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Abstract 

 

Nanoporous superinsulating materials have an extraordinary power of thermal insulation. The 

thermal conductivities of these heterogeneous materials can achieve a few  when 

they are placed under primary vacuum at ambient temperature. In this contribution, we focus 

on the numerical simulation of the conduction heat flux traveling through a nanoporous 

material in relation with its nanostructure. We have developed two models in order to study 

either steady-state conduction heat transfer or transient conduction heat transfer through a 

fractal representation of a nanoporous material, in order to determine either the effective 

thermal conductivity or the effective thermal diffusivity of the material. Then, we have 

applied these models to a study concerning the influence of the nanoparticle volume fraction 

on the effective thermal conductivity and the effective thermal diffusivity of a nanoporous 

material. 

-1 -1mW.m .K
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1. Introduction 

 

Nanoporous superinsulating materials (NSMs) are getting more and more attractive for 

various applications (particularly in the aerospace and construction industries) due to their 

extraordinary power of thermal insulation [1-5]. Indeed, their thermal conductivity falls down 

to a few  when they are placed under primary vacuum at ambient temperature. 

This value can be compared to the one of air (generally regarded as an excellent thermal 

insulator), equal to  at ambient temperature and pressure. 

-1 -1mW.m .K

-1 -125 mW.m .K

Such a level of thermal insulation of NSMs finds its explanation in the microstructure of these 

materials. Very porous (their porosity is of the order of 90%) and made of extremely 

fragmented solid matter (the main solid constituents are generally brought down to 

nanometric scales), they force the conduction heat flux to travel through very tortuous routes 

made of a multitude of elementary thermal resistances located at the coalescences of 

neighboring nanoparticles. Furthermore, these NSMs include very small quantities of 

micrometric-scale fibers and particles. Whereas the fibers provide some mechanical 

reinforcement to the NSMs, the role of the particles, made of opaque materials in the [5µm – 

80µm] infrared spectrum, is clearly to cut down the infrared thermal radiation transfer in the 

course of its progression within the nanoporous structures. 
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In this contribution, we want (i) to develop very simple models to quantify the level of 

conduction heat transfer traveling through a NSM in relation with its nanostructure, and then 

(ii) to use these models to study the impact of the nanoparticle volume fraction on the 

effective thermal conductivity and diffusivity of a NSM. 

To this purpose, we will first describe in detail the micro and nanostructure of a typical NSM. 

Second, we will present the computer generation code that we use to construct our virtual 

NSM structures. Third, we will describe two models which allow us to perform either a 

steady-state thermal conduction numerical experiment or a time-resolved thermal diffusion 

numerical experiment. Finally, we will exploit these models to study the influence of the 

nanoparticle volume fraction on the effective thermal properties of a NSM. 

 

2. Description of the structure of a typical NSM 

 

As introduced previously, a NSM is typically made of (i) nanometric scale particles joined to 

one another to form a nanoporous matrix, the dominant constituent of the material in terms of 

volume fraction (near 100%), (ii) a small volume fraction (of the order of 1%) of micrometric 

scale particles expected to provide infrared opacity to the NSM, and (iii) a small volume 

fraction (of the order of 1%) of micrometric scale fibres for a mechanical reinforcement of the 

nanoporous structure. The nanoparticles, constituting the nanoporous matrix, form the 

dominant population in terms of solid volume fraction, therefore they must be made of a 

material that is a good thermal insulator. In a large majority of cases, this material is chosen to 

be amorphous silicon oxide a-SiO2 . 

Figure 1 is a TEM image at a micrometric scale (the surface covered by this image is 

approximately 30 µm 40 µm× ) of a particular NSM made of a nanoporous a-SiO2 matrix and 

of crystalline silicon carbide SiC microparticles: the nanoporous matrix appears as the grey 
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phase, whereas the SiC microparticles are the dark inclusions. We can suppose that the 

dispersed microparticles, in low volume fraction, contribute weakly to the conduction heat 

transfer. 

