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Estimation in Ill-posed Linear Models with

Nuisance Design

Golubev, Yu.∗ and Zimolo, Th.†

Abstract

The paper deals with recovering an unknown vector θ ∈ Rp in
two simple linear models: in the first one we observe y = b · θ + εξ
and z = b + σξ′, whereas in the second one we have at our disposal
y′ = b2 · θ + εb · ξ and z = b + σξ′. Here b ∈ Rp is a nuisance vector
with positive components and ξ, ξ′ ∈ Rp are standard white Gaussian
noises in Rp. It is assumed that p is large and components bk of b
are small for large k. In order to get good statistical estimates of θ in
this situation, we propose to combine minimax estimates of 1/bk and
1/b2k with regularization techniques based on the roughness penalty
approach. We provide new non-asymptotic upper bounds for the mean
square risks of the estimates related to this method.

1 Introduction

This paper deals with estimating an unknown vector θ ∈ Rp in two simple
linear models. In the first one θ is estimated based on the data

yk = bkθk + εξk, k = 1, . . . , p,

zk = bk + σξ′k, k = 1, . . . , p,
(1)

whereas in the second one θ is recovered from the observations

y′k = b2kθk + εbkξk, k = 1, . . . , p,

zk = bk + σξ′k, k = 1, . . . , p,
(2)

where ξ and ξ′ are independent standard white Gaussian noises in Rp and
b ∈ Rp is an unknown nuisance vector with nonnegative components bk ≥
0, k = 1, 2, . . . , p. In order to simplify numerous technical details, it is
assumed in what follows that the noise levels ε an σ are known.

In spite of very simple probabilistic structures of (1) and (2), estimation
of θ in these statistical models is a nontrivial problem. Principal difficulties
arise when :
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• p is large;

• bk are small.

The basic idea to overcome these difficulties is based on regularization
methods which nowadays are well-developed in the case σ = 0. These meth-
ods are usually related to the roughness penalty approach and the main goal
in this paper to adapt this approach to the case σ > 0.

Linear models (1) and (2) play a rather important role in studying, for
instance, the noisy periodic deconvolution problem. Suppose we have at our
disposal the noisy data

Y (t) =

∫ 1

0
h(t− u)X(u) du+ εn(t), t ∈ [0, 1],

Z(t) =h(t) + σn′(t), t ∈ [0, 1],

(3)

where

• n(t) and n′(t) are independent standard white Gaussian noises;

• h(t), t ∈ [0, 1] is an unknown periodic function with period 1.

Our goal is to recoverX(t), t ∈ [0, 1] based on the observation {Y (t), Z(t), t ∈
[0, 1]}.

The continuous time model (3) can be easily transformed into the so-
called sequence space model with the help of the standard trigonometric
basis on [0, 1]

ϕ0(t) = 1, ϕk(t) =
√

2 cos(2πkt), ϕ∗k(t) =
√

2 sin(2πkt), k = 1, 2, . . . .

Denote for brevity

X0 =

∫ 1

0
X(t)ϕ0(t) dt, Xk =

∫ 1

0
X(t)ϕk(t) dt, X

∗
k =

∫ 1

0
X(t)ϕ∗k(t) dt;

Y0 =

∫ 1

0
Y (t)ϕ0(t) dt, Yk =

∫ 1

0
Y (t)ϕk(t) dt, Y

∗
k =

∫ 1

0
Y (t)ϕ∗k(t) dt;

Z0 =

∫ 1

0
Z(t)ϕ0(t) dt, Zk =

∫ 1

0
Z(t)ϕk(t) dt, Z

∗
k =

∫ 1

0
Z(t)ϕ∗k(t) dt;

h0 =

∫ 1

0
h(t)ϕ0(t) dt, hk =

∫ 1

0
h(t)ϕk(t) dt, h

∗
k =

∫ 1

0
h(t)ϕ∗k(t) dt.

Then with a simple algebra we arrive at the following statistical model :

Y0 = h0X0 + εξ0,

Yk =
Xkhk −X∗kh∗k√

2
+ εξk, Y ∗k =

Xkh
∗
k +X∗khk√

2
+ εξ−k;

Z0 = h0 + σξ′0,

Zk = hk + σξ′k, Z∗k = h∗k + σξ′−k.

(4)
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which is equivalent to (3). In the above equations, ξ and ξ′ are independent
white Gaussian noises.

