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Improving children’s perseverance in 
mathematical reasoning: Creating conditions 
for productive interplay between cognition 
and affect 

Alison Barnes

University of Brighton, Brighton, UK, a.barnes2@brighton.ac.uk 

This paper reports on a small-scale intervention that 
explored perseverance in mathematical reasoning in 
children aged 10–11 in an English primary school. The 
intervention facilitated children’s provisional use of 
representations during mathematical reasoning ac-
tivities. The findings suggest improved perseverance 
because of the effect the intervention seemed to have on 
the bidirectional interplay between affect and cognition. 
This initially created affectively enabling conditions 
that impacted on cognition and then created cognitively 
enabling conditions that impacted on affect. A tentative 
framework describing this interaction is proposed.

Keywords: Perseverance, mathematical reasoning, affect, 

cognition, provisional.

INTRODUCTION AND THEORETICAL 
BACKGROUND

The development of mathematical reasoning is not 
straightforward; reasoning processes can trace a “zig-
zag” route (Lakatos, 1976, p. 42) which necessitates 
perseverance to navigate cognitive and affective dif-
ficulties. The cognitive processes relating to mathe-
matical reasoning have been well documented over 
the last seventy years (for example, Polya, 1945) and 
in more recent decades there have been significant 
theoretical developments in the interpretation of the 
affective domain in relation to learning mathematics 
(for example, Hannula, 2011). However, pedagogies to 
develop children’s mathematical perseverance are not 
yet articulated in the literature. This study sought to 
develop a practical intervention to improve children’s 
perseverance in mathematical reasoning. The signif-
icant interplay between cognitive and affective do-

mains during mathematical learning has been noted 
at previous CERMEs (Di Martino & Zan, 2013; Hannula, 
2011) and this interplay provided the framework for 
analysing and interpreting the findings in this study. 

The importance of reasoning
The central importance of reasoning in mathemat-
ics education has been widely argued. For example, 
Yankelewitz and colleagues (2010) assert that reason-
ing is crucial in the formulation and justification of 
convincing mathematical argument. Ball and Bass 
(2003, p. 28) make a connection between reasoning 
and the development of mathematical understanding, 
arguing that in the absence of reasoning, “mathemat-
ical understanding is meaningless”. They further ar-
gue that reasoning has a significant role in the recall 
of procedures and facts as it is the ability to reason, 
and not memory that enables a child to reconstruct 
knowledge when needed. The capacity to reason is 
therefore a significant factor in children’s learning 
of mathematics and there is value in framing a study 
with reasoning as its focus.

Mathematical reasoning can be considered to include 
deductive approaches that lead to formal mathemati-
cal proofs and inductive approaches that facilitate the 
development of knowledge; Polya (1959) broadly inter-
prets these two types of reasoning  as demonstrative 
and plausible reasoning respectively. In this study, my 
interpretation of mathematical reasoning was based 
on Polya’s (1959, p. 7–9) “plausible reasoning” and in-
cludes the use of processes detailed by Mason et al 
(2010) such as: random or systematic specialising by 
creating examples; noticing patterns to formulate and 
test conjectures; generalising and convincing. 
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Perseverance in reasoning
In this study, I have interpreted perseverance in 
accordance with common dictionary definitions 
to mean “persistence in [mathematical reasoning] 
despite difficulty or delay in achieving success” 
(OxfordDictionaries, 2014). Lee and Johnston-Wilder 
(2011, p. 1190) identify perseverance as one aspect of 
the construct mathematical resilience and argue that 
it is needed to overcome “mathematical difficulties”. 
Such difficulties arise from the “zig-zag” route that 
mathematical reasoning typically traces (Lakatos, 
1976, p. 42) and can be cognitive or affective in nature.

