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The paper deals with recovering an unknown vector θ ∈ R p in two simple linear models: in the first one we observe y = b • θ + ξ and z = b + σξ , whereas in the second one we have at our disposal y = b 2 • θ + b • ξ and z = b + σξ . Here b ∈ R p is a nuisance vector with positive components and ξ, ξ ∈ R p are standard white Gaussian noises in R p . It is assumed that p is large and components b k of b are small for large k. In order to get good statistical estimates of θ in this situation, we propose to combine minimax estimates of 1/b k and 1/b 2

k with regularization techniques based on the roughness penalty approach. We provide new non-asymptotic upper bounds for the mean square risks of the estimates related to this method.

Introduction

This paper deals with estimating an unknown vector θ ∈ R p in two simple linear models. In the first one θ is estimated based on the data

y k = b k θ k + ξ k , k = 1, . . . , p, z k = b k + σξ k , k = 1, . . . , p, (1) 
whereas in the second one θ is recovered from the observations

y k = b 2 k θ k + b k ξ k , k = 1, . . . , p, z k = b k + σξ k , k = 1, . . . , p, (2) 
where ξ and ξ are independent standard white Gaussian noises in R p and b ∈ R p is an unknown nuisance vector with nonnegative components b k ≥ 0, k = 1, 2, . . . , p. In order to simplify numerous technical details, it is assumed in what follows that the noise levels an σ are known.

In spite of very simple probabilistic structures of (1) and (2), estimation of θ in these statistical models is a nontrivial problem. Principal difficulties arise when :

• p is large;

• b k are small.
The basic idea to overcome these difficulties is based on regularization methods which nowadays are well-developed in the case σ = 0. These methods are usually related to the roughness penalty approach and the main goal in this paper to adapt this approach to the case σ > 0.

Linear models (1) and ( 2) play a rather important role in studying, for instance, the noisy periodic deconvolution problem. Suppose we have at our disposal the noisy data

Y (t) = 1 0 h(t -u)X(u) du + n(t), t ∈ [0, 1], Z(t) =h(t) + σn (t), t ∈ [0, 1], (3) where 
• n(t) and n (t) are independent standard white Gaussian noises;

• h(t), t ∈ [0, 1] is an unknown periodic function with period 1.

Our goal is to recover X(t), t ∈ [0, 1] based on the observation {Y (t), Z(t), t ∈ [0, 1]}.

The continuous time model ( 3) can be easily transformed into the socalled sequence space model with the help of the standard trigonometric basis on [0, 1] ϕ 0 (t) = 1, ϕ k (t) = √ 2 cos(2πkt), ϕ * k (t) = √ 2 sin(2πkt), k = 1, 2, . . . .

Denote for brevity

X 0 = 1 0 X(t)ϕ 0 (t) dt, X k = 1 0 X(t)ϕ k (t) dt, X * k = 1 0 X(t)ϕ * k (t) dt; Y 0 = 1 0 Y (t)ϕ 0 (t) dt, Y k = 1 0 Y (t)ϕ k (t) dt, Y * k = 1 0 Y (t)ϕ * k (t) dt; Z 0 = 1 0 Z(t)ϕ 0 (t) dt, Z k = 1 0 Z(t)ϕ k (t) dt, Z * k = 1 0 Z(t)ϕ * k (t) dt; h 0 = 1 0 h(t)ϕ 0 (t) dt, h k = 1 0 h(t)ϕ k (t) dt, h * k = 1 0 h(t)ϕ * k (t) dt.
Then with a simple algebra we arrive at the following statistical model :

Y 0 = h 0 X 0 + ξ 0 , Y k = X k h k -X * k h * k √ 2 + ξ k , Y * k = X k h * k + X * k h k √ 2 + ξ -k ; Z 0 = h 0 + σξ 0 , Z k = h k + σξ k , Z * k = h * k + σξ -k . (4) 
which is equivalent to (3). In the above equations, ξ and ξ are independent white Gaussian noises. Suppose h(•) is a symmetric function with h k > 0. This means that h * k = 0. In other words, we assume that the convolution operator H : L 2 (0, 1) → L 2 (0, 1) defined by

