

−→∇
)q

Bfk

+∆tτ

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!

(
2τ − 1

2

)

∆tm−q+1∆Xq−1[∂t]
m−q

(−→wk.
−→∇
)q

BRk

(A.16)

Appendix A.3. Scaling hypothesis

(A.17)

The scaling strategy is justified in section 4.1. The space step ∆X is the

small parameter that is reduced when refining the mesh. The time step is

adjusted through diffusive scaling: ∆t ∝ ∆X2. The ratio (2τ − 1)/6ν is fixed.

Thus, we get from Equation 11:

∆t =
2τ − 1

6ν
∆X2 (A.18)

This expression is introduced in Equation A.16
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fk = feq
k +∆t

(2τ − 1)

2
Rk

+∆tτ

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!

(
2τ − 1

6ν

)m−q+1

∆X2m−q[∂t]
m−q

(−→wk.
−→∇
)q

Afk

+∆tτ

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!
3ν

(
2τ − 1

6ν

)m−q+3

∆X2m−q+2[∂t]
m−q

(−→wk.
−→∇
)q

ARk

+∆tτ

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!

(
2τ − 1

6ν

)m−q

∆X2m−q−1[∂t]
m−q

(−→wk.
−→∇
)q

Bfk

+∆tτ

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!
3ν

(
2τ − 1

6ν

)m−q+2

∆X2m−q+1[∂t]
m−q

(−→wk.
−→∇
)q

BRk

(A.19)

Now, there is only one small parameter (∆X) in the native equation. The

order of magnitude of the different terms will be determined from the power of

this parameter.

Appendix A.4. Zero order moment: continuity equation

The continuity equation is obtained by computing the zero order momentum

of Equation A.19. We know that
∑

k fk =
∑

k f
eq
k = ρr and

∑

k Rk = 0: all

the first line terms are eliminated. The coefficient τ∆t at the begining of the

remaining terms is removed:

0 =

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!

(
2τ − 1

6ν

)m−q+1

∆X2m−q[∂t]
m−q

∑

k

[(−→wk.
−→∇
)q

Afk

]

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!
3ν

(
2τ − 1

6ν

)m−q+3

∆X2m−q+2[∂t]
m−q

∑

k

[(−→wk.
−→∇
)q

ARk

]

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!

(
2τ − 1

6ν

)m−q

∆X2m−q−1[∂t]
m−q

∑

k

[(−→wk.
−→∇
)q

Bfk

]

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!
3ν

(
2τ − 1

6ν

)m−q+2

∆X2m−q+1[∂t]
m−q

∑

k

[(−→wk.
−→∇
)q

BRk

]

(A.20)
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∆X0 ∆X2

line 1 (Afk) - (1, 0), (2, 2)

line 2 (ARk) - -

line 3 (Bfk) (1, 1) (2, 1), (3, 3)

line 4 (BRk) - (1, 1)

Table A.1: Selected combination of (m, q) for the continuity equation

Here, despite the infinite number of terms in the sum, only a few of them

have an order of ∆X lower or equal to 2. Moreover, for the moments to be non

zero, the coefficient q must be even in the two first lines, and odd in the two

last lines.

The combinations (m, q) that lead to a ∆X order lower or equal to 2, are

given in Table A.1 for each line of the former equation. After computing the

related moments, we get:

0 =− ∂α(ρruα)

+
(2τ − 1)2

12ν
∆X2

[

− r

ν
∂tp+ 2∂tα(ρruα) + ∂αβ(rpδαβ + ρruαuβ)− ∂α(rFα)

]

+
−6τ2 + 6τ − 1

6
∆X2 [∂ββα(ρruα)] +O(∆X4)

(A.21)

Appendix A.5. First order moment: momentum equation

The momentum equation is obtained from the first order moments of Equa-

tion A.19. For the terms in the first line, we use:







