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We explore behaviors of high achievers 10 to 16 years old 
during a problem modification process by looking at 
the ways students vary the constraints of a given prob-
lem. We found that these children swing between low 
amplitude driven creativity and failure to pose math-
ematically consistent problems when it comes about 
understanding the deep structure of mathematical 
concepts and strategies.
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INTRODUCTION

We exposed students from grades 4 to 10 to a problem 
posing context. We were interested in this case to see 
how mathematical creativity manifests in students 
and what is (if any) the relationship between their cre-
ative approaches and the quality of the mathematics 
problems they generate.

In general, in problem-posing contexts, students are 
stimulated to make observations, experiment through 
varying some parameters, and devise their own new 
problems (Singer, Ellerton, Cai, & Leung, 2013). In 
this paper, we accept that problem posing refers to 
the generation of (completely) new problems, and to 
the re-formulation/ modification of given problems 
(Silver, 1994). We specifically address here the context 
of problem modification.

Previous studies have shown that, in problem pos-
ing situations, mathematically able students tend to 
vary a single parameter in order to ensure the con-
trol over the relationships among all the elements of 
a posed problem, even when they make interesting 

generalizations. This tendency of small-step varia-
tions was interpreted as a student’s need to keep as 
coherent and consistent as possible his/her propos-
als by controlling (sometimes unintentionally) the 
consequences of the proposed changes (Singer, 2012a; 
Voica & Singer, 2013). In a problem-modification study, 
Singer, Pelczer and Voica have shown that the capacity 
of a student to pose coherent and consistent changes 
of a problem and to understand the (mathematical) 
consequences of these changes proves student’s capa-
bility for deep transfer creative approaches (Singer, 
Pelczer, & Voica, 2011). Therefore, this capability could 
predict mathematical creativity, which has been char-
acterized as being different from general creativity 
(e.g., Piirto, 1999). 

In describing mathematical creativity, we use a frame-
work based on cognitive flexibility, which is charac-
terized by: cognitive novelty, cognitive variety, and 
changes in cognitive framing (e.g., Voica & Singer, 
2013). In a problem-modification context, we consider 
that a student proves cognitive flexibility when she or 
he poses different new problems starting from a given 
input (i.e. cognitive variety), generates new propos-
als that are far from the starting item (i.e. cognitive 
novelty), and is able to change his/her mental frame 
in solving problems or identifying/discovering new 
ones (i.e., change in cognitive framing).

In addition, these studies have shown that the more 
the student advances in the abstract dimension of a 
given problem, the more mathematically relevant are 
his/her newly obtained versions. It seems that the 
students who are cautious and minimally change the 
problem are in fact mathematically advanced students 
who show proper insights on some mathematical con-
cepts that exceed their age level. Actually, they pay 
careful attention to controlling the values of the vari-
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ables, as mathematicians usually do. These studies 
conclude that a feature of mathematical creativity, at 
least for the students involved in the research (10–16 
years old), is a type of cognitive flexibility charac-
terized not so much by novelty, but by incremental 
representational changes in cognitive frames (Singer, 
2012b; Voica & Singer, 2013).

In the present study, we start from the assumption, 
suggested by previous experimental research (e.g., 
Voica & Singer, 2014), that problem posing (and its 
particular case – problem modification) is a useful 
context for identifying mathematical creativity, and 
we try to go further in determining correlations 
between students’ mathematical creativity and the 
quality of their posed problems. Thus, we are trying 
to answer the question: What are the gains and the 
losses from the view of creativity, when students do 
mathematical problem posing?

METHODOLOGY

The sample of this study consists of students from 
grades 4 to 10 (10–16 years old), participants in a 
summer camp organized for the winners of a large-
scale two-round competition (Kangaroo). The camp 
participants, representing the top 0.2% from a total 
of about 150 000 participants at the competition, are 
considered high achievers in mathematics. During 
this summer camp we launched a call for problems. 
The participants had to choose a problem from a list 
of three problems (given as reference points) and, 
after solving it, to pose three problems based on the 
starting reference problem: one simpler, one similar, 
and one more difficult. In addition, the students were 
supposed to write down the solutions of their posed 
problems and to explain how their proposals fit the 
requested criterion (simpler, similar, etc.). We used 
therefore a structured problem-posing situation (in 
the terminology of Stoyanova and Ellerton, 1996). 
Students had 3 days to formulate their answers. In 
all, 57 students submitted problems. 