Hx(t) = 1 0 h(t -u)x(u) du, t ∈ [0, 1]
is self-adjoint and positively defined. In this case, estimation X k , k = 0, 1, . . . in ( 4) is equivalent to estimation of X k based on the data

Y 0 = h 0 X 0 + ξ 0 , Y k = X k h k √ 2 + ξ k ; Z 0 = h 0 + σξ 0 , Z k = h k + σξ k
and to estimation X * k , k = 1, 2, . . . with the help of the observations

Y * k = X * k h k √ 2 + ξ -k ; Z k = h k + σξ k .
Thus we see that if H is self-adjoint and positively defined operator, then the noisy deconvolution is equivalent to recovering θ ∈ l 2 in Model (1). In the general case, one can rewrite (4) in the following equivalent form:

Y 0 = h 0 X 0 + ξ 0 , Y k Z k + Y * k Z * k = X k (h 2 k + h * 2 k ) √ 2 + (ξ k h k + ξ -k h * k ) + σ(ξ -k ξ k + ξ -k ξ -k ), Y * k Z k -Y * k Z * k = X * k (h 2 k + h * 2 k ) √ 2 + (ξ -k h k -ξ k h * k ) + σ(ξ -k ξ -k -ξ k ξ -k ), Z 0 = h 0 + σξ 0 , Z 2 k = h 2 k + 2σh k ξ k + σ 2 ξ 2 k , Z * 2 k = h * 2 k + 2σh * k ξ -k + σ 2 ξ 2 -k . (5) 
Therefore, denoting for brevity

b i = h 2 k + h * 2 k , Ȳk = Y k Z k -Y * k Z * k , Ȳ * k = Y * k Z k + Y k Z * k , Zk = Z 2 k + Z * 2 k ,
and omitting the second order terms proportional to σ and σ 2 , we arrive at the following approximation of (5):

Y 0 = h 0 X 0 + ξ 0 , Ȳk ≈ X k b 2 k √ 2 + b k ξk , Ȳ * k ≈ X * k b 2 k √ 2 + b k ξ * k ; Z 0 = h 0 + σξ 0 , Zk = b k + σ ξ k ,
where ξ 0 ξk , ξ * k , ξ k are mutually independent standard Gaussian random variables. So, we see that recovering X k and X * k in ( 4) is nearly equivalent to estimating θ ∈ l 2 in Model [START_REF] Cavalier | Adaptive estimation for inverse problems with noisy operators[END_REF].

Another example, where statistical models similar to (1) and (2) appear, is related to the probability density deconvolution problem. Suppose we observe n i.i.d pairs of random variables

(Y i , Z i ), i = 1, . . . , n, where Y i = Z i + X i .
Random vectors (X 1 , . . . , X n ) , (Z 1 , . . . , Z n ) (Z 1 , . . . , Z n ) are assumed to be independent and variables Z i and Z i are identically distributed. The goal is to estimate the probability density of X 1 . Notice also that statistical problems close to the mentioned above are common in econometric applications related to the instrumental variables, see for instance [START_REF] Johannes | Convergence rates for ill-posed inverse problems with an unknown operator[END_REF], [START_REF] Chen | On rate optimality for ill-posed inverse problems in econometrics[END_REF] and references herein.

The problem of estimation θ in (1) has been already addressed in several paper, see for instance [START_REF] Cai | Prediction in functional linear regression[END_REF], [START_REF] Cavalier | Adaptive estimation for inverse problems with noisy operators[END_REF], [START_REF] Efroimovich | On inverse problems with unknown operators[END_REF], [START_REF] Marteau | Regularization of inverse problems with unknown operator[END_REF], [START_REF] Hoffmann | Nonlinear estimation for linear inverse problems with error in the operator[END_REF]. The principal idea in these papers is to estimate unknown b -1 i using a "natural" estimate 1/z i and then to correct obvious drawbacks of this method with a thresholding method.

In fact, as we will see below, estimating 1/b i is a rather nontrivial and interesting from a mathematical viewpoint statistical problem. This problem is so nontrivial that at the moment we can prove the optimality of proposed estimators only with the help of computerized calculations.