Suppose h(·) is a symmetric function with hk > 0. This means that
h∗k = 0. In other words, we assume that the convolution operator H :
L2(0, 1)→ L2(0, 1) defined by

Hx(t) =

∫ 1

0
h(t− u)x(u) du, t ∈ [0, 1]

is self-adjoint and positively defined. In this case, estimationXk, k = 0, 1, . . .
in (4) is equivalent to estimation of Xk based on the data

Y0 = h0X0 + εξ0, Yk =
Xkhk√

2
+ εξk;

Z0 = h0 + σξ′0, Zk = hk + σξ′k

and to estimation X∗k , k = 1, 2, . . . with the help of the observations

Y ∗k =
X∗khk√

2
+ εξ−k;

Zk = hk + σξ′k.

Thus we see that if H is self-adjoint and positively defined operator, then
the noisy deconvolution is equivalent to recovering θ ∈ l2 in Model (1).

In the general case, one can rewrite (4) in the following equivalent form:

Y0 = h0X0 + εξ0,

YkZk + Y ∗k Z
∗
k =

Xk(h
2
k + h∗2k )√

2

+ ε(ξkhk + ξ−kh
∗
k) + εσ(ξ−kξ

′
k + ξ−kξ

′
−k),

Y ∗k Zk − Y ∗k Z∗k =
X∗k(h2

k + h∗2k )√
2

+ ε(ξ−khk − ξkh∗k) + εσ(ξ−kξ
′
−k − ξkξ′−k),

Z0 = h0 + σξ′0,

Z2
k = h2

k + 2σhkξ
′
k + σ2ξ′2k , Z∗2k = h∗2k + 2σh∗kξ

′
−k + σ2ξ′2−k.

(5)

Therefore, denoting for brevity

bi =
√
h2
k + h∗2k , Ȳk = YkZk − Y ∗k Z∗k ,

Ȳ ∗k = Y ∗k Zk + YkZ
∗
k , Z̄k =

√
Z2
k + Z∗2k ,

and omitting the second order terms proportional to σε and σ2, we arrive
at the following approximation of (5):

Y0 = h0X0 + εξ0, Ȳk ≈
Xkb

2
k√

2
+ εbkξ̄k, Ȳ ∗k ≈

X∗kb
2
k√

2
+ εbkξ̄

∗
k;

Z0 = h0 + σξ′0, Z̄k = bk + σξ̄′k,
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where ξ0 ξ̄k, ξ̄
∗
k, ξ̄

′
k are mutually independent standard Gaussian random

variables. So, we see that recovering Xk and X∗k in (4) is nearly equiva-
lent to estimating θ ∈ l2 in Model (2).

Another example, where statistical models similar to (1) and (2) appear,
is related to the probability density deconvolution problem. Suppose we
observe n i.i.d pairs of random variables

(Yi, Zi), i = 1, . . . , n, where Yi = Z ′i +Xi.

Random vectors (X1, . . . , Xn)>, (Z1, . . . , Zn)> (Z ′1, . . . , Z
′
n)> are assumed

to be independent and variables Zi and Z ′i are identically distributed. The
goal is to estimate the probability density of X1. Notice also that statistical
problems close to the mentioned above are common in econometric appli-
cations related to the instrumental variables, see for instance [8], [3] and
references herein.

The problem of estimation θ in (1) has been already addressed in several
paper, see for instance [1], [2], [4], [6], [7]. The principal idea in these papers
is to estimate unknown b−1

i using a ”natural” estimate 1/zi and then to
correct obvious drawbacks of this method with a thresholding method.

In fact, as we will see below, estimating 1/bi is a rather nontrivial and
interesting from a mathematical viewpoint statistical problem. This problem
is so nontrivial that at the moment we can prove the optimality of proposed
estimators only with the help of computerized calculations.

2 Main results

2.1 Univariate minimax inversion

The main idea in estimating θ ∈ Rp in (1) and (2) is based on a solution
to the following simple statistical problem. Suppose we observe a Gaussian
random variable

z = µ+ σξ, (6)

where µ ∈ R+ is an unknown parameter and ξ is a standard Gaussian
random variable. Our goal is to estimate 1/µ. More precisely, we are looking
for the so-called minimax estimator µ̄−1(z) of 1/µ and its minimax risk
defined by

r1(σ)
def
= inf

µ̃−1
sup
µ>0

µ4Eµ

[
µ̃−1(z)− µ−1

]2
= sup

µ>0
µ4Eµ

[
µ̄−1(z)− µ−1

]2
, (7)

where inf is taken over all measurable functions µ̃−1(·) : R1 → R+, and Eµ

stands for the expectation w.r.t. the probability measure generated by the
observation (6).

