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Abstract

This paper presents an averaged model and nonlinear observer for an on/off pneu-

matic actuator. The actuator is composed of two chambers and four on/off solenoid

valves. The averaged model is elaborated which has the advantage of using only one

continuous input instead of four binary inputs. Based on this new model, a sliding

mode observer is designed using the piston’s position and the pressure measurements

in one of the chambers to estimate the piston’s velocity and the pressure in the other

chamber. The finite time convergence of the observer is proven and its performance is

verified in closed loop on an experimental benchmark.

1 Introduction

Pneumatic actuators are widely used in the automation of different industrial production

lines, robotics and also in medical applications. These systems present many advantages:

reliability, velocity, low cost and effort/input energy ratio, which allow to build light and

powerful actuators. Unfortunately, the major difficulty concerning pneumatic actuators is

their nonlinear dynamics due to air compressibility, friction forces and mainly the nonlinear

behavior of air flow rate through the power modulators. Hence, the design of a control



strategy is not simple. In order to have high performance in terms of positioning, it is

possible to use proportional servo-valves instead of the traditional on/off solenoid valves.

These servo-valves deliver an air flow rate, depending on the control voltage and the upstream

pressure, ranging from 0% to 100% contrary to the traditional on/off valves which deliver

either 0% or 100% of the available mass flow rate depending on the binary input voltage

of the valves. Many control strategies and techniques have been elaborated for this type of

actuators: PID [1], fuzzy control [2], sliding modes [3], backstepping [4], adaptive control [5],

neural networks [6]. However, servo valves are still far less common than solenoid on/off

valves because of their price and the high expertise needed to fully exploit them.

To overcome these drawbacks, recently improved solenoid valves could be used instead of

the servo-valves. However, precise control is difficult due to the inputs of these on/off solenoid

valves. From an operating point of view, the pneumatic actuators equipped with these

kind of components belong to the class of the switching systems with nonlinear dynamics.

Traditionally, there is no general theory able to characterize the stability of such systems.

Fortunately, with the recent development of high frequency switching on/off valves, it is

possible to handle new perspectives in terms of modeling and control.

A significant amount of high quality research has been addressed in this direction using

averaging techniques. In power electronics, the concept of switching systems with discrete

inputs is well known. Averaging techniques are used to create one unique model with one

single continuous input. In fluid power systems, solenoid valves are being controlled with a

Pulse Width Modulation (PWM) controller to determine its input: 1 or 0. One can describe

the equivalent continuous dynamics of PWM controlled nonlinear systems by transforming

the system, originally discontinuous and possibly non-affine in the input, into an equivalent

system that is both continuous and affine in the control input, i.e. transforms the system to

nonlinear control canonical form [7].

Many works show the interest of using on/off valves: [7–15] to control the position of

the pneumatic actuators. In order to design these control strategies, one needs to have

access to all the state variables of the actuator: position, velocity and the pressures of

the two chambers. However, in order to reduce the price, decreasing number of sensors

is required. Therefore, the estimation of the non measured variables is essential. In the



literature, there are some works related to the observation of pneumatic systems with servo-

valves: [16] presents the synthesis of pressure observers based on Lyapunov theory. The

authors of [17] propose two observers using the position of the piston and the pressure in

one chamber. Nevertheless, the observer design for pneumatic systems with on/off valves

is a standard solution in automotive applications and particularly in the control of clutch

systems. In [18], the authors propose a reduced order observer to estimate the pressure

to have an internal pressure controller in order to control the clutch position. In [19], the

authors consider the design of a full sate observer for electro pneumatic clutch actuator with

position sensor. This observer is used in [20] to obtain a dual-mode switched controller for

the clutch actuator position. Nevertheless, this observer uses the input of the on/off solenoid

valve. As it is mentioned earlier, there is no general theory to guarantee the observer stability

of such systems since they use switched models in their design. Therefore, it’s important

to establish a model for which the stability can be guaranteed. In this context, averaging

techniques will be used to obtain such a model.