∑

k

ckαfk = ρruα − ∆t

2
rFα

∑

k

ckαf
eq
k = ρruα

∑

k

ckαRk = rFα

(A.22)
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∆X0 ∆X2

line 1 (Afk) (1, 1) (2, 1), (3, 3)

line 2 (ARk) - (1, 1)

line 3 (Bfk) (1, 0), (2, 2) (2, 0), (3, 2),

(4, 4)

line 4 (BRk) - (1, 0), (2, 2)

Table A.2: Selected combination of (m, q) for the momentum equation

For the other terms, we use the following development:

∑

k

ckα [−] =
∆X

∆t

∑

k

wkα [−] =

(
2τ − 1

6ν

)
−1

∆X−1
∑

k

wkα [−] (A.23)

The only surviving term in the first line of the first order momentum equation

is ∆tτ(rFα). The coefficient τ∆t at the beginning of each line is eliminated.

We get:

0 = rFα+

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!

(
2τ − 1

6ν

)m−q

∆X2m−q−1[∂t]
m−q

∑

k

[(−→wk.
−→∇
)q

wkαAfk

]

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!
3ν

(
2τ − 1

6ν

)m−q+2

∆X2m−q+1[∂t]
m−q

∑

k

[(−→wk.
−→∇
)q

wkαARk

]

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!

(
2τ − 1

6ν

)m−q−1

∆X2m−q−2[∂t]
m−q

∑

k

[(−→wk.
−→∇
)q

wkαBfk

]

∞∑

m=1

m∑

q=0

p[τ,m]

q!(m− q)!
3ν

(
2τ − 1

6ν

)m−q+1

∆X2m−q[∂t]
m−q

∑

k

[(−→wk.
−→∇
)q

wkαBRk

]

(A.24)

The coefficient q must be odd to get non zero moments in the two first lines.

It must be even for lines 3 and 4. The combinations (m, p) for an order of ∆X

equal or lower to 2 are given in Table A.2. The momentum equation at this

stage turns into:
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0 =− ∂t(ρruα)− ∂β(rpδαβ + ρruαuβ) + ν [∂ββ(ρruα) + 2∂αβ(ρruβ)] + rFα

+
(2τ − 1)2

12ν
∆X2 [∂tt(ρruα)− ∂t(rFα) + 2∂tβ(rpδαβ + ρruαuβ)− ∂β(ruαFβ + ruβFα)]

+
(2τ − 1)2

12ν
∆X2ν [∂ββ(rFα) + 2∂αβ(rFβ)]

+
−6τ2 + 6τ − 1

6
∆X2

[

∂tββ(ρruα) + 2∂tαβ(ρruβ) + ∂αββ(rp−
ρruγγ

2
) +

∑

⊕α

]

+
12τ2 − 12τ + 1

4
ν∆X2

[∑

⊗α

]

+O(∆X4)

(A.25)

Where:

∑

⊕α =
9

2

∑

k

ωk

(−→wk.
−→∇
)3

wkαρr(
−→wk.

−→u )

∑

⊗α = 3
∑

k

ωk

(−→wk.
−→∇
)4

wkαρr(
−→wk.

−→u )2
(A.26)

Appendix A.6. Extraction of the additional momentum terms

Here come the tricky part of the development. In Equation A.25, only the

first line seems to be zero order, the following lines being multiples of ∆X2.

However, due to the radius coordinate appearing within space derivatives, and

due to the definition of the force term, one additional zero order term arises.