Each of the posed problems was evaluated by two in-
dependent evaluators who assessed it based on a set of 
criteria: correctness and completeness of the problem 
formulation and the proposed solution, originality 
of the text, and clarity of explanations. Based on this 
primary evaluation, we invited a few participants for 
interview. Among the selected students were those 
whose problems were highly ranked by the evalua-

tors. We also invited for interview two students who 
posed problems considered with potential for further 
development. In all, 20 students were interviewed. 
The interviews were based on a general protocol con-
cerning issues such as: What are the similarities/dif-
ferences between the posed problem and the starting 
one? What other problems are possible to pose? What 
make you think to such approach? 

The interviews were carried out with two students 
at a time, thus creating a context for interactions be-
tween the children. This helped us to reveal students’ 
ideas through discussions with their peers (Vygotsky, 
1978) and to get consistent feedback on their problem 
posing strategies and their level of mathematical un-
derstanding. The interviews were video recorded. 

We focus the present paper on the problems generated 
by the students who have chosen the first problem in 
the given list (problem 1 below). Consequently, our 
sample consists of those 19 students (out of which 6 
have participated in the interview sessions). The anal-
ysis that we do is a qualitative one, mainly based on 
students’ written submissions. Because of the reduced 
dimension of this paper, we just present a holistic view 
on students’ comments during the interviews to high-
light our main conclusions.

CONTEXT

The starting problem
The following problem was initially given to students 
as a reference point: we will identify it as the starting 
problem.

Problem 1. The 10 × 10 grid 
is formed out of squares of 
1dm. We glue a ribbon as 
shown in the image. What 
is the length of the ribbon? 

A. 99 dm;   B. 99.5 dm;   C. 100 
dm;   D. 100.5 dm;   E. 20 dm

We have chosen this problem from the Kangaroo 
contest to have statistical information on its degree 
of difficulty. In the competition, this problem was ad-
ministered to a group of 5659 students from the 5th 
and the 6th grades. The Kangaroo contest takes place 
in two rounds and the participants have to answer 30 
multiple-choice questions in 75 minutes; therefore, 



Problem	posing:	Students	between	driven	creativity	and	mathematical	failure	(Florence	Mihaela	Singer,	Ildikó	Pelczer	and	Cristian	Voica)

1075

optimizing solution strategies is essential in obtain-
ing a good score. 

Statistical data about the performance of students 
participating in the Kangaroo contest show that they 
perceived the starting problem as difficult: this con-
clusion follows from the relatively low percentage 
of correct responses to this problem (see Table 1), the 
percentage of students that preferred not to answer 
this question, and the percentage of correct answers 
obtained by this cohort to other problems (around 
75%). Even if we take together answers B and C (con-
cluding that about half of the students had an insight 
concerning a strategy to optimize the solution to this 
problem), we can still conclude that the problem was 
perceived as difficult.

Components of a problem
To better understand the discussion that follows, we 
detail the components of the starting problem based 
on the methodology introduced by Singer and Voica 
(2013). In general, the text of a problem contains: a 
background theme, (numerical) data, operators (or 
operating schemes), constraints over the data and 
the operators, and constraints that involve at least 
one unknown value of a parameter (Singer & Voica, 
2013). The background theme represents, briefly said, 
what is about in the problem. In our case, the back-
ground theme is represented by a grid and a trajectory 
marked on it. The background theme is characterized 
by one or more parameters: in our case, the parameter 
is the shape of the trajectory (of the ribbon). The data 
are (numerical or literal) values associated to these pa-
rameters: in the above problem, these are represented 
by the number of squares and their dimensions. The 
operating schemes are actions suggested by the text: 
here, these are the way of crossing, and the measure-
ment of the trajectory. The constraints imposed on the 
data and the operators are restrictions that state the 
relations of the background theme with the data and 
the operating schemes. In the starting problem, some 
of the constraints are of local nature: for example, 

“the trajectory” unites the centers of the squares and 
crosses a square in one of the two modalities shown 
in Figure 1 (eventually rotated). 