 

 

Figure 1: TEM image at a micrometric scale of a particular NSM made of a nanoporous a-

SiO2 matrix and of crystalline SiC microparticles. The nanoporous matrix appears as the grey 

phase, whereas the SiC microparticles are the dark inclusions. The white zones, 

corresponding to holes, as well as the parallel scratches apparent on this image are due to 

sample preparation. 

 

The matrix is extremely porous (its porosity is more than 90%), and a TEM observation 

focused on this matrix reveals its nanotexture, as shown in figure 2. This image being at a 

scale of the order of 100 nm (the surface covered by the image is approximately 

), stacks of coalesced a-SiO1.8 µm 2.2 µm× 2 nanoparticles appear (dark structures) as well as 

the 3D nanostructure that they constitute. A further TEM analysis allows an approximate 

evaluation of (i) the average diameter of these a-SiO2 particles (10 nm) and (ii) the average 

size of the pores (between 50 and 100 nm). 
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Figure 2: TEM image of the nanoporous a-SiO2 matrix appearing in figure 1. Coalesced 

nanoparticle chains and stacks appear in dark and grey. The white zones correspond to the 

porosity. 

 

A convection heat transfer cannot occur in such small pores [6]. Furthermore, the thermal 

conductivity of the confined fluid surrounding the nanoparticles is much lower than its 

thermal conductivity in an unconfined environment. Indeed, Griesinger et al [7] give the 

following correlation for the thermal conductivity of a confined gas: 
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where T is the temperature, P is the pressure, d is the pore size,  is the mean free path of the 

molecules, β is a dimensionless parameter depending on the nature of the gas and  is 

the thermal conductivity of the gas in a unconfined state. For example, if we take T , 

 and d , then we obtain  which is already 

smaller than the value of the thermal conductivity of air in a unconfined state: 

. Now, if the nanoporous matrix is placed under primary vacuum 

(for example at 1 mbar) at ambient temperature, then the confined gas thermal conductivity 

 falls down to : the gas becomes a nearly perfect insulating 

material. This participates of course to the insulating power of a NSM. 

( )o
g Tλ

300K=

P 1 bar= 100 nm= ( ) -1 -1
g T , P , d 6 mW.m .Kλ ≈

( )o
g T 25 mW.m .Kλ ≈ -1 -1

)(g T , P , dλ -1 -16 µW.m .K

As described previously, a typical NSM can be regarded at 2 different characteristic scales: a 

micrometric one, where the material can be considered as a dispersed phase of micrometric 

scale particles and fibers embedded within a homogeneous matrix, and a nanometric one, 

where stacks and chains of coalesced nanoparticles appear. For each characteristic scale of the 

material, a particular strategy of conduction heat transfer modeling can be envisaged. At 

micrometric scale, classical homogenization laws (Maxwell-Garnett, Bruggeman …) can be 

used to calculate the NSM effective thermal conductivity, provided the microparticle volume 

fraction is small enough (which is the case here) and the thermal properties of the matrix and 

the microparticles are known. At nanometric scale, we have to develop a numerical model in 

order to analyze the conduction heat transfer within the 3D matrix structure. In the following, 

we will focus on these models which allow us to determine the effective thermal conductivity 

and diffusivity of the matrix. 
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3. Computer generation of a virtual nanoporous matrix 

 

To be representative of the conduction heat transfer within a NSM, our simulations must take 

into account its real structure. We resort to computer generation to construct matrix structures 

by the location in space of solid spheres meant to represent the nanoparticles. We have started 

in this field with very simple periodic structures (square-shaped, diamond-shaped, brick-

shaped …). Although these structures are far from realistic, many interesting results can be 

obtained from their study, such as the influence of the structure on the heat flux travel. We 

will illustrate this point in the 4th part of this paper. Here, in order to generate more realistic 

nanostructures, we propose to apply the fractal method [8]. 

In reference [9], Legrand explains that nanoporous structures can be regarded as elementary 

schemes reproduced in the 3 space directions according to a mass evolution law having the 

following form: 

 

( ) fDM R R∝  (2) 

 

where R is the radius of the sphere limiting the nanoporous structure,  is the mass 

within this sphere and  indicates the fractal dimension associated to the nanoporous 

structure. 