Notice that the considered problem is closely related with estimating θ
in Models (1) and (2) when ε = 0.

We begin with a lower bound for the minimax risk r1(σ).
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Lemma 1.
r1(σ) ≥ σ2. (8)

Proof. Inequality (8) may be proved the help of the Van Trees inequality
[10] (see also, e.g., [5]) which bounds from below the Bayesian risk of any
estimate of g(µ) based on the observation z ∈ R1 with a probability density
P (·;µ), where µ ∈ [a, b] is an unknown parameter. Recall that the Bayesian
risk is defined by

R(π, P ) = inf
g̃

∫ b

a

∫
R
π(µ)P (z;µ)

[
g̃(z)− g(µ)

]2
dµ dz.

Suppose g(µ), µ ∈ [a, b] is differentiable and π(·) is a probability density
on [a, b] such that π(a) = π(b) = π′(a) = π′(b) = 0 with∫ b

a

π′2(µ)

π(µ)
dµ <∞.

Then

R(π, P ) ≥ 1

I(π) + I(P )

[∫ b

a
g′µ(µ)π(µ) dµ

]2

, (9)

where Fisher’s informations I(π) and I(P ) are defined as follows :

I(π) =

∫ b

a

π′2µ (µ)

π(µ)
dµ and I(P ) =

∫ b

a
π(µ)

∫
R

P ′2µ (z;µ)

P (z;µ)
dz dµ.

In the considered statistical problem

g(µ) =
1

µ
and P (z;µ) =

1√
2πσ2

exp

[
−(z − µ)2

2σ2

]
.

Let us take

π(µ) =
1

b− a
π◦

[
1

b− a

(
µ− a+ b

2

)]
,

where
π◦(x) = 2 cos2(πx), x ∈ [−1/2, 1/2].

Hence ∫ 1/2

−1/2

π′2◦ (x)

π◦(x)
dx = 8π2

∫ 1/2

−1/2
sin2(πx) dx = 4π2

and therefore

I(π) =
4π2

(b− a)3
. (10)

Next, we obviously have(∫ b

a
π(µ)g′µ(µ) dµ

)2

=

(∫ b

a

π(µ)

µ2
dµ

)2

≥ 1

b4
. (11)
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It is also well known that

I(P ) =
1

σ2
.

Thus, substituting this equation and (10)–(11) in (9), we obtain

R(π, P ) ≥ b−4

σ−2 + 4π2(b− a)−3

and combining this inequality with

r1(σ) ≥ a4R(π, P ),

we arrive at

r1(σ) ≥ a4b−4

σ−2 + 4π2(b− a)−3
. (12)

In order to finish the proof, let us choose b = a+
√
a and take the limit

in (12) as a→∞.

Lemma 1 motivates the following definition.

Definition 1. An estimator µ̄−1(z) of 1/µ is called strong-minimax if the
following relations hold true :

•
sup
µ>0

µ2Eµ

[
µ̄−1(z)µ− 1

]2
= σ2; (13)

•
sup
µ>0

Eµ[µ̄−1(z)µ]2 = 1. (14)

In order to demonstrate that strong-minimax estimators of 1/µ exist, let
us consider the following family of non-linear estimates

µ̄−1
β (z) =

z+

z2 + βσ2
, β > 0, (15)

where z+ = max(z, 0).
There are simple heuristic arguments helping to understand where these

estimates come from. Assume that the unknown parameter µ in (6) belongs
to R. As above, our goal is to estimate 1/µ based on Z. Consider the
following Bayesian risk :

Rπ(µ̄) =

∫ ∞
−∞

π(µ)µ2Eµ[µµ̄(z)− 1]2 dµ,

where µ̄(z) is an estimate of 1/µ and π(·) is an a priory distribution density
of µ. It can be checked with the standard arguments that

arg min
µ̄
Rπ(µ̄) =

∫ ∞
−∞

µ3π(µ) exp

[
−(z − µ)2

2σ2

]
dµ/∫ ∞

−∞
µ4π(µ) exp

[
−(z − µ)2

2σ2

]
dµ.
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Assume that a priory density π(·) is a Cauchy density

π(µ) = πγ(µ) =
1

πγ[1 + (µ/γ)2]

with the scale parameter γ > 0. Then it is clear that as γ → 0

arg min
µ̄
Rπγ (µ̄)→ z

z2 + σ2
.

Unfortunately, this estimate is not minimax, but its minimax modifi-
cation is given by (15) where β > 1 is a tuning parameter to be chosen
properly. More precisely, for µ̄−1

β (z) the following fact holds.