Main results

Univariate minimax inversion

The main idea in estimating θ ∈ R p in (1) and ( 2) is based on a solution to the following simple statistical problem. Suppose we observe a Gaussian random variable

z = µ + σξ, (6) 
where µ ∈ R + is an unknown parameter and ξ is a standard Gaussian random variable. Our goal is to estimate 1/µ. More precisely, we are looking for the so-called minimax estimator μ-1 (z) of 1/µ and its minimax risk defined by

r 1 (σ) def = inf μ-1 sup µ>0 µ 4 E µ μ-1 (z) -µ -1 2 = sup µ>0 µ 4 E µ μ-1 (z) -µ -1 2 , ( 7 
)
where inf is taken over all measurable functions μ-1 (•) : R 1 → R + , and E µ stands for the expectation w.r.t. the probability measure generated by the observation [START_REF] Marteau | Regularization of inverse problems with unknown operator[END_REF]. Notice that the considered problem is closely related with estimating θ in Models (1) and (2) when = 0.

We begin with a lower bound for the minimax risk r 1 (σ).

Lemma 1.

r 1 (σ) ≥ σ 2 . ( 8 
)
Proof. Inequality (8) may be proved the help of the Van Trees inequality [START_REF] Van Trees | Detection, Estimation, and Modulation Theory, V.1[END_REF] (see also, e.g., [START_REF] Gill | Applications of the Van Trees inequality: a Bayesian Cramer-Rao bound[END_REF]) which bounds from below the Bayesian risk of any estimate of g(µ) based on the observation z ∈ R 1 with a probability density P (•; µ), where µ ∈ [a, b] is an unknown parameter. Recall that the Bayesian risk is defined by

R(π, P ) = inf g b a R π(µ)P (z; µ) g(z) -g(µ) 2 dµ dz. Suppose g(µ), µ ∈ [a, b] is differentiable and π(•) is a probability density on [a, b] such that π(a) = π(b) = π (a) = π (b) = 0 with b a π 2 (µ) π(µ) dµ < ∞. Then R(π, P ) ≥ 1 I(π) + I(P ) b a g µ (µ)π(µ) dµ 2 , (9) 
where Fisher's informations I(π) and I(P ) are defined as follows :

I(π) = b a π 2 µ (µ) π(µ) dµ and 
I(P ) = b a π(µ) R P 2 µ (z; µ) P (z; µ) dz dµ.
In the considered statistical problem

g(µ) = 1 µ and P (z; µ) = 1 √ 2πσ 2 exp - (z -µ) 2 2σ 2 .
Let us take

π(µ) = 1 b -a π • 1 b -a µ - a + b 2 , where π • (x) = 2 cos 2 (πx), x ∈ [-1/2, 1/2].
Hence

1/2 -1/2 π 2 • (x) π • (x) dx = 8π 2 1/2 -1/2 sin 2 (πx) dx = 4π 2
and therefore

I(π) = 4π 2 (b -a) 3 . (10) 
Next, we obviously have

b a π(µ)g µ (µ) dµ 2 = b a π(µ) µ 2 dµ 2 ≥ 1 b 4 . (11) 
It is also well known that

I(P ) = 1 σ 2 .
Thus, substituting this equation and ( 10)-( 11) in ( 9), we obtain

R(π, P ) ≥ b -4 σ -2 + 4π 2 (b -a) -3
and combining this inequality with

r 1 (σ) ≥ a 4 R(π, P ), we arrive at r 1 (σ) ≥ a 4 b -4 σ -2 + 4π 2 (b -a) -3 . ( 12 
)
In order to finish the proof, let us choose b = a + √ a and take the limit in (12) as a → ∞.

Lemma 1 motivates the following definition. Definition 1. An estimator μ-1 (z) of 1/µ is called strong-minimax if the following relations hold true :

• sup µ>0 µ 2 E µ μ-1 (z)µ -1 2 = σ 2 ; (13) • sup µ>0 E µ [μ -1 (z)µ] 2 = 1. ( 14 
)
In order to demonstrate that strong-minimax estimators of 1/µ exist, let us consider the following family of non-linear estimates μ-1

β (z) = z + z 2 + βσ 2 , β > 0, (15) 
where z + = max(z, 0). There are simple heuristic arguments helping to understand where these estimates come from. Assume that the unknown parameter µ in (6) belongs to R. As above, our goal is to estimate 1/µ based on Z. Consider the following Bayesian risk :