Overcoming cognitive difficulties necessitates the 
use of meta-cognitive self-regulatory approaches. For 
Mason, Burton and Stacey (2010), this is characterised 
by developing internal monitoring to facilitate de-
liberate reflection on reasoning processes and their 
outcomes. Such monitoring might result, for example, 
in changes in approach or use of representation, or 
rejection of ideas. This fosters a fallibilistic approach 
(Charalampous & Rowland, 2013; Lakatos, 1976) to en-
gaging with mathematics and mathematical uncer-
tainty. Mason, Burton and Stacey (2010) emphasise 
the value of considering three phases of work when 
engaged in activities involving mathematical reason-
ing: entry, attack and review.  The entry phase, charac-
terised by the making of random trials, and the back 
and forth movement between phases, exemplifies and 
facilitates a fallibilistic, self-regulatory approach to 
mathematical engagement.

Navigating Lakatos’ (1976, p. 42) zig-zag path also 
has affective impact and this necessitates affective 
self-regulatory responses. Goldin (2000) proposes 
that affective pathways, comprising rapidly changing 
emotional states, arise during mathematical problem 
solving.  Malmivuori (2006, p. 152) argues that these 
emotion responses “direct or disturb” mathemati-
cal thinking and activate either active or automatic 
self-regulatory processes. During active regulation 
of affective responses, an individual consciously 
monitors affective responses to inform cognitive de-
cision making. By contrast, automatic affective reg-
ulation describes self-regulatory processes that act 
at a sub-conscious level in which negative emotions 
can act to impede the higher order cognition involved 
in reasoning. 

Successful engagement with mathematical reason-
ing can be rewarding and impact on an individual’s 

sense of self-worth. Debellis and Goldin (2006, p. 132) 
describe mathematical intimacy as an affective struc-
ture which portrays an individual’s potential “deep 
emotional engagement” with mathematics. They ar-
gue that intimate mathematical experiences can give 
rise to emotions such as deep satisfaction that impact 
on self-worth. However, positive mathematical inti-
macy could be jeopardised by experiencing failure. 
Debellis and Goldin (2006, p. 138) reason that coping 
with swings in mathematical intimacy is a “meta-af-
fective capability”, the development of which charac-
terises successful problem solvers; this is a further 
presentation of the perseverance needed to be able 
to reason mathematically.

THE STUDY

In this study, I sought to improve children’s persever-
ance in mathematical reasoning by applying an inter-
vention that provided children with opportunities to 
use mathematical representations in a provisional 
way. 

The importance of representation in mathematics 
learning has been extensively documented and this 
study draws significantly on Bruner’s (1966) modes of 
representation and Dienes’ (1964) Dynamic Principle. 
However, the notion of provisionality is less widely 
interpreted within mathematics education. 

Provisionality is an idea that is drawn on in infor-
mation technology (IT) education (Leask & Meadows, 
2000). The provisional nature of many software appli-
cations enables users to evaluate and refine a product 
as it is being created. Papert (1980) utilised the provi-
sional nature of programming in designing the LOGO 
environment. LOGO enables a child to create instruc-
tions to move a turtle dynamically on the screen. It 
facilitates children to conjecture, make trials and use 
the resulting data to make improvements. Hence, this 
software enables children to construct understand-
ing through a trial and improvement, conjectural ap-
proach to mathematics; the intervention in this study 
sought to impact on children’s cognitive responses 
by applying a similarly provisional approach to chil-
dren’s use of mathematical representations.

Papert (1980) also notes how the provisional nature 
of programming impacts on the affective domain. It 
fosters an attitude that mathematical thinking is falli-
ble (Charalampous & Rowland, 2013), that it concerns 
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trial and improvement and conjecturing rather than 
the singular pursuit of right or wrong answers. Such 
an approach, he argues, makes children “less intim-
idated by a fear of being wrong” (Papert, 1980, p. 23). 
Hence, by constructing an intervention that enabled 
children to work provisionally, this study also sought 
to impact on children’s affective responses.