Lemma 2. There exist constants β◦ ≥ 3/2 and β◦ ≤
√

7 + 4 such that
µ̄−1
β (z) from (15) is a strong-minimax estimator for any β ∈ [β◦, β

◦] .

Proof. Let

Ψξ,β(x)
def
=

[1 + xξ]+
(1 + xξ)2 + βx2

, x ∈ R+,

where ξ is a standard Gaussian random variable. Then Equations (14) and
(13) are equivalent to the following ones :

EΨ2
ξ,β(x) ≤ 1, x ≥ 0, (16)

E[1−Ψξ,β(x)]2 ≤ x2, x ≥ 0. (17)

Notice that if x ≥ 1/2β, then

Ψξ,β(x) ≤ 1.

Indeed, the above condition is equivalent to

1 + xξ ≤ (1 + xξ)2 + βx2,

i.e,

0 ≤ β + ξ2 +
ξ

x
=

(
ξ +

1

2x

)2

+ β − 1

4x2
.

So, to prove (16) is remains to verify that

EΨ2
ξ,β(x) ≤ 1, for all x ∈

[
0,

1

2β

]
.

It can be checked with a simple algebra that

1−Ψξ,β(x) =xξ + x2(β − ξ2)− 3x3ξ(ξ2 + β)− x4(ξ2 + β)2

+ [1−Ψξ,β(x)][2xξ + x2(ξ2 + β)]2
(18)
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We begin with lower and upper bounds for β. Notice that for small x we
have from (18)

1−Ψξ,β(x) = xξ +O(x2)

and so

1−Ψξ,β(x) = xξ + x2(β − ξ2) + x3ξ(ξ2 − 3β) +O(x4)

Therefore
EΨ2

ξ,β(x) = 1 + x2(3− 2β) +O(x4) (19)

and

E
[
Ψξ,β(x)− 1

]2
=x2 + x4(β2 − 8β + 9) +O(x6). (20)

Hence with (19) and (20) we obtain that β◦ ≥ 3/2. On the other hand,
with (20) we arrive at

β◦ > 4−
√

7 ≈ 1.35 and β◦ ≤ 4 +
√

7 ≈ 6.65.

In order to obtain more precise bounds for β, we computed numerically
the following functions:

R0(β) = sup
x≥0

EΨ2
ξ,β(x) and R1(β) = sup

x≥0
x−2E

[
Ψξ,β(x)− 1

]2
.

Their plots are shown on Figure 1. We see that 3/2 is the exact lower bound
for β, i.e. β◦ = 1.5, whereas β◦ ≈ 2.7.

In fact, the family of strong-minimax estimators of 1/µ is wide. For
instance, along with the Bayesian approach, the roughness penalty method
may be used to obtain such estimators. A simplest example of such an
estimator is given by

µ̄β(z) = arg max
µ>0

{
−(z − µ)2

2σ2
+ β log(µ)

}
=
z

2
+

√
z2

4
+ βσ2. (21)

With this estimate we arrive at the following estimate of 1/µ

µ̃−1
β (z) =

1

µ̄β(z)
=

1

βσ2

[√
z2

4
+ βσ2 − z

2

]
. (22)

For this method a fact similar to Lemma 2 holds.

Lemma 3. There exist constants β̃◦, β̃
◦ such that µ̃−1

β (z) is strong-minimax

for any β ∈ [β̃◦, β̃
◦].
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Figure 1: Risk functions R0(β) and R1(β) for b̄−1(z).
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Figure 2: Risk functions R0(β) and R1(β) for the estimator from (22).
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At the moment we cannot provide an analytical proof of this result. The
computerized proof is based on computing the risk functions

R0(β) = sup
µ>0

Eµ[µµ̃−1(z)]2 and R1(β) = sup
µ>0

µ2Eµ[µµ̃−1(z)− 1]2

shown on Figure 2.
Comparing Figures 1 and 2, we see that from a practical viewpoint the

estimator from (22) is strong-minimax for a wider range of β. This is rather
useful property, since the noise level σ is usually known only approximately.

Notice also that µ̄β(Z) in (21) is the minimax estimator of µ for any
β ∈ [0, 1/2], i.e.

inf
µ̃

sup
µ>0

Eµ[µ̃(Z)− µ]2 = sup
µ>0

Eµ[µ̄β(Z)− µ]2 = σ2, β ∈ [0, 1/2].

Along with strong-minimax estimates of 1/µ we will need in the sequel
strong-minimax estimates of 1/µ2 defined as follows.