The authors of [14, 15] presented an output averaged model for an on/off pneumatic

actuator equipped with four solenoid valves which is the same as the experimental benchmark

considered in this paper. Unfortunately, the elaborated output averaged model can only be

used for position control strategies and it can not be used for observer design. One of

the main contribution of this paper is the extension of the model elaborated in [14, 15] to

a full state averaged model to describe the behavior of the on/off pneumatic systems. A

nonlinear sliding mode observer is designed [21] using only two outputs. The convergence

of the observation error towards zero is proven using the averaged model and Lyapunov

theory. Furthermore, the performance of this observer is verified experimentally to control

the position of the actuator using sliding mode strategy [22,23].

This paper is organized as follows: Section 2 presents the modeling of a pneumatic

actuator with four on/off solenoid valves. The result is a switching model with four binary

inputs. In Section 3, a full state averaged model is elaborated using techniques from power

electronics. Section 4 shows the design of sliding mode observer with a finite time convergence

proof. This observer is used to calculate a control input to track a desired position trajectory.

The experimental results are shown in Section 5.



2 Modeling

The pneumatic system (Fig.1) is a one degree of freedom actuator composed of two pneumatic

chambers. Every chamber is connected to a pressure source and to an exhaust pressure using

two on/off solenoid valves. Each valve i is controlled with a discrete binary input Ui.

Let us assume that [13]:

• The only considered friction forces are viscous;

• The air is a perfect gas and its kinetic energy is negligible in each chamber;

• The pressure, the temperature and the density of the air are homogeneous in each

chamber;

• The evolution of the air inside each chamber is polytropic;

• The supply and the exhaust pressure are constant and there is no leakage.

The complete modeling could be divided into three stages: Piston’s dynamics, the air

evolution in each chamber and the valve dynamics. Using Newton’s second law and the

Figure 1: Pneumatic system with four on/off valves

first principle of thermodynamics, the piston’s dynamics and the air evolution inside each



pneumatic chamber are given by [14]:
mÿ = (APPP − ANPN)− bvẏ

ṖP =
k

(l/2 + y)AP
(rTQP − APPP ẏ)

ṖN =
k

(l/2− y)AN
(rTQN + ANPN ẏ)

(1)

where l is the total length, y is the piston’s position and m is its mass. bv is the viscosity

coefficient. PP , AP and QP (respectively PN , AN and QN) are the air pressure, the cylinder’s

area and the input mass flow rate in chamber P (respectively chamber N). Please note that

AP and AN are explicitly made equal. r is the perfect gas constant and k is the polytropic

constant. T is the air temperature. QP and QN are the input mass flow rate in each chamber.

They are given by: {
QP = U1Q(PS, PP )− U2Q(PP , PE)
QN = U3Q(PS, PN)− U4Q(PN , PE)

(2)

where Ui with i = {1, 2, 3, 4} is the binary input voltage of valve i. PS and PE are the

supply and the exhaust pressures respectively. The air flow inside each valve depends on the

upstream pressure Pu and temperature Tu and the downstream pressure Pd and temperature

Td. It depends also on the valve’s characteristics like the mass flow rate constant Cval and

the critical pressure ratio bcrit [14]:

Q(Pu, Pd) = CvalPu
√
T/Tu

√√√√√√√1−


Pd
Pu
− bcrit

1− bcrit


2

if
Pd
Pu

> bcrit

1 if
Pd
Pu
≤ bcrit

(3)

The global model of (1) becomes:
ÿ =

1

m
(APPP − ANPN − bvẏ)

ṖP = −k PP
l/2 + y

ẏ + krT
U1Q(PS, PP )− U2Q(PP , PE)

(l/2 + y)AP

ṖN = k
PN

l/2− y
ẏ + krT

U3Q(PS, PN)− U4Q(PN , PE)

(l/2− y)AN

(4)

Each binary input voltage Ui can be in two situations either ”on” or ”off”. Hence, every

chamber can be in one of the following three states:



• Pressurizing: connected to the supply pressure (for the chamber P : U1 = 1, U2 = 0);

• Venting: connected to the exhaust pressure (U1 = 0, U2 = 1);

• Close: both of the valves are closed (U1 = 0, U2 = 0).