This research took place in an English primary school 
using an action research approach. The study com-
prised one Baseline Lesson in which the intervention 
was not applied, and two Research Lessons in which 
the teacher applied the intervention to her teaching 
approach. The teacher selected four children to form 
the study group based on her assessment that their 
perseverance in mathematical reasoning was limited 
and would benefit from improvement. Prior to each of 
the lessons, the teacher and I selected a mathematical 
activity that presented opportunities for mathemati-
cal reasoning. For the Research Lessons, we discussed 
how the children could use representations in a pro-
visional way and the teaching strategies that might 
facilitate this. The teacher then created the detailed 
plans and taught the lessons. 

The fieldwork comprised collecting data from the 
three lessons, post-lesson interviews with children 
and an evaluation meeting with the teacher. During 
the Baseline and Research Lessons, I collected data on 
the four children relating to the cognitive and affec-
tive domains through non-participant observation 
and by taking photographs of the representations that 
they made. Audio recordings were made of the chil-
dren’s dialogue during the lessons and I used these 
to augment the observation notes post-hoc. During 
observations, I used an approach similar to that 
used by Schorr and Goldin (2008) in their analysis of 
filmed lessons to gather data relating to key affective 
events. For example, I noted the children’s manner of 
engagement, their body position and the speed of their 

speech. I interviewed the study children immediately 
after each observation. The focus of the interview was 
threefold: to check my understanding of what I had 
observed; to gain the children’s interpretation of what 
had happened and why, and to explore the extent of 
the children’s mathematical reasoning.

This paper reports on the thick data arising from the 
second Research Lesson pertaining to two of the study 
group, Lucy and Emily.

FINDINGS AND DISCUSSION

Bidirectional interplay between cognition and affect 
(Di Martino & Zan, 2013) was evident during Lucy 
and Emily’s mathematical engagement in Research 
Lesson 2. However, it seemed to operate in different 
directions at different stages of their thinking. Hence, 
I have used  Mason, Burton and Stacey’s (2010) entry 
and attack phases of problem solving as a temporal 
framework for the presentation and discussion of 
findings.

During Research Lesson 2, Lucy and Emily engaged 
as a pair with the problem:

A square pond is surrounded by a path that is 
1 unit wide. Explore what happens to the path 
length for different sizes of pond.

Resources available: Cuisenaire rods, pencils, A3 
plain paper.

The impact the intervention during 
the entry phase
During the entry phase (Mason, Burton, & Stacey, 
2010), Lucy and Emily used Cuisenaire rods in a provi-
sional way to get a feel for the problem; they explored 
how the criteria given in the activity could be repre-
sented and began to explore how the path size related 

Figure 1: Entry phase trials
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to the pond size. In their first three trials (Figure 1a-c) 
they focused on what it meant for the path to surround 
the pond. They used the information from the first two 
partially successful trials (Figure 1a-b) to inform their 
third trial (Figure 1c). This is similar way to in which 
Papert (1980) described children using the outcomes 
from their programming in LOGO to fix bugs in code.

The girls’ provisional use of representation during 
the entry phase seemed to impact on their capacity to 
work with mathematical uncertainty and to adopt a 
fallibilist approach. Any trials that resulted in failure 
to meet the criteria set out in the activity, for example 
those depicted in Figure 1a and 1b did not appear to 
decrease their engagement or persistence with the 
activity. Their capacity to work with mathematical 
uncertainty facilitated their self-regulation and the 
application of their learning from apparently unsuc-
cessful trials. Emily and Lucy showed no indications 
of fear, anxiety, bewilderment or reticence that can 
accompany the beginning of mathematical explora-
tion, when least is known and understood about the 
problem. Conversely, they seemed highly engaged; 
they were leaning forwards, constantly exploring 
the parameters of the problem through their manip-
ulation of the Cuisenaire rods and they alternated 
between quiet individual construction of examples 
and paired dialogue to share and develop thinking. 
The girls portrayed a relaxed appearance during the 
entry phase; their approach had a sense of playfulness 
and exploration that could be likened to the unstruc-
tured play that Dienes (1964) describes in his Dynamic 
Principle and this seemed to enable them to experi-
ence mathematical uncertainty in a positive way. 