Definition 2. An estimator µ̄−2(z) of 1/µ2 is called strong-minimax if

•
sup
µ>0

µ2Eµ

[
µ̄−2(z)µ2 − 1

]2
= 4σ2; (23)

•
sup
µ>0

Eµ[µ̄−2(z)µ2]2 = 1. (24)

Recall that the usual minimax estimator µ̄−2(z) of 1/µ2 and its minimax
risk are defined by

r2(σ)
def
= inf

µ̃−2
sup
µ>0

µ6Eµ

[
µ̃−2(z)− 1

µ2

]2

= sup
µ>0

µ6Eµ

[
µ̄−2(z)− 1

µ2

]2

,

where inf is taken over all measurable functions µ̃−2(·) : R1 → R+.
The next lemma bounds from below the minimax risk r2(σ).

Lemma 4.
r2(σ) ≥ 4σ2.

The proof of this lemma is quite similar to the one of Lemma 1 and
therefore it is omitted.

In order to show that the set of strongly-minimax estimates of 1/µ2 is
nonempty, we study numerically the family of the following estimates (see
Equations (21) and (22) for a motivation) :

µ̃−2
β (z) =

1

[µ̄β(z)]2
=

1

β2σ4

[√
z2

4
+ βσ2 − z

2

]2

.
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Figure 3: Risk functions R0(β) and R1(β) for µ̃−2
β (z).

Lemma 5. There exist constants β̃◦, β̃
◦ such that µ̃−2

β (z) is strong-minimax

for any β ∈ [β̃◦, β̃
◦].

The risk functions

R0(β) = sup
µ>0

Eµ[µ2µ̃−2
β (z)]2 and R1(β) =

1

4
sup
µ>0

µ2Eµ[µ2µ̃−2
β (z)− 1]2

related to the estimate µ̃−2(z) are plotted on Figure 3. From this figure we
see that β̃◦ ≈ 2.5 and β̃◦ ≈ 8.8.

2.2 Roughness penalty inversion

One of the most standard ways to construct good estimates of high dimen-
sional vectors θ in (1) is based on the roughness penalty approach. Suppose
θk are independent zero mean Gaussian random variables with zero mean
and

Eθ2
k = Σ2

k, k = 1, . . . , p.

Let b̄−1(zk) be a strong-minimax estimate of 1/bk (see (13) and (14)). Then
we estimate unknown bk by 1/b̄−1(zk) and thus we estimate θk in Model (1)
as follows :

θ̄k(yk, zk) = arg max
θ

{
− 1

2ε2

[
θ

b̄−1(zk)
− yk

]2

− θ2

2Σ2
k

}
.

11



It can be seen easily that

θ̄k(yk, zk) =
b̄−1(zk)

1 + ε2Σ−2
k [b̄−1(zk)]2

yk.

In Model (2) we estimate θk based on the same idea, i.e.,

θ̃k(y
′
k, zk) = arg max

θ

{
− b̃
−2(zk)

2ε2

[
θ

b̃−2(zk)
− yk

]2

− θ2

2Σ2
k

}
,

or, equivalently,

θ̃k(yk, zk) =
b̃−2(zk)

1 + ε2Σ−2
k b̃−2(zk)

y′k. (25)

It is assumed that in the above equations b̃−2(zk) is a strong-minimax esti-
mate of 1/b2k.

Our goal is to show that θ̄(y, z) and θ̃(y, z) can mimic the pseudo-
estimate in Models (1) and (2)

θ̂◦k(yk) = h◦k
yk
bk
, (26)

where

h◦k =
1

1 + ε2Σ−2
k b−2

k

.

Emphasize that θ̂◦k(yk) is the roughness penalty estimate constructed assum-
ing that bk are known exactly.

Theorem 1. Let b̄−1(zk) be a strong-minimax estimate of 1/bk. Then[
E‖θ̄(y, z)− θ‖2

]1/2 ≤[E‖θ̂◦(y)− θ‖2
]1/2

+

+

{ p∑
k=1

h◦k

[
σ2 θ

2
k

b2k
+
ε2

b2k
min

(
1,
σ2

b2k

)]}1/2

.
(27)

For the projection method θ̄k(y, z) = 1{k ≤ W}b̄−1(zk)yk the following in-
equality

[
E‖θ̄(y, z)− θ‖2

]1/2 ≤ [E‖h◦ · y − θ‖2]1/2 + σ

[ W∑
k=1

θ2
k

b2k

]1/2

, (28)

where h◦k = 1{k ≤W}, holds.