( )M R

fD

The procedure adopted to generate the nanostructure is based on a cluster-cluster aggregation 

process the rules of which are the following [10]: 

- disperse a set of nanoparticles randomly in space, 

- move each nanoparticle or aggregate in a random direction, 

- if the nanoparticle or aggregate hits a neighbor, both are stuck to each other and will 

subsequently be moved together, 
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- application of boundary conditions. 

Although these rules are simplistic, they are sufficient to assure the physics of the model if 

relevant parameters (space dimension of the structure, rigid stick and simultaneous diffusion 

of aggregates) are respected. The fractal dimension expected for such a generating process is 

of the order of 1.4-1.8 in 2-D or 3-D spaces [11]. 

Figures 3 and 4 show nanostructures obtained via the scheme presented above. They confirm 

the expected 2-D and 3-D fractal dimensions as determined by Jullien [11]. 
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Figure 3: Representation of a nanoporous matrix as a 2-D fractal structure. The fractal 

dimension is 1.22 . 
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Figure 4: Representation of a nanoporous matrix as a 3-D fractal structure. The fractal 

dimension is 1.74 for a cubic box size of 150 nm. Cross-sections of the structure with 3 planes 

normal to the y axis are also presented. 

 

4. Conduction heat transfer model 

 

As discussed before, we want to study the conduction heat transfer traveling within a 

heterogeneous material made of nanoparticles surrounded by a gas, both constituents being 

assumed thermally isotropic. Two types of models will be developed: (i) a steady-state 

thermal conduction model to determine the effective thermal conductivity, (ii) a time-resolved 

thermal diffusion model to determine the effective thermal diffusivity and possibly other 

thermal properties. 
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4.1. Steady-state model 

 

The knowledge (i) of the thermal conductivities of the 2 constituents of the matrix and (ii) of 

its spatial structure must allow us to determine the thermal conductivity tensor of its 

equivalent homogeneous material. This thermal homogenization step will be achieved with 

the help of a steady-state thermal conduction numerical experiment. A cube-shaped 

nanoporous structure is submitted to a temperature difference between 2 of its 6 boundary 

surfaces (see figure 5), its other 4 boundary surfaces being considered adiabatic. The 

conduction heat flux through the cube is evaluated, and from this quantity one can deduce the 

value of the effective thermal conductivity of the nanoporous structure in the direction of the 

imposed temperature difference. 

 

T = Th

T = Tc

y

x Y

X
ϕy = 0 ϕy = 0

Heteregeneous medium

( 0 ≤ x ≤ X, 0 ≤ y ≤ Y,

0 ≤ z ≤ Z ) 

z

 

Figure 5: Schematic representation of the steady-state problem to be solved with its boundary 

conditions. 
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We have to solve the following 3-D steady-state thermal conduction problem within the 

heterogeneous sample: 

 

( )
h

c

T 0 : volume equation within the heterogeneous sample

T T  : imposed temperature at the "hot" boundary surface

T T  : imposed temperature at the "cold" boundary surface

Tn 0 : the other 
n

∇ ⋅ − λ∇ =

=

=

∂
ϕ ⋅ = −λ =

∂
4 boundary surfaces are considered adiabatic

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 (3) 

 

where  is the heat flux (ϕ )T : Fourier's lawϕ = − λ ∇  and n  corresponds to the direction 

normal to the considered sample boundary surface. The thermal conductivity λ being not 

constant from a point to another within the matrix, we have to use a numerical technique to 

solve this problem. We have chosen a classical finite difference method to calculate the 

temperature field within the matrix. The considered material volume is discretized into 

elementary cubic elements. The mesh is made fine enough so that each element can be 

considered to be homogeneous and isotropic. Then, each element is attributed local thermal 

properties corresponding either to a nanoparticle or to the gas. The system of equations 

resulting from (3) is linear with a symmetric, positive definite matrix. A lot of numerical 

techniques exist that can achieve the matrix inversion. We have chosen a conjugate gradient 

one. 