During the construction of their third trial, the pair 
created an ordered arrangement of all ten Cuisenaire 
rods to serve as a reference of relative lengths and 
support selection (top right of Figure 1c). In so doing, 
they noticed that they had selected consecutive rods to 
create the 62 pond and its path. This led them to form 
the conjecture that began to articulate the relation-
ship between the two dependent variables:

Lucy:	 I think it will be if you use 1 [for the 
pond] then it will be 2 [for the path], if 

you use 2 then it’s going to be 3, so it’s 
[the path] going to be 1 higher than your 
square number

By the end of the entry phase they had constructed 
and ordered four examples (Figure 1d). They ap-
peared to create each example by randomly selecting 
a Cuisenaire rod and using this as the basis to create 
one example; this use of random specialisation typ-
ifies the entry phase trials (Mason, Burton, & Stacey, 
2010).  This facilitated cognitive developments that 
enabled the girls to notice and formulate conjectures 
about the emerging patterns between the width of the 
pond and side length of path and to begin to articulate 
this relationship.

Hence, during the entry phase, the provisional way in 
which the girls used representations seemed to foster 
the emergence of affectively enabling responses and 
this enabled cognitive developments in mathematical 
reasoning. The impact of the girls’ provisional use of 
representation during the entry phase is depicted in 
Figure 2.

The impact of the intervention in the 
attack phase
The transition to the attack phase was indicated by the 
girls’ use of systematic specialisation (Mason, Burton, 
& Stacey, 2010). Having organised the data generat-
ed through random specialisation into an ordered 
sequence (Figure 1d), the girls then used the provi-
sional nature of their representations to create gaps 
between the examples, apparently to identify and ac-
commodate missing data. They then represented all 
the ponds in an ordered sequence from 12 to 92 using 
Cuisenaire rods (Figure 3).

The girls then switched to a more permanent rep-
resentation in the form of a table (Figure 4). This rep-
resentation does not simply illustrate total amounts 
relating to pond size and path lengths. Rather, it in-
cludes significant detail relating to the mathematical 
structures that underpin the relationship between 
the dependent variables of pond size and path length. 
Each example of the pond described its width squared, 
its total value and the odd/even property of this to-

Figure 2: Impact of the intervention during the entry phase
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tal. Each example of the path is similarly described 
by side length multiplied by 4, the total value of the 
path length and the even nature of these totals. The 
girls also noted that each total was a multiple of 4. 
Interestingly, they realised that their recording had 
not been totally consistent in representing the x4 as-
pect of the path side length and this led them to under-
line the x4 component. Whilst there was no evidence 
in this lesson that the girls became overtly stuck, and 
hence no necessity to overcome this, they did perse-
vere in formulating and articulating the reasoning for 
the patterns they observed. Emily’s original response 
to the challenge of explaining the patterns they had 
identified resulted in a sentence that she was initially 
unable to complete: 

Emily:	 All the paths are in the four times table. 
They have to be in the four times table 
because… 

The girls persisted and utilised their understanding 
of the structures they had identified to formulate 
their reasoning for the observable patterns. This is 
captured on the right of Figure 4. In the post-lesson 
interview, the girls re-visited this: 

13	 Emily:	 We noticed about the path, be-
cause there’s 4 sides to the path, we need 4 
sides of the path, so you need to times it by 
whatever number the length of the path is. 
So then it’s the 4 times table because there 

Figure 3: Systematic representation of ponds with widths 1–9

Figure 4: Lucy and Emily’s table of findings
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are 4 sides and all of them, the numbers are 
even because they are all in the 4 times table