R π (μ) = ∞ -∞ π(µ)µ 2 E µ [µμ(z) -1] 2 dµ,
where μ(z) is an estimate of 1/µ and π(•) is an a priory distribution density of µ. It can be checked with the standard arguments that

arg min μ R π (μ) = ∞ -∞ µ 3 π(µ) exp - (z -µ) 2 2σ 2 dµ ∞ -∞ µ 4 π(µ) exp - (z -µ) 2 2σ 2 dµ.
Assume that a priory density π(•) is a Cauchy density

π(µ) = π γ (µ) = 1 πγ[1 + (µ/γ) 2 ]
with the scale parameter γ > 0. Then it is clear that as γ → 0

arg min μ R πγ (μ) → z z 2 + σ 2 .
Unfortunately, this estimate is not minimax, but its minimax modification is given by (15) where β > 1 is a tuning parameter to be chosen properly. More precisely, for μ-1 β (z) the following fact holds.

Lemma 2. There exist constants

β • ≥ 3/2 and β • ≤ √ 7 + 4 such that μ-1 β (z) from (15) is a strong-minimax estimator for any β ∈ [β • , β • ] . Proof. Let Ψ ξ,β (x) def = [1 + xξ] + (1 + xξ) 2 + βx 2 , x ∈ R + ,
where ξ is a standard Gaussian random variable. Then Equations ( 14) and ( 13) are equivalent to the following ones :

EΨ 2 ξ,β (x) ≤ 1, x ≥ 0, (16) 
E[1 -Ψ ξ,β (x)] 2 ≤ x 2 , x ≥ 0. ( 17 
) Notice that if x ≥ 1/2β, then Ψ ξ,β (x) ≤ 1.
Indeed, the above condition is equivalent to

1 + xξ ≤ (1 + xξ) 2 + βx 2 , i.e, 0 ≤ β + ξ 2 + ξ x = ξ + 1 2x 2 + β - 1 4x 2 .
So, to prove ( 16) is remains to verify that

EΨ 2 ξ,β (x) ≤ 1, for all x ∈ 0, 1 2β .
It can be checked with a simple algebra that

1 -Ψ ξ,β (x) =xξ + x 2 (β -ξ 2 ) -3x 3 ξ(ξ 2 + β) -x 4 (ξ 2 + β) 2 + [1 -Ψ ξ,β (x)][2xξ + x 2 (ξ 2 + β)] 2 (18) 
We begin with lower and upper bounds for β. Notice that for small x we have from (18)

1 -Ψ ξ,β (x) = xξ + O(x 2 )
and so

1 -Ψ ξ,β (x) = xξ + x 2 (β -ξ 2 ) + x 3 ξ(ξ 2 -3β) + O(x 4 ) Therefore EΨ 2 ξ,β (x) = 1 + x 2 (3 -2β) + O(x 4 ) (19) 
and

E Ψ ξ,β (x) -1 2 =x 2 + x 4 (β 2 -8β + 9) + O(x 6 ). ( 20 
)
Hence with ( 19) and ( 20) we obtain that β • ≥ 3/2. On the other hand, with (20) we arrive at

β • > 4 - √ 7 ≈ 1.35 and β • ≤ 4 + √ 7 ≈ 6.65.
In order to obtain more precise bounds for β, we computed numerically the following functions:

R 0 (β) = sup x≥0 EΨ 2 ξ,β (x) and R 1 (β) = sup x≥0 x -2 E Ψ ξ,β (x) -1 2 .
Their plots are shown on Figure 1. We see that 3/2 is the exact lower bound for β, i.e. β • = 1.5, whereas β • ≈ 2.7.

In fact, the family of strong-minimax estimators of 1/µ is wide. For instance, along with the Bayesian approach, the roughness penalty method may be used to obtain such estimators. A simplest example of such an estimator is given by

μβ (z) = arg max µ>0 - (z -µ) 2 2σ 2 + β log(µ) = z 2 + z 2 4 + βσ 2 . ( 21 
)
With this estimate we arrive at the following estimate of 1/µ μ-1

β (z) = 1 μβ (z) = 1 βσ 2 z 2 4 + βσ 2 - z 2 . ( 22 
)
For this method a fact similar to Lemma 2 holds. At the moment we cannot provide an analytical proof of this result. The computerized proof is based on computing the risk functions

Lemma 3. There exist constants β• , β• such that μ-1 β (z) is strong-minimax for any β ∈ [ β• , β• ].
R 0 (β) = sup µ>0 E µ [µμ -1 (z)] 2 and R 1 (β) = sup µ>0 µ 2 E µ [µμ -1 (z) -1] 2
shown on Figure 2.