From these three states, nine modes can be obtained for the two chambers. It has been

proved in [14] and [15] that only seven modes can be used depending on the input vector

U = (U1 U2 U3 U4)T . For each mode j, the input vector U (j) is associated such that:

Mode 1: U (1) = (0 0 0 0)T Mode 2: U (2) = (1 0 0 0)T

Mode 3: U (3) = (0 1 0 0)T Mode 4: U (4) = (0 0 0 1)T

Mode 5: U (5) = (0 0 1 0)T Mode 6: U (6) = (1 0 0 1)T

Mode 7: U (7) = (0 1 1 0)T

(5)

3 Averaged model

For power converters, the averaged model can be obtained using the different dynamics of the

system undergoing pulse-width modulation of the switched inputs. The PWM duty cycle

will act as a continuous input for the averaged model. The average modeling consists of

evaluating all the different modes of the switching system in order to obtain one equivalent

model for all the p modes:

F = (F (1) . . . F (p))T

Due to the variation of the input injected into the system, it can switch between several

modes within a PWM period. For each mode F (j), a duty ratio d(j) is associated:

D = (d(1) . . . d(p))T

The total duration of all the duty ratios d(j) is equal to the PWM period i.e. D can be

normalized: ‖D‖1 = 1. Then, the averaged model will represent all the modes F (j) within a

switching period PWM:

Ẋa =

p∑
j=1

d(j)F (j) (6)

where Xa represents the averaged state vector.

The averaged model presented in [14,15] uses three mode-model (mode 1 is for no actuation,



mode 6 corresponds to the movement in positive direction while mode 7 is for the negative

direction) to control the position of the piston. In these works, there is no need to average all

the state variables, only the output y is averaged and replaced by ya. However, this model is

not suitable for state observer design. There is a need to elaborate a state averaged model.

To obtain a state averaged model, all the states dynamics must be explicitly given with

the binary discrete input Ui. Model presented in (4) becomes:

...
y = − k

m

(
APPP
l/2 + y

+
ANPN
l/2− y

)
ẏ − bv

m
ÿ

+
krT

m

U1Q(PS , PP )− U2Q(PP , PE)

(l/2 + y)

− krT

m

U3Q(PS , PN )− U4Q(PN , PE)

(l/2− y)

ṖP = −k PP
l/2 + y

ẏ + krT
U1Q(PS , PP )− U2Q(PP , PE)

(l/2 + y)AP

with: PN =
APPP − ÿ − bvẏ

AN

(7)

As it can be seen in (7), the dynamics
...
y and ṖP change according to the input U (j) (Mode

j) of (5). Hence, let us introduce the following notations:

x1 = y f1 = x2

x2 = ẏ f2 = x3

x3 = ÿ f
(j)
3 =

...
y |U(j)

x4 = PP f
(j)
4 = ṖP |U(j)

where the dynamics f
(j)
3 and f

(j)
4 correspond to the dynamics

...
y and ṖP evaluated for the

input U (j). The model (4) can be written as:

Ẋ(t) = F (j)(X(t), U (j)) j = 1, . . . , 7 (8)

where X = (x1 x2 x3 x4)T and F (j) = (f1 f2 f
(j)
3 f

(j)
4 )T . Averaging techniques consists of

mixing all the p modes of the on/off actuator by introducing one single continuous input

to create an equivalent continuous input similar to the one in servo-valves. The use of the

averaged model is justified by the high switching frequency of the on/off valves used in

this paper, i.e. their dynamics are much faster than the other dynamics. Then, the state

averaged model using only three modes (mode 1, 6 and 7) can be given by:

Ẋa = d(1)F (1) + d(6)F (6) + d(7)F (7) (9)



where the vector Xa = (x1a x2a x3a x4a)
T corresponding to the vector (ya ẏa ÿa PPa)T is the

averaged state variable vector.

Remark 3.1 Unlike the Takagi-Sugeno fuzzy modeling or the T-S modeling [24, 25], aver-

aging techniques consist in combining the different existing discontinuous modes of a system.

T-S modeling approximates a nonlinear system by an interpolation of several local linear

models and by combining them using activation functions. Therefore, T-S modeling can be

seen as creating and combing artificial modes to approximate the nonlinear behavior of sys-

tem. However, the relevance of the fuzzy model depends on its ability to represent the actual

system. The averaging technique used in this paper is another alternative to represent a

switched system with different discontinuous modes and combine them using the duty ratios

to represent the real switched system as in (9). Therefore, unlike T-S methods, averaging

techniques do not create any artificial modes.