Other constraints are global, such as the filling con-
dition – i.e. that the ribbon goes across each cell of 
the square. These constraints, in combination, allow 
a quick identification of the answer, since 99 out of 
100 squares are crossed and the last one is only half 
marked (therefore, the correct result is 99.5). We be-
lieve that the difficulty of the problem comes from 
the fact that the solvers did not totally understand 
the local and the global constraints; usually, they try 
to perform sequential additions of the ribbon length, 
which can lead to miscalculations or to abandoning 
the problem because of the time limit crisis. 

The starting problem contains two kinds of con-
straints: essential in-depth constraints that give the 
core-structure of the problem, and superficial con-
straints. The essential constraints manifest at both 
local and global levels: the global constraint refers 
to the grid coverage, which combined with the local 
algorithm (the trajectory crosses the squares in the 
midpoints of their sides following two different pat-
terns, and there are no self-crossings) allows an opti-
mal solution (as time is concerned). Superficial con-
straints refer to the dimension of the grid, the shape of 
the grid (including the base element of the grid), and 
to the particular path chosen within the grid.

Transformations 
We classified the modifications made by the students 
when they developed a new problem in two catego-
ries: exogenous and endogenous transformations. The 
terms originate from the system theory, where endog-
enous transformations are transformations between 
models expressed in the same language, and exoge-
nous ones are transformations between models ex-
pressed using different languages (Mens & Van Gorp, 
2006). In problem modification (PM) situations, we 
consider that a student makes endogenous transfor-
mations when he/she uses the same types of operating 

A B C D E NA

Grade 5 (3278 participants) 10.2 18.5 37.2 8.9 7.7 17.5

Grade 6 (2381 participants) 10.4 25.1 33.9 7.7 7.0 15.8

Table 1:	Frequencies	of	answers	to	the	starting	problem	in	the	Kangaroo	competition	(Correct	answer	is	B.	NA	stands	for	no-answer)

Figure 1:	Local	constraints	for	building	the	trajectory	in	problem	1
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schemes and constraints as in the starting problem (i.e. 
makes a new mathematical problem using the same 
language - the same mathematical concepts as those of 
the starting problem); otherwise, we consider that the 
student makes an exogenous transformation. In other 
words: the endogenous transformation acts only on 
already present components in the starting problem, 
while an exogenous transformation will bring new 
components into the generated problem. 

RESULTS
We present our analysis based on some illustrative 
examples. 

Example 1. Victor (grade 4) proposed three problems 
based on the drawings contained in Figure 2. In all 
these problems, Victor formulated the same question: 
What is the length of the ribbon?

One can observe that Victor varies the dimensions 
and the shape of the trajectory. For the last problem 
(most difficult), Victor avoids two of the squares – 
therefore, he renounces to the complete coverage of 
the grid, but he keeps the same type of optimal strat-
egy of solving. The transformations performed by 
Victor are endogenous: he poses a new problem using 
elements that exist in the starting problem. 

Example 2. Doina (grade 8) based her posed problems 
on the patterns presented in Figure 3. She put the 
same requirements for all her problems: finding the 
length of the drawn broken line. Doina specifies in her 
problem texts the geometrical properties of the base 
cell (rhombus, in the first case; regular hexagon in the 
second; and equilateral triangle in the third). She is 
very careful in characterizing the local constraints; 
for example, in the last posed problem, she clarifies 
the fact that the ribbon crosses the centers of gravity 
of some of the triangles.

Overall, Doina kept both the local and global defining 
characteristics unchanged and modified only the lay-
out and the basic element in the tessellation. The mod-
ifications took into account the unique association be-
tween each cell(s) and measure unit, the nature of the 
trajectory (no crossings) and the complete coverage 
of the grid, conditions that allow the optimal solution. 

We can observe in this case cognitive flexibility in 
changing elements without changing the deep struc-
ture of the initial problem (solution). This case also 
illustrates endogenous transformations – since only 
the elements already present in the initial problem 
are manipulated.