Comparing Figures 1 and2, we see that from a practical viewpoint the estimator from ( 22) is strong-minimax for a wider range of β. This is rather useful property, since the noise level σ is usually known only approximately.

Notice also that μβ (Z) in ( 21) is the minimax estimator of µ for any

β ∈ [0, 1/2], i.e. inf μ sup µ>0 E µ [μ(Z) -µ] 2 = sup µ>0 E µ [μ β (Z) -µ] 2 = σ 2 , β ∈ [0, 1/2].
Along with strong-minimax estimates of 1/µ we will need in the sequel strong-minimax estimates of 1/µ 2 defined as follows.

Definition 2. An estimator μ-2 (z) of 1/µ 2 is called strong-minimax if • sup µ>0 µ 2 E µ μ-2 (z)µ 2 -1 2 = 4σ 2 ; (23) • sup µ>0 E µ [μ -2 (z)µ 2 ] 2 = 1. ( 24 
)
Recall that the usual minimax estimator μ-2 (z) of 1/µ 2 and its minimax risk are defined by

r 2 (σ) def = inf μ-2 sup µ>0 µ 6 E µ μ-2 (z) - 1 µ 2 2 = sup µ>0 µ 6 E µ μ-2 (z) - 1 µ 2 2 ,
where inf is taken over all measurable functions μ-2 (•) : R 1 → R + . The next lemma bounds from below the minimax risk r 2 (σ).

Lemma 4. r 2 (σ) ≥ 4σ 2 .
The proof of this lemma is quite similar to the one of Lemma 1 and therefore it is omitted.

In order to show that the set of strongly-minimax estimates of 1/µ 2 is nonempty, we study numerically the family of the following estimates (see Equations ( 21) and ( 22) for a motivation) : The risk functions

μ-2 β (z) = 1 [μ β (z)] 2 = 1 β 2 σ 4 z 2 4 + βσ 2 - z 2 
R 0 (β) = sup µ>0 E µ [µ 2 μ-2 β (z)] 2 and R 1 (β) = 1 4 sup µ>0 µ 2 E µ [µ 2 μ-2 β (z) -1] 2
related to the estimate μ-2 (z) are plotted on Figure 3. From this figure we see that β• ≈ 2.5 and β• ≈ 8.8.

Roughness penalty inversion

One of the most standard ways to construct good estimates of high dimensional vectors θ in ( 1) is based on the roughness penalty approach. Suppose θ k are independent zero mean Gaussian random variables with zero mean and Eθ 2 k = Σ 2 k , k = 1, . . . , p. Let b-1 (z k ) be a strong-minimax estimate of 1/b k (see ( 13) and ( 14)). Then we estimate unknown b k by 1/ b-1 (z k ) and thus we estimate θ k in Model (1) as follows :

θk (y k , z k ) = arg max θ - 1 2 2 θ b-1 (z k ) -y k 2 - θ 2 2Σ 2 k .
It can be seen easily that

θk (y k , z k ) = b-1 (z k ) 1 + 2 Σ -2 k [ b-1 (z k )] 2 y k .
In Model (2) we estimate θ k based on the same idea, i.e.,

θk (y k , z k ) = arg max θ - b-2 (z k ) 2 2 θ b-2 (z k ) -y k 2 - θ 2 2Σ 2 k , or, equivalently, θk (y k , z k ) = b-2 (z k ) 1 + 2 Σ -2 k b-2 (z k ) y k . ( 25 
)
It is assumed that in the above equations b-2 (z k ) is a strong-minimax estimate of 1/b 2 k . Our goal is to show that θ(y, z) and θ(y, z) can mimic the pseudoestimate in Models ( 1) and ( 2)

θ• k (y k ) = h • k y k b k , (26) 
where

h • k = 1 1 + 2 Σ -2 k b -2 k .
Emphasize that θ• k (y k ) is the roughness penalty estimate constructed assuming that b k are known exactly.