Once the temperature field is known, one can calculate the thermal power traveling through a 

plane section S parallel to the 2 imposed temperature boundary surfaces. This thermal power 

can be expressed by: 
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S

n dSΦ = ϕ ⋅∫∫  (4) 

 

For example, in the case illustrated by figure 1, the expression (4) of the thermal power 

becomes: 

 

x

S S

x dS dSΦ = ϕ ⋅ = ϕ∫∫ ∫∫  (5) 

 

where  is the unit vector normal to the considered section S. x

Now, if we replace the heterogeneous material by its equivalent homogeneous material in the 

 direction, we can rewrite the expression of the thermal power Φ in the following way: x

 

( h c
S

T T
X
λ

Φ = − )  (6) 

 

where λ  is the effective thermal conductivity of the heterogeneous material in the x  

direction and X is the distance between the 2 imposed temperature boundary surfaces. 

Finally, eliminating Φ between (5) and (6), one reaches the following expression for the 

effective thermal conductivity λ  in the x  direction: 

 

( ) ( )x
h c h c

S S

X XdS dS
S T T S T T x

∂⎛ ⎞λ = ϕ = − λ⎜ ⎟− − ⎝ ⎠∫∫ ∫∫ T
∂

 (7) 
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The numerical experiment described above, including the resolution of the temperature field, 

the calculation of the thermal power Φ (expression (5)) and finally the evaluation of the 

effective thermal conductivity λ  (expression (7)), will have to be repeated in each space 

direction for the determination of the effective thermal conductivity tensor of the 

heterogeneous material. 

To illustrate this approach, let us present results collected with periodic geometries. We have 

generated 3 very simple NSM matrix structures: a 2-D brick-shaped one, a 2-D diamond-

shaped one, and a 3-D brick-shaped one. For these 3 material geometries, the porosity 

remains equal to 95%, the matrix is considered to be under vacuum (i. e. the thermal 

conductivity of the surrounding gas is taken to be 0), and the thermal conductivity of a 

nanoparticle  is set equal to 1 W.mnpλ -1.K-1, corresponding to the bulk value for silica. We 

have solved the steady-state problem for each case and have calculated the resulting effective 

thermal conductivity of the matrix . Figure 6 shows the results: very interesting are (i) the 

orders of magnitude of the calculated effective thermal conductivities (they are comparable to 

the ones measured experimentally), (ii) the impact of the geometry on the value of the 

effective thermal conductivity (the 2-D diamond-shaped structure yields a  value which is 

significantly lower than the one obtained with the 2-D brick-shaped structure), and (iii) the 

impact of the space dimension on the value of 

mλ

mλ

mλ . 
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Figure 6: Comparison of the effective thermal conductivities calculated for 3 different 

nanoporous structures. 

 

4.2. Time-resolved model 

 

To study the thermal diffusion through a nanoporous matrix, we have developed a model 

inspired from a very classical thermal characterization technique, usually referred to as the 

“flash technique”, for the experimental evaluation of the thermal diffusivity [12]. This time 

(see figure 7), the cube-shaped nanoporous structure is submitted to an instantaneous heat 

pulse on one boundary surface (  term), this boundary surface and the one located at its 

opposite are also submitted to permanent linearized heat losses (coefficient h, assumed 

Q (t)δ

2-D 
brick-
shaped 

2-D 
diamond-

shaped 

3-D 
brick-
shaped 

λnp = 1 W/m/K λnp = 1 W/m/K λnp = 1 W/m/K 
   
↓ ↓ ↓ 
   

λm = 8 mW/m/K λm = 13 mW/m/K λm = 20 mW/m/K 
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identical on the 2 surfaces), and the temperature elevation versus time curve is calculated on 

the boundary surface located at the opposite of the irradiated one. From this curve, it is 

possible to identify the effective thermal diffusivity of the heterogeneous material in the 

direction normal to the 2 boundary surfaces. 

 

h

hh Qδ(t)

y

x

X

z

 

Figure 7: Schematic representation of the transient “flash” problem to be solved for the 

evaluation of the effective thermal diffusivity of a NSM. 