Since modes 1 and 6 correspond to the actuation in the positive direction, from the

chamber P to the chamber N (see Fig. 1), the modes 1 and 6 can be modulated together

while mode 7 is not used. For the negative direction, from the chamber N to the chamber

P, one can modulate the modes 1 and 7 while mode 6 is not used. A new and a continuous

input u is introduced to modulate modes 1 and 6 together and modes 1 and 7 together. For

the positive direction, u is positive and its value corresponds to the duty ratio of mode 6.

For the negative direction, u is negative and its absolute value corresponds to the duty ratio

of mode 7. Hence the following modulation (switching) scheme between the coefficients d(j)

and the input u is proposed:

• For the positive direction: d(1) and d(6) are mixed d(1) = 1 − |u| and d(6) = |u|

(while d(7) = 0)

• For the negative direction: d(1) and d(7) are mixed d(1) = |u| and d(7) = 1 − |u|

(while d(6) = 0)

The averaged model of these three modes can be given by:

Ẋa = F (1)(Xa) +

{
(F (6)(Xa)− F (1)(Xa))u if u ≥ 0
(F (1)(Xa)− F (7)(Xa))u if u < 0



Hence, the state averaged model is given by:
ẋ1a = x2a

ẋ2a = x3a

ẋ3a = ϕ1(Xa) + g1(Xa)u
ẋ4a = ϕ2(Xa) + g2(Xa)u

(10)

with:

ϕ1(Xa) = − k
m

(
APx4a

l/2 + x1a

+
ANψ(Xa)

l/2− x1a

)
x2a −

bv
m
x3a

g1(Xa) =
krT

m


(
Q(PS , x4a)

(l/2 + x1a)
+
Q(ψ(Xa), PE)

(l/2− x1a)

)
if u ≥ 0(

Q(x4a , PE)

(l/2 + x1a)
+
Q(PS , ψ(Xa))

(l/2− x1a)

)
if u < 0

ϕ2(Xa) = −k x4a

l/2 + x1a

x2a

g2(Xa) = krT


krT

Q(x4a , PE)

(l/2 + x1a)AP
if u ≥ 0

krT
Q(PS , x4a)

(l/2 + x1a)AP
if u < 0

and: ψ(Xa) = (Apx4a − x3a − bvx2a)/AN .

Remark 3.2 System (10) describes the equivalent nonlinear dynamics of the on/off solenoid

valve pneumatic system (8) where the initial state vector X is averaged. Similarly to the servo

valve pneumatic actuators, a part of the dynamics of (10) depends on the sign of the input

u; if u ≥ 0, chamber P is charging while chamber N is discharging and vice versa. Unlike

power converters as SEPIC, which has two modes and a unique averaged model, pneumatic

actuators have seven modes, which makes the elaboration of a unique averaged model similar

to those of power converters impossible.

Remark 3.3 Unlike the switched model (4) with four binary discrete inputs the averaged

model (10) has the advantage of using only one continuous input u ∈ [−1, 1]. The dynamics

g1(Xa) and g2(Xa) correspond to the variation of actuation between the modes F (6) and F (7),

which performed gradually and smoothly unlike the switched model (4) where the switch are

instantaneous.

The state averaged model of (10) belongs to the class of dynamical systems given by:

Ẋa = AXa + Φ(Xa) + G(Xa)u u ∈ [−1, 1] (11)



with:

A =

(
A1 0
0 A2

)
A1 =

0 1 0
0 0 1
0 0 0

 A2 = 0

Φ(Xa) =


x2

x3

ϕ1(Xa)
ϕ2(Xa)

 G(Xa) =


0
0

g1(Xa)
g2(Xa)


Compared to the output averaged model in [13, 14] the new model (11) is a full state

averaged model. It can be used to satisfy control objectives but also for designing observers.

In the next section, the averaged model (11) will be used to design a sliding mode observer.

4 Sliding mode Observer

4.1 Observability

The observability of a system expresses the possibility to reconstruct its initial conditions,

with nothing else than the measure of its inputs and outputs. The observability analysis

allows to determine the minimum number of ouputs to have the observability of a system [26].