Theorem 1. Let b-1 (z k ) be a strong-minimax estimate of 1/b k . Then E θ(y, z) -θ 2 1/2 ≤ E θ• (y) -θ 2 1/2 + + p k=1 h • k σ 2 θ 2 k b 2 k + 2 b 2 k min 1, σ 2 b 2 k 1/2 . ( 27 
)
For the projection method θk (y, z)

= 1{k ≤ W } b-1 (z k )y k the following in- equality E θ(y, z) -θ 2 1/2 ≤ E h • • y -θ 2 1/2 + σ W k=1 θ 2 k b 2 k 1/2 , ( 28 
)
where h • k = 1{k ≤ W }, holds.
Proof. Notice that θ(y, z) admits the following decomposition

θk (y k , z k ) = 1 b k b k b-1 (z k ) 1 + 2 Σ -2 k b -2 k [b k b-1 (z k )] 2 y k .
Denote for brevity

ρ k = 2 Σ -2 k b -2 k , ζ k = b k b-1 (z k ), h • k = 1 1 + ρ k , hk = ζ k 1 + ρ k ζ 2 k .
Let us begin with analyzing the projection method. In this case

Σ 2 k = ∞, k ≤ W, 0, k > W,
where W is a given projection frequency. So, we obviously obtain

h • k = 1{k ≤ W } and hk = ζ k 1{k ≤ W }.
Therefore it can be seen easily that

E θ -θ• k (y) 2 = k>W θ 2 k + 2 W k=1 1 b 2 k
and by the strong-minimax property of b-1 k (z k ) (see ( 13) and ( 14)) we obtain

E θ -θ(y, z) 2 = k>W θ 2 k + E W k=1 (1 -ζ k ) 2 θ 2 k + 2 E W k=1 ζ 2 k b 2 k ≤ k>W θ 2 k + 2 W k=1 1 b 2 k + σ 2 W k=1 θ 2 k b 2 k = E θ -θ• (y) 2 + σ 2 p k=1 h •2 k θ 2 k b 2 k ,
thus proving (28).

In the general case, to control the risk of θ(y, z), we make use of the following equation :

E θ -θ(y, z) 2 = E (1 -h) • θ 2 + 2 p k=1 b -2 k E h2 k .
We begin with upper-bounding the last term in this equation. With a simple algebra one obtains

E h2 k =h 2 k E ζ k (1 + ρ k ) 1 + ρ k ζ 2 k 2 ≤h 2 k Eζ 2 k 1{ζ k ≥ 1} + h 2 k E ζ k + (1 -ζ 2 k ) ρ k ζ k 1 + ρ k ζ 2 k 2 1{ζ k < 1} ≤h 2 k Eζ 2 k 1{ζ k ≥ 1} + h 2 k E ζ k + (1 -ζ k ) 2ρ k ζ k 1 + ρ k ζ 2 k 2 1{ζ k < 1} ≤h 2 k Eζ 2 k 1{ζ k ≥ 1} + h 2 k E ζ k + √ ρ k (1 -ζ k ) 2 1{ζ k < 1}. (29) 
In deriving the above inequality it was used that max

x≥0 x 1 + ρ k x 2 = 1 2 √ ρ k .
Next we continue (29) with help of

E(1 -ζ k ) 2 + ≤ min{1, σ 2 b -2 k },
which easily follows from the strong-minimax property of b-1

k (z k ). Using (x + y) 2 ≤ (1 + z)x 2 + 1 + 1 z y 2 , z > 0, (30) 
we obtain for any z > 0

E h2 k ≤(1 + z)h 2 k + 1 + 1 z ρ k h 2 k min{1, σ 2 b -2 k } ≤(1 + z)h 2 k + 1 + 1 z h k min{1, σ 2 b -2 k }. (31) 
Now, we proceed with upper-bounding E(1 -hk ) 2 . Obviously, we have