 

What is the procedure? We have to solve the following 3-D transient thermal conduction 

problem through the heterogeneous material: 
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( )
( )

TC T  : volume equation within the heterogeneous sample
t

T t 0 0 : initial condition

Tn Q (t) h T : boundary condition at the irradiated boundary surface
n

Tn h T : boundary cond
n

∂
= −∇ ⋅ − λ∇

∂

= =

∂
ϕ ⋅ = −λ = − δ +

∂

∂
ϕ ⋅ = −λ =

∂
ition at the opposite boundary surface

Tn 0 : the other 4 boundary surfaces are considered adiabatic
n

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪ ∂

ϕ ⋅ = −λ =⎪
∂⎩

 (8) 

 

where C is the volume specific heat (in J.m-3.K-1), Q is the energy per unit surface absorbed 

by the irradiated boundary surface (in J.m-2), δ(t) is the Dirac delta function, and the notations 

n and  refer to the normal direction oriented outwards of the calculation domain. n

A finite difference discretization scheme is applied to the system of equations (8), and the 

space and time resolved temperature field is calculated with the help of an implicit algorithm 

in time. At each time iteration, a linear system of equations is solved with the conjugate 

gradient algorithm. At the end of this procedure, an average temperature rise of the opposite 

boundary surface versus time curve is collected: this curve is called a thermogram. 

Now, if we replace the heterogeneous sample by a homogeneous one of thermal conductivity 

λ, thermal diffusivity a and volume specific heat C / a= λ , then the analytical expression of 

the thermogram of the rear side of the sample is known: 

 

( ) ( )
( )

2 2 2
n n n n

2 2
n 1 n

sin Bi tT x X, t K exp
τBi Bi 2Bi

+∞

=

α α α + ⎡ ⎤α
= = −⎢ ⎥α + + ⎣ ⎦

∑  (9) 

 

where  has units of temperature,  is the thermal diffusion characteristic 

time, and  is the dimensionless Biot number which indicates the level of the heat 

K Q / C X= 2X / aτ =

Bi h X /= λ
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exchange between the sample and its environment. Finally, the dimensionless coefficients 

 are the positive roots of the transcendental equation: n , n 1α ≥

 

2

2Bitan
Bi
α

α =
α − 2  (10) 

 

It appears that expression (9) involves the time t plus the 3 parameters τ, Bi and K. In order to 

analyze experimental thermograms collected from homogeneous samples on our thermal 

diffusivity measurement “flash” setup, we have developed a least squares minimization 

routine that allows us to identify τ, Bi and K. The values of Bi and K can not be further 

exploited, because (i) the parameters Q and h of the experiment are not perfectly known, and 

(ii) the temperature rise curve on the rear side of the sample is not measured quantitatively. 

On the other hand, the knowledge of τ results in an immediate evaluation of the thermal 

diffusivity a of the sample via the relation: 

 

2Xa =
τ

 (11) 

 

When dealing with “numerical experiments”, the situation is quite different because all 

quantities are known: the parameters Q and h are inputs of the calculation, and the 

thermogram on the opposite boundary surface is quantitatively evaluated. Then, the 

identification of τ, Bi and K from the “numerical” thermogram gives us the possibility to 

determine respectively the effective thermal diffusivity a , the effective thermal conductivity 

λ  and the effective volume specific heat C  of the heterogeneous material via the 

following relations: 
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2X h Xa , and C
Bi K X

= λ = =
τ

Q  (12) 

 

To illustrate this approach, we have performed a “flash” numerical experiment in the z 

direction on the 3-D fractal NSM representation shown on figure 4. The sample thickness X 

was equal to 230 nm, the energy surface density Q was set equal to 1 J.m-2, and the coefficient 

h was given the value of 104 W.m-2.K-1 (i. e. a very high value, in order to compensate for the 

very low value of the thickness X and hence to produce a Bi value of the order of unity). The 

matrix was considered to be under vacuum, and the thermal properties retained for a 

nanoparticle were the following: thermal conductivity 1 W.m-1.K-1, volume specific heat 2.94 