The definition of the force term is:

Fα = F0α + F ′

α = F0α +

(
p

r
− ρν

2ur

r2

)

δαr (A.27)

It is introduced in the element −∂β(ruαFβ + ruβFα) from Equation A.25

(line 2):

− ∂β(ruαFβ + ruβFα) = −∂β [δβruαp+ δαruβp]

+ 2ν∂β

[

(uαδβr + uβδαr)
ρur

r

]

− ∂β(ruαF0β + ruβF0α) (A.28)
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The cross terms uαp and uβp are of order −2. Indeed:

uαp =
12ν2

(2τ − 1)2
1

∆X2 ρuα (A.29)

They are extracted from the second order elements of Equation A.25, pro-

viding additional zero order elements in the momentum equation:

(2τ − 1)2

12ν
∆X2

[

−∂β

{
12ν2

(2τ − 1)2
1

∆X2 (δαruβρ+ δβruαρ)

}]

= ν [−∂r(ρuα)− δαr(∂β(ρuβ))] = ν

[

−∂r(ρuα) + δαr

(−∂β(ρruβ)

r
+

ρur

r

)]

(A.30)

The momentum equation then turns into:

0 =− ∂t(ρruα)− ∂β(rpδαβ + ρruαuβ)+

ν

[

∂ββ(ρruα) + 2∂αβ(ρruβ)− ∂r(ρuα) + δαr

(−∂β(ρruβ)

r
+

ρur

r

)]

+ rFα

+
(2τ − 1)2

12ν
∆X2 [∂tt(ρruα)− ∂t(rFα) + 2∂tβ(rpδαβ + ρruαuβ)− ∂β(ruαF0β + ruβF0α)]

+
(2τ − 1)2

12ν
∆X2ν

[

∂ββ(rFα) + 2∂αβ(rFβ) + 2∂r

(ρuαur

r

)

+ 2∂β

(ρuβur

r

)

δαr

]

+
−6τ2 + 6τ − 1

6
∆X2

[

∂tββ(ρruα) + 2∂tαβ(ρruβ) + ∂αββ(rp−
ρruγγ

2
) +

∑

⊕α

]

+
12τ2 − 12τ + 1

4
ν∆X2

[∑

⊗α

]

+O(∆X4)

(A.31)

Appendix A.7. Simplifications

First, we use the zero order terms of Equation A.31 to simplify the continuity

equation:
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0 =(eq.A.25) +
(2τ − 1)2

12ν
∆X2∂α(eq.A.31)

0 =− ∂α(ρruα)

+
(2τ − 1)2

12ν
∆X2

[

− r

ν
∂t(p) + ∂tα(ρruα)

]

+
(2τ − 1)2

12ν
∆X2ν

[

∂ββα(ρruα) + 2∂ααβ(ρruβ)− ∂rα(ρuα) + δαr∂α

(−∂β(ρruβ)

r
+

ρur

r

)]

+
−6τ2 + 6τ − 1

6
∆X2 [∂ββα(ρruα)] +O(∆X4)

(A.32)

It is clear that the divergence terms ∂α(ρruα) have an order of magnitude

∆X2. They are removed from the second order elements:

∂α(ρruα) =
(2τ − 1)2

12ν
∆X2

[

− r

ν
∂t(p) + ν∂r

(ρur

r

)]

(A.33)

The density variations are second order terms:

∂ρ =
∂p

c2s
=

(2τ − 1)2

12ν
∆X2 ∂p

ν
(A.34)

Thus, when extracting the density from the zero order derivative ∂α(ρruα),

we must take into account the corresponding second order element in the error

terms. However, when we extract the density from derivatives that are already

within the second order terms, the equation is not modified (the additional

terms would be fourth order). We get the modified continuity equation:

∂α(ruα) =
(2τ − 1)2

12ν
∆X2

[

− r

ρν
(∂tp+ uα∂αp) + ν∂r

(ur

r

)]

(A.35)

For the momentum equation, we begin the simplifications by substituting

the divergence terms using Equation A.33:
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0 =− ∂t(ρruα)− ∂β(rpδαβ + ρruαuβ) + ν
[

∂ββ(ρruα)− ∂r(ρuα) + δαr
ρur

r

]

+ rFα

+
(2τ − 1)2

12ν
∆X2 [∂tt(ρruα)− ∂t(rFα) + 2∂tβ(rpδαβ + ρruαuβ)− ∂β(ruαF0β + ruβF0α)]