Let us consider the following general form of nonlinear system:

(Σ) :

{
Ẋ = f(X, u)
Y = h(X)

(12)

Where X(t) ∈ V (an open set of Rn), the input u(t) ∈ U where U is measurable set of Rm.

Definition 4.1 The system (12) is said to be observable if for any initial conditions X0 and

X̄0, there exists a control input u such that the corresponding outputs trajectories h(X0(t))

and h(X̄0(t)) are not equal for all time t ∈ [t0; t0 + Th] with t0 an initial instant and Th > 0

a time horizon [27].

Thus, the concept of observability is based on the possibility to distinguish two distinct

initial conditions using two different outputs. It can easily proved that system (11) could be

observable using only two outputs y1a = x1a and y2a = x4a [17]. Hence, system (11) can be

rewritten as: {
Ẋa = AXa + Φ(Xa) + G(Xa)u
Ya = CXa

(13)



with:

C =

(
C1 0

0 C2

)
, C1 = (1 0 0) and C2 = 1

4.2 Sliding Mode Observer Design

Given a switched pneumatic model that can be averaged and rewritten as the model (13),

consider the following standard sliding mode observer [21]:
˙̂
Xa = AX̂a + Φ(X̂a) + G(X̂a)u

−K(Ŷa − Ya)− Lsign(Ŷa − Ya)
Ŷa = CX̂a

(14)

where:

K =


K1 0
K2 0
K3 0
0 K4

 , L =


L1 0
L2 0
L3 0
0 L4


K is chosen in order to make A−KC Hurwitz.

System (14) is an observer for system (13) where the observation errors converge toward zero

in finite time if L1, L2, L3 and L4 satisfy the following conditions:
L1 > max |e2|
L2 > 0

−
ϑ−

√
|ζ|

P3

L1 < L3 < −
ϑ+

√
|ζ|

P3

L1

L4 > max |δ2|

(15)

with:

ζ = −4L2P2P3

L1

δ1

e2
2 + e2

3

e3 ϑ = −
(
P2 +

δ1

e2
2 + e2

3

e2P3

)
where P2 and P3 are strictly positive scalars. and e2 = x̂2a − x2a , e3 = x̂3a − x3a . δ1 and δ2

are given by:

δ1 = ϕ1(X̂a)− ϕ1(Xa) + (g1(X̂a)− g1(Xa))u

δ2 = ϕ2(X̂a)− ϕ2(Xa) + (g2(X̂a)− g2(Xa))u

Proof The proof is based on Lyapunov theory. System (13) is observable using two outputs

y1a and y2a which give two accessible observation errors e1 = x̂1a − x1a and e4 = x̂4a − x4a .



The other errors, e2 and e3, are given by: e2 = x̂2a − x2a and e3 = x̂3a − x3a . The error

dynamics are given by 
ė1 = e2 −K1e1 − L1sign(e1)
ė2 = e3 −K2e1 − L2sign(e1)
ė3 = δ1 −K3e1 − L3sign(e1)
ė4 = δ2 −K4e4 − L4sign(e4)

(16)

In order to make e1 converge toward zero, one needs to define a sliding surface s1 = e1.

Then, a Lyapunov function V1 =
1

2
e2

1 can be chosen. The convergence of the estimation

error to zero is obtained if V̇1 < 0. Hence, L1 has to satisfy:{
L1 > e2 −K1e1 if e1 > 0
L1 > −e2 +K1e1 if e1 < 0

Both conditions can be satisfied by estimating the worst case scenario [26] i.e. considering

the maximum value of e2 that can occur. Hence, both condition are satisfied if:

L1 > max |e2|

Then, the sliding surface s1 is attractive and an ideal sliding motion takes place on this

surface, e1 = 0 and ė1 = 0. Using (16), one can write: sign(e1) = e2/L1. The error dynamics

becomes 
ė1 = 0
ė2 = e3 − L2e2/L1

ė3 = δ1 − L3e2/L1

Then, the dynamics of e2 and e3 can be written as:(
ė2

ė3

)
︸ ︷︷ ︸
ė23

=

(
−L2/L1 1
−L3/L1 0

)
︸ ︷︷ ︸

A

(
e2

e3

)
︸ ︷︷ ︸
e23

+

(
0
δ1

)
︸ ︷︷ ︸

Υ

The convergence of e23 toward zero is ensured if V̇2 < 0, where V23 = eT23Pe23 and P is a

matrix given by P =

(
P2 0
0 P3

)
. Recall that P2 and P3 are strictly positive scalars. Then,

the derivative of V2 with respect to time is given by:

V̇23 = −eT23

(
−PA− ATP − e23ΥTP

eT23e23

− PΥeT23

eT23e23

)
︸ ︷︷ ︸

M

e23

To make V̇23 < 0, one needs to guarantee that M is strictly positive. M is given by:

M =

 2
L2P2

L1

L3

L1

P3 − P2 −
e2δ1P3

e2
2 + e2

3

P3
L3

L1

− P2 −
P3δ1e2

e2
2 + e2

3

−2
P3δ1e3

e2
2 + e2

3





using Schur’s Lemma [28], M is positive definite if and only if:
2
L2P2

L1

> 0

−4
P3δ1e3

e2
2 + e2

3

L2P2

L1

−
(
L3

L1

P3 − P2 −
e2δ1P3

e2
2 + e2

3

)2

> 0

Hence, the conditions on L2 and L3 given in (15) are obtained and the errors e2 and

e3 converge toward zero. Finally for the remaining error e4, similarly to e1, a Lyapunov

function V4 =
1

2
e2

4 could be defined. In order to make V̇4 < 0, L4 must satisfy:{
L4 > δ2 −K4e4 if e4 > 0
L4 > −δ2 +K4e4 if e4 < 0

Both conditions can be satisfied if L4 > max |δ2|. �

Remark 4.1 The proof above gives conditions on L in order to make the observation errors

converge towards zero. Please note that those conditions hold even with the switching in

G(X̂a) by considering the worst case scenario in both cases: u ≥ 0 or u < 0 i.e. considering

the worst estimation of δ1 and δ2 in both cases. The proof thus holds for any input u ∈ [−1, 1]

of the averaged model (10).

5 Experimental Results

The observer of (14) is used in closed loop i.e. its variables X̂a are used in the control

strategy. Then, the control input u is used to calculate the different coefficients d(1), d(6) and

d(7). Finally, using a PWM technique on each valve i, the different inputs Ui are generated.

The pneumatic solenoid valves (Matrix model GNK821213C3K) used to control the air flow

have switching times of approximately 1.3 ms (opening time) and 0.2 ms (closing time).

With such fast switching times, the on/off valves are appropriate for the purposes of control

and observation. The controller and the observer are implemented using a dSPACE board

(DS1104), running at a sampling rate of 500 Hz. This sampling rate has been chosen ac-

cording to the open/close bandwidth of the valves opening and closing time smaller than 1.3

ms and to enable an acceptable tracking response.

The benchmark used to validate the observer has three sensors: a position sensor (y) and



two pressure sensors (PP and PN). However, the observer (14) only uses the measures of

y and PP to estimate the velocity ẏ and the pressure PN . The measurement the pressure

PN is used neither in the observer nor in the control strategy. It is only used to validate

the estimation of the pressure PN given by the observer. The benchmark parameters are

summarized in TABLE 1.

The authors of [14, 15] used the output averaged model to control the position of the ac-

Table 1: Benchmark parameters
Parameter Values
m: Total mass of the load and the piston 0.9 kg
bv: Viscous friction coefficient 50 N.s.m−1

l: Total length of the chamber 0.075 m
AP : Piston cylinder area in chamber P 1.81× 10−4 m 2

AN : Piston cylinder area in chamber N 1.81× 10−4 m 2

k: Polytropic constant 1.2
r: Perfect gas constant 286.68 J.(kg.K)−1

T : Air temperature 296 K
PS: Source pressure 3.01 bar
PE: Exhaust pressure 1.01 bar
bcrit: Critical pressure ratio 0.493
Cval: Mass flow rate constant 3.4× 10−9 kg.(s.Pa)−1

tuator y with a sliding mode control strategy [22,23]. The objective is to make the piston’s

position y track a desired sinusoidal trajectory yd(t). Using the sliding mode control strategy,

the control input u is given by:

u =



ũ−Kcsign(sp)

krT

m

(
Q(PS, x̂4a)