Proof. Notice that θ̄(y, z) admits the following decomposition

θ̄k(yk, zk) =
1

bk

bk b̄
−1(zk)

1 + ε2Σ−2
k b−2

k [bk b̄−1(zk)]2
yk.

12



Denote for brevity

ρk = ε2Σ−2
k b−2

k , ζk = bk b̄
−1(zk), h

◦
k =

1

1 + ρk
, h̄k =

ζk
1 + ρkζ

2
k

.

Let us begin with analyzing the projection method. In this case

Σ2
k =

{
∞, k ≤W,
0, k > W,

where W is a given projection frequency. So, we obviously obtain

h◦k = 1{k ≤W} and h̄k = ζk1{k ≤W}.

Therefore it can be seen easily that

E‖θ − θ̂◦k(y)‖2 =
∑
k>W

θ2
k + ε2

W∑
k=1

1

b2k

and by the strong-minimax property of b̄−1
k (zk) (see (13) and (14)) we obtain

E‖θ − θ̄(y, z)‖2 =
∑
k>W

θ2
k + E

W∑
k=1

(1− ζk)2θ2
k + ε2E

W∑
k=1

ζ2
k

b2k

≤
∑
k>W

θ2
k + ε2

W∑
k=1

1

b2k
+ σ2

W∑
k=1

θ2
k

b2k
= E‖θ − θ̂◦(y)‖2 + σ2

p∑
k=1

h◦2k
θ2
k

b2k
,

thus proving (28).
In the general case, to control the risk of θ̄(y, z), we make use of the

following equation :

E‖θ − θ̄(y, z)‖2 = E‖(1− h̄) · θ‖2 + ε2
p∑

k=1

b−2
k Eh̄2

k.

We begin with upper-bounding the last term in this equation. With a
simple algebra one obtains

Eh̄2
k =h2

kE

[
ζk(1 + ρk)

1 + ρkζ
2
k

]2

≤h2
kEζ

2
k1{ζk ≥ 1}+ h2

kE

[
ζk + (1− ζ2

k)
ρkζk

1 + ρkζ
2
k

]2

1{ζk < 1}

≤h2
kEζ

2
k1{ζk ≥ 1}+ h2

kE

[
ζk + (1− ζk)

2ρkζk
1 + ρkζ

2
k

]2

1{ζk < 1}

≤h2
kEζ

2
k1{ζk ≥ 1}+ h2

kE
[
ζk +

√
ρk(1− ζk)

]2
1{ζk < 1}.

(29)

13



In deriving the above inequality it was used that

max
x≥0

x

1 + ρkx2
=

1

2
√
ρk
.

Next we continue (29) with help of

E(1− ζk)2
+ ≤ min{1, σ2b−2

k },

which easily follows from the strong-minimax property of b̄−1
k (zk). Using

(x+ y)2 ≤ (1 + z)x2 +

(
1 +

1

z

)
y2, z > 0, (30)

we obtain for any z > 0

Eh̄2
k ≤(1 + z)h2

k +

(
1 +

1

z

)
ρkh

2
k min{1, σ2b−2

k }

≤(1 + z)h2
k +

(
1 +

1

z

)
hk min{1, σ2b−2

k }.
(31)

Now, we proceed with upper-bounding E(1− h̄k)2. Obviously, we have

1− h̃k =
ρk

1 + ρk
+

1

1 + ρk
× (ζk − 1)× ρkζk − 1

1 + ρkζ
2
k

. (32)

Notice also that

|ρkζk − 1|
1 + ρkζ

2
k

= ρk ×
|ρkζk − 1|
ρk + (ρkζk)2

≤ ρk ×max
x≥0

|x− 1|
ρk + x2

. (33)

One can check also with a simple algebra that

max
x≥0

x− 1

ρk + x2
=

1

2 + 2
√

1 + ρk
,

and thus

ρk ×max
x≥0

|x− 1|
ρk + x2

= ρk ×max

{
1

ρk
,

1

2 + 2
√

1 + ρk

}
= max

{
1,

√
1 + ρk − ρk

2

}
≤
√

1 + ρk.

(34)

Hence, combining (32)–(34) with (30) and with the strong-minimax
property of b̄−1(zk), we arrive at the following inequality

E[1− h̄k]2 ≤ (1 + z)[1− hk]2 + σ2

(
1 +

1

z

)
hkb
−2
k (35)

that holds for any z > 0.