Figure 2:	The	drawings	made	by	Victor	(grade	4)	in	posing	new	problems

Figure 3:	The	drawings	made	by	Doina	(grade	8)	in	posing	new	problems
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Example 3. The following problems were proposed by 
Silviu, a grade 9 student. 

Simpler: Dan wants to cut out a shuttle from a 
textile covered by a square grid (Figure 4a). If 
the side of a square is 2, what is the remaining 
surface after the shuttle was cut out? 

Similar: An ant crossed a piece of cake of an equi-
lateral triangle shape with the side of 5cm. What 
is the length of the trajectory marked in the image 
(Figure 4b)?

More difficult (simplified phrasing): There are 
four animals competing on square-grid paths 
(Figure 4c); their speed is given in terms of rela-
tions between them. The question is on the order 
of arrival of the animals.

The “similar” problem has an exogenous modification 
on the global constraint. Although the student con-
sidered this proposal similar to the given problem, 
this is actually very different when its nature is con-
sidered: the only available strategy for solving is the 
counting of the line segments (two different kinds). 
Consequently, the student failed to use an optimized 
algorithm to solve this problem. 

Silviu’s simpler and more difficult problems suppose 
also exogenous transformations. By adding new ele-
ments, the requirements changed, and the difficulty 
remains to be judged based on the amount of calcu-
lations to perform. By an exogenous transformation, 
the new problems are much farther from the given 
one, but they become procedural, as global solving 
is not possible.

Example 4. The following problems were proposed by 
three students (Mircea, Andrei, and Nguyen, grade 5), 
who decided to work as a group. 

Simpler: A monkey wants to reach bananas. In 
the 7 x 9 square below the route is indicated 
(Figure 5a). Knowing that the side of a square 
is 5m and the monkey crosses 19m in 5 minutes, 
find how long does it takes the monkey to reach 
the bananas.

Similar: Ballerina lost her ribbon in the maze. 
The ribbon is represented in the square grid 
(Figure  5b). Knowing that the side of a small 
square is 3m, find the length of the ribbon.

More difficult: A maze is between the houses A 
and B. Jack wants to go from A to B, so he takes 
a string to indicate his way to go. On the 11 × 11 
square grid below the Jack’s travel is drawn 
(Figure 5c). Knowing that a square has a side 
of 1.2m, find the properties of the number that 
shows the length of the road.

In their proposals, the three students renounced to 
the local constraints (the similar and more difficult 
problems have cross-overs), but also to the global 
constraints (the trajectory doesn’t fill in the grid). In 
addition, the problems contain a series of external 
elements meant to increase the degree of difficulty. For 
example, they requested to calculate the time needed 
for crossing the given path (simpler problem) or the 
fact that problem 3 contains a reference to an 11 × 11 
grid, although the given image contains a 11 × 12 grid 
(consequently, the last column should be ignored).

DISCUSSION 

The data reported above highlight two situations. 
Some of the students vary superficial constraints by 
making endogenous transformations. For example, 
Victor (example 1) modifies the size of the grid and 
the shape of the trajectory, while Doina (example 2) 
modifies the generator element of the grid. In these 
cases, the students strictly follow the starting prob-

Figure 4:	The	drawings	made	by	Silviu	for	his	posed	problems
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lem’s structure and pose coherent and consistent 
problems that respect the nature of the given problem. 

Some other students use their knowledge of advanced 
mathematical procedures and techniques to pose 
problems based on exogenous transformations.  In 
these cases, the proposals are farther from the start-
ing model, but at the expense of a lesser level of gen-
eralization. This is visible in the situations where stu-
dents vary global constraints, as in the case of Silviu 
(example 3), or in the case of Mircea, Andrei, and 
Nguyen (example 4). In these cases, students intro-
duce independent variables – that is, they perform 
exogenous transformations on the starting problem. 
In spite of their efforts to make their problems more 
difficult, they just increase the amount of procedural 
computations, but not the mathematical quality of the 
problem, measured by its mathematical consistency. 
Their interviews also revealed that they actually have 
limited understanding of the starting problem: this 
fact had an effect on their posed problems, which they 
were not able to solve using an optimal solution, but 
just making step-by-step procedural calculations.