+
(2τ − 1)2

12ν
∆X2 [δαr∂t(p)− 2∂tα(rp)]

+
(2τ − 1)2

12ν
∆X2ν

[

∂ββ(rFα) + 2∂αβ(rFβ) + 2∂r

(ρuαur

r

)

+ 2∂β

(ρuβur

r

)

δαr

]

+
(2τ − 1)2

12ν
∆X2ν2

[

2∂αr

(ρur

r

)

− δαr
r

∂r

(ρur

r

)]

+
−6τ2 + 6τ − 1

6
∆X2

[

∂tββ(ρruα) + 2∂tαβ(ρruβ) + ∂αββ(rp−
ρruγγ

2
) +

∑

⊕α

]

+
12τ2 − 12τ + 1

4
ν∆X2

[∑

⊗α

]

+O(∆X4)

(A.36)

The density is taken out of the derivatives:

0 =− ∂t(ruα)− ∂β(ruαuβ)−
∂r(rp)

ρ
+ ν

[

∂ββ(ruα)− ∂r(uα) + δαr
ur

r

]

+
rFα

ρ

+
(2τ − 1)2

12ν

∆X2

ρν
[−ruα∂t(p)− ruαuβ∂β(p)]

+
(2τ − 1)2

12ν
∆X2 [∂tt(ruα) + 2∂tβ(ruαuβ)]

+
(2τ − 1)2

12ν

∆X2

ρ
[δαr∂t(p) + 2∂β(ruα)∂β(p) + ruα∂ββ(p)− uα∂r(p)]

+
(2τ − 1)2

12ν

∆X2

ρ
[−∂t(rFα)− ∂β(ruαF0β + ruβF0α)]

+
(2τ − 1)2

12ν
∆X2ν

[
∂ββ(rFα) + 2∂αβ(rFβ)

ρ
+ 2∂r

(uαur

r

)

+ 2∂β

(uβur

r

)

δαr

]

+
(2τ − 1)2

12ν
∆X2ν2

[

2∂αr

(ur

r

)

− δαr
r

∂r

(ur

r

)]

+
−6τ2 + 6τ − 1

6
∆X2

[

∂tββ(ruα) + 2∂tαβ(ruβ) + ∂αββ(
rp

ρ
− ruγγ

2
) +

∑

⊕α/ρ

]

+
12τ2 − 12τ + 1

4
ν∆X2

[∑

⊗α/ρ
]

+O(∆X4)

(A.37)

We recover on the zero order terms the Navier Stokes momentum after sub-
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stituting the force term Fα by its expression in A.27.

Appendix A.8. Comments

In section Appendix A.6, the additional zero order element was extracted

from the force term F ′

α. We shall point out that, even if the definition of F ′

α

did not contain the pressure p, the same additional zero order element would

appear from the double time derivative ∂tt(ρruα) in Equation A.25.

The procedure for extracting this term is not so simple. First, we express

the zero order part of Equation A.25, by taking into account the additional zero

order term through the unknown variable Kα:

0 = −∂t(ρruα)− ∂β(rpδαβ + ρruαuβ)+

ν [∂ββ(ρruα) + 2∂αβ(ρruβ)] + rFα +Kα +O(∆X2) (A.38)

Then, Equation A.38 is used to substitute the inner time derivative of

∂t(∂t(ρruα)). One of the resulting terms is ∂tβ(ρruαuβ). We develop this term

in the following manner:

∂tβ(ρruαuβ) = ∂β [uβ∂t(ρruα) + uα∂t(ρruβ)− uαuβ∂t(ρr)] (A.39)

And finally, we substitute the terms ∂t(ρruα) and ∂t(ρruβ) using again Equa-

tion A.38. The cross terms puα and puβ appear naturally. In our particular

case, those cross terms are cancelled by the elements uαFα
′ and uβFβ

′ which

also contain the pressure.
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