1 -hk = ρ k 1 + ρ k + 1 1 + ρ k × (ζ k -1) × ρ k ζ k -1 1 + ρ k ζ 2 k . (32) 
Notice also that

|ρ k ζ k -1| 1 + ρ k ζ 2 k = ρ k × |ρ k ζ k -1| ρ k + (ρ k ζ k ) 2 ≤ ρ k × max x≥0 |x -1| ρ k + x 2 . ( 33 
)
One can check also with a simple algebra that max x≥0

x -1

ρ k + x 2 = 1 2 + 2 √ 1 + ρ k ,
and thus

ρ k × max x≥0 |x -1| ρ k + x 2 = ρ k × max 1 ρ k , 1 2 + 2 √ 1 + ρ k = max 1, √ 1 + ρ k -ρ k 2 ≤ 1 + ρ k . (34) 
Hence, combining (32)-( 34) with (30) and with the strong-minimax property of b-1 (z k ), we arrive at the following inequality

E[1 -hk ] 2 ≤ (1 + z)[1 -h k ] 2 + σ 2 1 + 1 z h k b -2 k ( 35 
)
that holds for any z > 0.

Thus with (35) and (31) we get

E θ -θ(y, z) 2 ≤(1 + z)E θ -h • y 2 + 1 + 1 z p k=1 h k σ 2 θ 2 k b 2 k + 2 b 2 k min 1, σ 2 b 2 k .
Finally, minimizing the right-hand side at the above equation w.r.t. z > 0, we finish the proof of (27).

The next theorem controls the performance of the roughness penalty method in Model (2).

Theorem 2. Let b-2 (z k ) be a strong-minimax estimate of 1/b 2 k . Then E θ(y, z) -θ 2 1/2 ≤ E θ• (y) -θ 2 1/2 + + p k=1 h •2 k 4σ 2 θ 2 k b 2 k + 2 b 2 k min 1, 4σ 2 b 2 k 1/2 (36) 
For the projection estimate θk (y, z) = 1{k ≤ W } b-2 (z k )y k the following inequality holds

E θ(y, z) -θ 2 1/2 ≤ E h • • y -θ 2 1/2 + 2σ W k=1 θ 2 k b 2 k 1/2 , ( 37 
)
where h • k = 1{k ≤ W }.
Proof. In view of (25), we can decompose θ(y , z) as follows

θk (y k , z k ) = b-2 (z k )b 2 k 1 + 2 Σ -2 k b-2 (z k ) × y k b 2 k .
Denote for brevity

ζ k = b-2 (z k )b 2 k , ρ k = 2 Σ 2 k b 2 k , hk = ζ k 1 + ρ k ζ k .
With these notations we have

E[θ k -θk (y k , z k )] 2 = E[1 -hk ] 2 θ 2 k + 2 b -2 k E h2 k . ( 38 
)
We begin upper-bounding the right-hand side at this equation for the projection estimate with the projection frequency W . For this estimate

hk = ζ k 1{k ≤ W }.
Therefore by the strong-minimax property of b-2 (z k ) we obtain from (38)

E θ -θ(y , z) 2 ≤ p k=W +1 θ 2 p + 2 W k=1 1 b 2 k + 4σ 2 W k=1 θ 2 k b 2 k ,
thus proving (37).

Let us now turn to the general case. We begin with controlling the bias term in the risk decomposition (38). Using (30) and the strong minimax property of b-2 (z k ), we obtain

E[1 -hk ] 2 =E ρ k 1 + ρ k + 1 -ζ k (1 + ρ k ζ k )(1 + ρ k ) 2 ≤(1 + z) ρ k 1 + ρ k 2 + 1 + 1 z E 1 -ζ k (1 + ρ k k )(1 + ρ k ) 2 ≤(1 + z)[1 -h • k ] 2 + 4σ 2 1 + 1 z h •2 k b 2 k . ( 39 
)
With the same arguments we upper-bound the variance term

E h2 k =h •2 k E ζ k (1 + ρ k ) 1 + ρ k ζ k 2 ≤h •2 k Eζ 2 k 1{ζ k ≥ 1} + h •2 k E ζ k + (1 -ζ k ) ρ k ζ k 1 + ρ k ζ k 2 1{ζ k < 1} ≤h •2 k Eζ 2 k 1{ζ k ≥ 1} + h •2 k E ζ k + (1 -ζ k ) 2 1{ζ k < 1} ≤(1 + z)h •2 k + 1 + 1 z h •2 k min 1, 4σ 2 b 2 k . (40) 
Finally, combining (38), (40), and (39), we finish the proof.