14



Thus with (35) and (31) we get

E‖θ − θ̄(y, z)‖2 ≤(1 + z)E‖θ − h · y‖2

+

(
1 +

1

z

) p∑
k=1

hk

[
σ2 θ

2
k

b2k
+
ε2

b2k
min

{
1,
σ2

b2k

}]
.

Finally, minimizing the right-hand side at the above equation w.r.t. z > 0,
we finish the proof of (27). �

The next theorem controls the performance of the roughness penalty
method in Model (2).

Theorem 2. Let b̃−2(zk) be a strong-minimax estimate of 1/b2k. Then[
E‖θ̃(y, z)− θ‖2

]1/2 ≤[E‖θ̂◦(y)− θ‖2
]1/2

+

+

{ p∑
k=1

h◦2k

[
4σ2 θ

2
k

b2k
+
ε2

b2k
min

(
1,

4σ2

b2k

)]}1/2 (36)

For the projection estimate θ̃k(y, z) = 1{k ≤ W}b̃−2(zk)y
′
k the following

inequality holds

[
E‖θ̃(y, z)− θ‖2

]1/2 ≤ [E‖h◦ · y − θ‖2]1/2 + 2σ

[ W∑
k=1

θ2
k

b2k

]1/2

, (37)

where h◦k = 1{k ≤W}.

Proof. In view of (25), we can decompose θ̃(y′, z) as follows

θ̃k(y
′
k, zk) =

b̃−2(zk)b
2
k

1 + ε2Σ−2
k b̃−2(zk)

×
y′k
b2k
.

Denote for brevity

ζk = b̃−2(zk)b
2
k, ρk =

ε2

Σ2
kb

2
k

, h̃k =
ζk

1 + ρkζk
.

With these notations we have

E[θk − θ̃k(y′k, zk)]2 = E[1− h̃k]2θ2
k + ε2b−2

k Eh̃2
k. (38)

We begin upper-bounding the right-hand side at this equation for the
projection estimate with the projection frequency W . For this estimate

h̃k = ζk1{k ≤W}.
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Therefore by the strong-minimax property of b̃−2(zk) we obtain from (38)

E‖θ − θ̃(y′, z)‖2 ≤
p∑

k=W+1

θ2
p + ε2

W∑
k=1

1

b2k
+ 4σ2

W∑
k=1

θ2
k

b2k
,

thus proving (37).
Let us now turn to the general case. We begin with controlling the bias

term in the risk decomposition (38). Using (30) and the strong minimax
property of b̃−2(zk), we obtain

E[1− h̃k]2 =E

[
ρk

1 + ρk
+

1− ζk
(1 + ρkζk)(1 + ρk)

]2

≤(1 + z)

[
ρk

1 + ρk

]2

+

(
1 +

1

z

)
E

[
1− ζk

(1 + ρkζk)(1 + ρk)

]2

≤(1 + z)[1− h◦k]2 + 4σ2

(
1 +

1

z

)
h◦2k
b2k
.

(39)

With the same arguments we upper-bound the variance term

Eh̃2
k =h◦2k E

[
ζk(1 + ρk)

1 + ρkζk

]2

≤h◦2k Eζ2
k1{ζk ≥ 1}+ h◦2k E

[
ζk + (1− ζk)

ρkζk
1 + ρkζk

]2

1{ζk < 1}

≤h◦2k Eζ2
k1{ζk ≥ 1}+ h◦2k E

[
ζk + (1− ζk)

]2
1{ζk < 1}

≤(1 + z)h◦2k +

(
1 +

1

z

)
h◦2k min

{
1,

4σ2

b2k

}
.

(40)

Finally, combining (38), (40), and (39), we finish the proof. �

2.3 Minimax multivariate inversion

Since the upper bounds in Theorems 1 and 2 are almost equivalent but
Theorem 2 deals with a more general statistical model, we will focus in
what follows on Model (2). With the help of Theorem 2 one can easily
compute the maximal risk E‖θ̃(y′, z)− θ‖2 over the ellipsoid

Θ =

{
θ :

p∑
k=1

θ2
ka

2
k ≤ 1

}
,

where {a2
k, k = 1, . . . , p} is a given monotone sequence a2

1 ≤ a2
2 ≤ · · · ≤ a2

p.

Theorem 3. The maximal risk of θ̃(y′, z) from (25) is upper-bounded as
follows : {

sup
θ∈Θ

E‖θ̃(y′, z)− θ‖2
}1/2

≤
√
R(Σ,Θ) +

√
R+(Σ,Θ),
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where

R(Σ,Θ) = ε4 max
k

1

(ε2 + b2kΣ
2
k)

2a2
k

+ ε2
p∑

k=1

Σ4
kb

2
k

(ε2 + Σ2
kb

2
k)

2
,

R+(Σ,Θ) = 4σ2 max
k

Σ4
kb

2
k

(ε2 + Σ2
kb

2
k)

2a2
k

+ ε2
p∑

k=1

Σ4
kb

2
k

(ε2 + Σ2
kb

2
k)

2
min

{
1,

4σ2

b2k

}
.