105 J.m-3.K-1 (corresponding to the bulk value for silica). We have calculated the thermogram 

on the opposite boundary surface and identified the effective thermal diffusivity, thermal 

conductivity and volume specific heat of the 3-D fractal NSM representation. Figure 8 shows 

the resulting thermogram and its related fit: a good agreement is observed between the two 

curves, which is a first indication that the heterogeneous sample behaves as a homogeneous 

material in the course of this transient numerical experiment. The minimization procedure 

allows us to identify τ, Bi and K and to derive the values of a , λ  and C . We have 

found: τ = 1.12 10-6 s, Bi = 0.93, K = 83.1, a  = 4.72 10-8 m2.s-1, λ  = 2.47 mW.m-1.K-1 and 

C  = 5.23 104 J.m-3.K-1. At this point, it is interesting to note that the 3 identified 

thermophysical properties a , λ  and C  perfectly verify the relation a Cλ = × , 

which is a further indication that the heterogeneous sample responds as a homogeneous 

material to the transient numerical experiment applied to it. 
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Figure 8: A numerical thermogram obtained with our transient model and its related fit. 

 

To confirm the identified thermal conductivity value, we have performed a steady-state 

thermal conduction numerical experiment on the same material, with the same thermal 

conductivities and in the same heat flux traveling direction. The effective thermal 

conductivity value was found equal to 2.49 mW.m-1.K-1, which is very close to the one 

determined with the “flash” numerical experiment. 

 

4.3. Application 

 

The models presented above can reveal helpful for the analysis of a priori surprising 

experimental results. Thermal measurements made in our laboratory on NSMs of different 

densities indicated that the increase in the effective thermal diffusivity was small when the 

NSM density was multiplied by a factor of 2, and consequently that the effective thermal 
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conductivity behaved quasi-proportionally to the density. In order to validate these 

experimental observations, we have used our models to study the impact of the nanoparticle 

volume fraction on the effective thermal properties of the matrix. For this parametric study, 

we have chosen to simulate the heat transfer within a simple 3-D periodic brick-shaped 

structure (see figure 6), the nanoparticle volume fraction being easier to vary with this 

geometry than with a fractal structure. Figure 9 illustrates the effective thermal diffusivity 

evolution with the volume fraction as obtained via the time-resolved model, and figure 10 

illustrates the effective thermal conductivity evolution with the volume fraction as obtained 

via the 2 models. These 2 graphs confirm our experimental characterizations: (i) the effective 

thermal diffusivity is multiplied by a factor of only 1.4 when the nanoparticle volume fraction 

is multiplied by a factor of 10, and (ii) the effective thermal conductivity evolves quasi-

linearly with the nanoparticle volume fraction. 

 

0.01 0.1 1
1

10

100

 e
ffe

ct
iv

e 
th

er
m

al
 d

iff
us

iv
ity

 (1
0-7

 m
2 .s

-1
)

nanoparticle volume fraction (-)

 

( )0.15

v - npa f∝

Figure 9: Effective thermal diffusivity variation versus the nanoparticle volume fraction. 
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Figure 10: Effective thermal conductivity variation versus the nanoparticle volume fraction. 

 

5. Conclusions 

 

In this work, we have presented numerical models that allow us to quantify the level of 

conduction heat transfer traveling through NSMs. The first step of our simulations consists in 

the generation of a fractal representation of the matrix structure. Then, 2 types of simulations 

can be performed: either a steady-state thermal conduction numerical experiment, which 

allows us to calculate the effective thermal conductivity of the matrix, or a time-resolved 

thermal diffusion numerical experiment, which allows us to calculate the effective thermal 

diffusivity of the matrix as well as its effective thermal conductivity. These simple models 

have been applied to a study concerning the impact of the nanoparticle volume fraction on the 

effective thermal properties of a nanoporous matrix. The simulations have permitted to 
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understand the experimental results derived from “flash” measurements performed on NSMs 

of different densities. 

For the moment, these models produce quite good approximations of the effective thermal 

properties of NSMs. Nevertheless, they need to be improved to integrate the specificities of 

heat transfer at the scale of a nanoparticle. Indeed, Domingues et al [13] have demonstrated 

that the heat transfer between 2 nanoparticles at a distance smaller than a nanoparticle 

diameter is 2 to 3 orders of magnitude more efficient than when they are in contact, which 

means that we need to ask ourselves about the separation between conduction and radiation at 

these length scales. 
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