(l/2 + x̂1a)
+
Q(ψ(X̂a), PE)

(l/2− x̂1a)

) if ũ ≥ 0

ũ−Kcsign(sp)

krT

m

(
Q(x̂4a , PE)

(l/2 + x̂1a)
+
Q(PS, ψ(X̂a))

(l/2− x̂1a)

) if ũ < 0

Where: ũ is the equivalent control, Kc is a time variant gain to ensure robustness (See [14]

for more details), sp is the sliding surface, it is given by:

sp =

(
d

dt
+ λ

)3
τ∫

0

epdτ



where λ is a positive tunning parameter and ep is the position tracking error: ep = yd− x̂1a .

The equivalent control ũ is given by:

ũ =
...
y d +

k

m

(
AP x̂4a

l/2 + x̂1a

+
ANψ(X̂a)

l/2− x̂1a

)
x̂2a

+
bv
m
x̂3a − 3λëp − 3λ2ėp − λ3ep
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Figure 2: Real and estimated position and velocity

The constraints (15) give sufficient conditions for the system (14) to be a finite conver-

gence time observer for system (13). Please note that they do not offer a direct method

to calculate L. The constraints (15) include the observation errors e2 and e3 which are not

available. However, in practice, one can use experimental data to estimate the worst case

scenario i.e. the worst estimation of e2 and e3 in order to satisfy the constraints.

The parameters K and L of the observer (14) and λ of the sliding mode strategy are:

K =


100 0
1840 0
12000 0

0 10

 L =


5 0
2 0
15 0
0 20

 λ = 60

Fig.2 and Fig.3. show the estimation of the averaged state variable corresponding to y,

ẏ, PP and PN . y and PP are measured directly and used in the sliding mode observer: their



estimations are close to the experimental values. For the estimated velocity x̂2a , it is close

to the velocity calculated using a robust differentiation algorithm [29]. For the pressure PN ,

there is a slight error in the estimation.

Fig.4 shows the estimation errors. The y estimation error does not exceed 0.1 mm. The

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

Time (s)

P
P
 (

b
ar

)

 

 
Experimental Data
Observer Data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

Time (s)

P
N

 (
b

ar
)

 

 
Experimental Data
Observer Data

Figure 3: Real and estimated pressures

velocity estimation error does not exceed 0.03 m/s. While the estimation error of PP is less

than 0.1 bar for values reaching 3 bar, the estimation error of PN is much more important

and it can reach 0.5 bar. Hence, the sliding mode observer can achieve good performance

with small estimation errors. Furthermore, it is clear that the control objective which is to

track yd is satisfied as it is shown in Fig.2 with small oscillations of the measured position

around yd. However, this is due the dry frictions which were not considered in the modeling

step in the design of the control strategy.

6 Conclusion

In this paper, an averaged state model is proposed for a pneumatic actuator with four

on/off solenoid valves. The advantage of this averaged model is to have one continuous

input instead of having four binary inputs. This model can be easily used to design control
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Figure 4: Estimation errors

strategies, observers or fault detection. Based on this model and Lyapunov theory, a sliding

mode observer is designed. The estimation errors of this nonlinear observer have the prop-

erty to converge towards zero in a finite time if the correction gains are well chosen. This

observer has been validated experimentally in closed loop to track a desired trajectory for

the actuator position. The estimation errors are small and the control objective is satisfied.

The improvement of the estimation quality and the design of other types of observers are

proposed as perspective work.
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[27] G. Besançon and H. Hammouri, “On uniform observation of nonuniformly observable

systems,” Systems and Control Letters, vol. 29, no. 1, pp. 9–19, 1996.

[28] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, “Linear matrix inequalites in

system and control theory,” SIAM Studies in Applied Mathematics, vol. 15, jun 1994.

[29] M. Smaoui, X. Brun, and D. Thomasset, “A robust differentiator-controller design for

an electropneumatic system,” Proceedings of the 44th IEEE Conference on Decision and

Control, and the European Control Conference, pp. 4385–4390, 2005.