69	 Lucy:	 Because it expands so you need 
to add 4 each time you go up

The diagram on the right of Figure 4 supports the 
reasoning expressed in line 69. In the interview, the 
girls re-created this image using Cuisenaire rods; 
Figure 5 shows how the path surrounding the 12 pond 
is positioned on top of the path surrounding the 22 
pond with the gaps at each corner filled by four rods, 
each of length 1. There are similarities between the 
representations drawn in Figure 4 and constructed 
in Figure 5 and the girls’ second trial (Figure 1b); the 
initial provisional explorations using the Cuisenaire 
rods, and in particular the example in Figure 1b seems 
to have helped the girls to understand the structures 
underpinning the growth of the path size. This under-
standing enabled Lucy to articulate the reasoning in 
line 69. The depth of understanding and the extent 
of the reasoning that the girls achieved resulted in 
positive affective responses. As in the entry phase, 
both girls remained highly engaged in the activity 
throughout the attack phase and took every oppor-
tunity presented to talk with the teacher about their 
findings and seemed eager to share the reasoning that 
they were constructing. 

In the evaluation meeting following the Research 
Lesson, the teacher reported the impact of the girls’ 
provisional use of representations during the attack 
phase on their cognitive and affective domains: 

18	 Teacher:	 I think [the provisional use of 
representation] helped them explain their 
reasoning more and therefore that helped 
them sustain their interest because they 
could explain more, because they had some-
thing to work from, to explain with. Their 
level of reasoning was amazing.

96	 Teacher:	 [Lucy’s] very proud of the work 
she’s done [in the project]. I only have to men-
tion it and a smile spreads across her face.

108	 Teacher:	 I have seen some improvement 
in [Emily’s] perseverance and resilience […] 
in the past she would very much continue to 
follow a path even though it was wrong […]. 
She’s been able to stop mid way and realise 
it’s wrong and have to go back to the begin-
ning.

In line 18, the teacher exclaims about the level of the 
girls reasoning. In the baseline lesson, the girls were 
able to notice and articulate patterns, but not reason 
about why these occurred, hence there was a signif-
icant contrast with the extent and depth of their rea-
soning between the baseline lesson and the second 
research lesson. 

The teacher also makes two connections in line 18. 
First, she makes a link between the girls’ provisional 
use of representation and their articulation of math-
ematical reasoning. Second, she perceives that the 
positive cognitive developments contributed to the 
girls’ sustained engagement and curiosity. The im-
pact on Lucy’s affective domain appeared to continue 
beyond the Research Lesson. Lucy’s apparent sense 
of pride (line 96), suggests that she may have experi-
enced developments in mathematical intimacy; that 
she was emotionally engaged and achieved a sense 
of satisfaction and self-worth through her cognitive 
mathematical activity (DeBellis & Goldin, 2006). Line 
108 suggests that Emily may have increased her capac-
ity to actively self-regulate (Malmivuori, 2006); this 
perhaps arises from developments in her capacity to 
work with mathematical uncertainty which may have 
arisen through working in a provisional way.

It appears that the provisional use of representations 
in the attack phase impacts first on the cognitive do-
main and second on the affective domain; a reversal 

Figure 5: Representations created to support reasoning in line 69
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of the processes emerging in the entry phase. This 
relationship is depicted in Figure 6.

CONCLUSION AND NEXT STEPS

This study sought to develop a practical intervention 
to improve children’s perseverance in mathematical 
reasoning. The girls’ provisional use of Cuisenaire 
rods appeared to have an enabling affective impact 
during the entry phase. This facilitated cognitive 
developments in reasoning as it supported them to 
behave in an exploratory way, to make and learn from 
trials, work with mathematical uncertainty and begin 
to formulate conjectures. In the attack phase, their 
provisional use of representation seemed to enable 
the girls to develop systematic approaches to their 
creation and organisation of trials. This led to their 
noticing patterns, understanding the underpinning 
mathematical structures, and using this to persevere 
in formulating reasoning. It seems that positive bidi-
rectional interplay (Di Martino & Zan, 2013) between 
affect and cognition, facilitated by the intervention, 
resulted in improved perseverance in mathematical 
reasoning. A tentative analytic framework detailing 
these interactions and synthesising Figures 2 and 6, 
is depicted in Figure 7. 

In the next phase of this research, I plan to work with 
two classes of children aged 10–11 in different schools 
to further test the impact of the intervention on chil-
dren’s perseverance in mathematical reasoning.
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