Before getting to a final conclusion, we may consider 
that other factors could be at play in our analysis. The 
problems were posed for a problem-posing competi-
tion, and the students knew that the “value” of their 
problems would be judged. It might be that some stu-
dents preferred to keep the structure of the starting 
problem, because it was already considered as being 

“valuable” (as it was a problem included into a real 
contest). Consequently, in appreciating the problems 
posed by students we need to consider their personal 
beliefs about what makes a good problem, as well as 
their ability to identify the problem structure and the 
mechanisms available for a controlled change of the 
problem elements. Thus, it is interesting to consider 
the nature of modifications at one-more finer detail. 

Victor (example 1) has posed problems of identical 
nature to the given one, just by varying the size of 

the net. Even though in his solutions we saw that 
he was aware of the constraint allowing an optimal 
solution, attending only to the modification of the 
grid suggests that he has not yet developed efficient 
mechanisms for changing more elements. Such situ-
ation is understandable if we take into account that 
Victor is a 4 grader, therefore his experience with 
different shapes and grid structures may be very lim-
ited. In contrast, Doina (example 2) seems to master 
such mechanisms, while keeping close to the problem 
type might be a personal preference. Somehow, Doina 
simplifies the starting problem because the pattern 
she has chosen for the “broken line” in each of her 
three proposals allows immediate identification of 
the grid-filling property. This simplification allows 
variations in the cognitive frame generated by the 
initial problem while keeping intact the analogy with 
the deep features of the starting problem. These vari-
ations in cognitive framing give an indication of her 
mathematical creativity.

Silviu (example 3), and Mircea, Andrei, and Nguyen 
(example 4) change many more elements of the start-
ing problem. Furthermore, we found during the in-
terviews that these students participated in inten-
sive training programs (with their school teachers 
and with their parents). Their experience from such 
training might suggest that good problems are those 
with many data, which require breaking the problem 
into several pieces, and, in overall, ask for more fluid 
procedural work. 

These cases reveal an essential fact: the extent of 
which the new proposal reflects an understanding 
of the hard core of the given problem drives the qual-
ity of the newly posed issues. We further analyze 
the students’ posed problems from this perspective. 
Beyond the students’ beliefs about problems and com-
petitions, a dilemma still stands. On the one hand, we 
have more creative approaches but at the expense of 
mathematical quality, on the other hand, the newly 

Figure 5:	The	drawings	made	by	Mircea,	Andrei,	and	Nguyen	for	the	posed	problems
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posed problems that reflect in-depth understanding 
are apparently less creative. 

Some of the students who suggested changes of an 
exogenous type placed in their texts new mathemat-
ical concepts and usually provided traps to solvers. 
Although they seem to be more creative – when judged 
on the novelty dimension – they depart from a deep 
understanding of the starting problem structure. The 
problems they posed have a low degree of generality, 
and their difficulty is given by the solving procedure 
(overcoming traps intentionally included in the text 
and performing step-by-step calculations). The prob-
lems arising in our sample in this way proved weaker 
in terms of the mathematics involved. We interpret 
this result as a (mathematical) failure in posing prob-
lems that preserve significant aspects of the deep 
structure of the original problem, yet confirming a 
distinction between being creative and being mathe-
matically creative.   

What are the underlying factors that ensure for a new 
posed problem to be mathematically consistent? We 
found that, among the students who used endogenous 
transformations, those who kept the global way of 
solving of the starting problem made mathematical-
ly qualitative new problems. But, as they identified 
the optimal way of solving, the resulted problem re-
mained close to the initial one, therefore in this case 
the student proved a low level of cognitive novelty, 
and the changes in cognitive framing were minimal. 
Their creativity was driven by the solution space, and 
inevitably, it had low amplitude.

Concluding, the evidence we got from problem modi-
fication tasks in our sample show that high achieving 
children swing between low amplitude driven cre-
ativity and failure to pose consistent problems when 
it comes about understanding the deep structure of 
mathematical concepts and strategies. Are these the 
only alternatives? Further research is needed to find 
a more definite answer.
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