Minimax multivariate inversion

Since the upper bounds in Theorems 1 and 2 are almost equivalent but Theorem 2 deals with a more general statistical model, we will focus in what follows on Model [START_REF] Cavalier | Adaptive estimation for inverse problems with noisy operators[END_REF]. With the help of Theorem 2 one can easily compute the maximal risk E θ(y , z) -θ 2 over the ellipsoid

Θ = θ : p k=1 θ 2 k a 2 k ≤ 1 , where {a 2 k , k = 1, . . . , p} is a given monotone sequence a 2 1 ≤ a 2 2 ≤ • • • ≤ a 2 p .
Theorem 3. The maximal risk of θ(y , z) from (25) is upper-bounded as follows :

sup θ∈Θ E θ(y , z) -θ 2 1/2 ≤ R(Σ, Θ) + R + (Σ, Θ), where R(Σ, Θ) = 4 max k 1 ( 2 + b 2 k Σ 2 k ) 2 a 2 k + 2 p k=1 Σ 4 k b 2 k ( 2 + Σ 2 k b 2 k ) 2 , R + (Σ, Θ) = 4σ 2 max k Σ 4 k b 2 k ( 2 + Σ 2 k b 2 k ) 2 a 2 k + 2 p k=1 Σ 4 k b 2 k ( 2 + Σ 2 k b 2 k ) 2 min 1, 4σ 2 b 2 k .
Proof. It follows immediately from Equation (36) combined with

h • k = b 2 k Σ 2 k 2 + b 2 k Σ 2 k , sup θ∈Θ (1 -h • ) • θ 2 ≤ max k (1 -h • k ) 2 a -2 k , sup θ∈Θ p k=1 h •2 k θ 2 k b 2 k ≤ max k h •2 k b 2 k a 2 k .
The minimax risk of the projection method can be controlled with the help of the following theorem.

Theorem 4. Let θpr (y k , z k ) = 1{k ≤ W } b-2 (z k )y k , then sup θ∈Θ E θpr (y , z) -θ 2 1/2 ≤ R pr (W, Θ) + R + pr (W, Θ),
where

R pr (W, Θ) =a -2 W +1 + 2 W k=1 1 b 2 k , R + pr (W, Θ) = 4σ 2 max k∈[1,W ] 1 b 2 k a 2 k .
Proof. It follows immediately from (37).

Example. We illustrate the above theorem with a simple example, assuming that p = ∞ and

b 2 k = B 2 k -2q , a 2 k = A -2 k 2g , k = 1, 2 
, . . . . Computing the risk of the spectral cut-off method in this case is very simple. We have

R pr (W, Θ) = A 2 (W + 1) 2q + 2 B 2 W k=1 k 2g , R + pr (W, Θ) = 4σ 2 A 2 W 2(g-q) + B 2 ,
where (x) + = max(0, x). Very often, we are interested in the minimax projection bandwidth minimizing R pr (W, Θ). This bandwidth can be easily computed for small , namely, .

W • =
Notice also that

R + pr (W • , Θ) = (1 + o(1)) 4σ 2 A 2 B 2 2qA 2 B 2 2 
2(g-q) + /(1+2q+2g) , → 0.

So, we see that when q ≥ g the excess risk R + pr (W • , Θ) has a parametric order σ 2 .

This example shows, in particular, that one can construct good estimates of θ even in the case, where σ 2 2 . This prompts, for instance, that the upper bounds in Proposition 3.2 and Theorem 5.1 in [START_REF] Hoffmann | Nonlinear estimation for linear inverse problems with error in the operator[END_REF] might be improved, since they are expressed in terms of max( 2 , σ 2 ).

Let us emphasize that the minimax projection bandwidth W • cannot be used in practice since it depends strongly on A 2 and q which are hardly known. Therefore, in applications, only data-driven projection bandwidths can be used. Constructing good data-driven bandwidths is very important in applied statistics and we will provide a natural solution to this problem in a forthcoming paper.

Sometimes we are interested in computing Σ 
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 35 Figure 3: Risk functions R 0 (β) and R 1 (β) for μ-2 β (z).

  arg min W R pr (W, Θ) = (1 + o(1))
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