Proof. It follows immediately from Equation (36) combined with

h◦k =
b2kΣ

2
k

ε2 + b2kΣ
2
k

,

sup
θ∈Θ
‖(1− h◦) · θ‖2 ≤ max

k
(1− h◦k)2a−2

k ,

sup
θ∈Θ

p∑
k=1

h◦2k
θ2
k

b2k
≤ max

k

h◦2k
b2ka

2
k

. �

The minimax risk of the projection method can be controlled with the
help of the following theorem.

Theorem 4. Let θ̃pr(y
′
k, zk) = 1{k ≤W}b̃−2(zk)y

′
k, then{

sup
θ∈Θ

E‖θ̃pr(y
′, z)− θ‖2

}1/2
≤
√
Rpr(W,Θ) +

√
R+

pr(W,Θ),

where

Rpr(W,Θ) =a−2
W+1 + ε2

W∑
k=1

1

b2k
, R+

pr(W,Θ) = 4σ2 max
k∈[1,W ]

1

b2ka
2
k

.

Proof. It follows immediately from (37). �

Example. We illustrate the above theorem with a simple example,
assuming that p =∞ and

b2k = B2k−2q, a2
k = A−2k2g, k = 1, 2, . . . .

Computing the risk of the spectral cut-off method in this case is very
simple. We have

Rpr(W,Θ) =
A2

(W + 1)2q +
ε2

B2

W∑
k=1

k2g, R+
pr(W,Θ) =

4σ2A2W 2(g−q)+

B2
,

where (x)+ = max(0, x). Very often, we are interested in the minimax
projection bandwidth minimizing Rpr(W,Θ). This bandwidth can be easily
computed for small ε, namely,

W ◦ = arg min
W

Rpr(W,Θ) = (1 + o(1))

(
2qA2B2

ε2

)1/(1+2q+2g)

, ε→ 0
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and therefore as ε→ 0

min
W

Rpr(W,Θ) =(1 + o(1))

(
1

2q + 1
+

1

2q

)
ε2

B2

(
2qA2B2

ε2

)(1+2q)/(1+2q+2g)

.

Notice also that

R+
pr(W

◦,Θ) = (1 + o(1))
4σ2A2

B2

(
2qA2B2

ε2

)2(g−q)+/(1+2q+2g)

, ε→ 0.

So, we see that when q ≥ g the excess risk R+
pr(W

◦,Θ) has a parametric
order σ2.

This example shows, in particular, that one can construct good estimates
of θ even in the case, where σ2 � ε2. This prompts, for instance, that the
upper bounds in Proposition 3.2 and Theorem 5.1 in [7] might be improved,
since they are expressed in terms of max(ε2, σ2).

Let us emphasize that the minimax projection bandwidth W ◦ cannot
be used in practice since it depends strongly on A2 and q which are hardly
known. Therefore, in applications, only data-driven projection bandwidths
can be used. Constructing good data-driven bandwidths is very important
in applied statistics and we will provide a natural solution to this problem
in a forthcoming paper.

Sometimes we are interested in computing Σ2
k resulting in asymptotically

(as ε → 0) minimax estimators over Θ provided that bk are assumed to be
known. Recall that an asymptotically minimax estimate θ̂ε(y) based on the
observations

yk = bkθk + εξk, k = 1, . . .

is defined by

sup
θ∈Θ

E‖θ̂ε(y)− θ‖2 = (1 + o(1)) inf
θ̄

sup
θ∈Θ

E‖θ̄(y)− θ‖2, ε→ 0,

where inf is taken over all estimates of θ. The theory of asymptotically
minimax estimation over ellipsoids has been developed in the pioneering
article [9]. It follows, in particular, from this paper that if

b2k = (1 + o(1))B2k2g, a2
k = (1 + o(1))A−2k−2q for A,B, q, g ∈ (0,∞),

as k →∞, then asymptotically minimax estimate of θ is given by (26) with

Σ2
k =

ε2

b2k

[
|ak|
µ
− 1

]
+

, where µ is a root of ε2
∞∑
k=1

a2
k

b2k

[
|ak|
µ
− 1

]
+

= 1.
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