
HAL Id: hal-01287313
https://hal.science/hal-01287313v2

Submitted on 2 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing tasks for mathematically talented students
Maike Schindler, Julia Joklitschke

To cite this version:
Maike Schindler, Julia Joklitschke. Designing tasks for mathematically talented students. CERME 9
- Ninth Congress of the European Society for Research in Mathematics Education, Charles University
in Prague, Faculty of Education; ERME, Feb 2015, Prague, Czech Republic. pp.1066-1072. �hal-
01287313v2�

https://hal.science/hal-01287313v2
https://hal.archives-ouvertes.fr


1066CERME9 (2015) – TWG07

Designing tasks for mathematically 
talented students

Maike Schindler1 and Julia Joklitschke2

1	 Örebro universitet, Institutionen för naturvetenskap och teknik, Örebro, Sweden, maike.schindler@oru.se

2	 Ruhr-Universität Bochum, Bochum, Germany

For the Design Research project presented, a learning 
environment for mathematically talented and interest-
ed 7th-grade students was investigated. The results show 
that the subject matter of graph theory offers both oppor-
tunities and means for students to develop their abilities. 
The data analysis showed likewise how the tasks might 
be modified in order to impose on their potential and 
thereby foster students’ abilities of a formalized percep-
tion and pervasion of mathematical information and 
of generalization.
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design, graph theory.

INTRODUCTION

Mathematical potential and talent is one of the top-
ics in mathematics education research increasingly 
attracting attention (Leikin, Karp, Novotna, & Singe, 
2013) – with good reason. Not only since PISA and 
TIMSS – which have impressively revealed the het-
erogeneity of students within countries and even 
within single school types  – the huge variety of 
students’ abilities is well-known. However, there is 
only a small number of investigations that show how 
high-achievers can be supported in order to develop 
their potential (cf., e.g., Kießwetter & Rehlich, 2005). In 
the context of mathematics education research, there 
are certain findings regarding the abilities and char-
acteristics of mathematically talented students (e.g., 
Krutetskii, 1976). These constitute a stepping stone for 
the investigation at hand: On the basis of the existing 
results, a Design Research project (cf. Gravemeijer & 
Bakker, 2006, p. 1) was conducted in order to devel-
op and refine a learning arrangement for a group of 
mathematically talented and interested students and 
to assess, for a concrete subject matter – namely graph 
coloring –, how mathematically talented students can 

be challenged and, at the same time, supported in their 
specific abilities. Therefore it was one main goal to get 
insights into the abilities and possible difficulties of 
the students, which are being focused in this paper.

THEORETICAL BACKGROUND

Mathematically talented students 
and their abilities
One of the most important investigations in the field 
of abilities of mathematically talented students was 
conducted by Krutetskii (1976). He found four com-
ponents being constitutive for mathematical abilities 
during school age: Obtaining mathematical informa-
tion, i.e. “the ability for formalized perception of math-
ematical material, for grasping the formal structure 
of a problem” (Krutetskii, 1976, p. 350); Processing 
mathematical information, which comprises, among 
others, “the ability for rapid and broad generalization 
of mathematical objects, relations, and operations” 
(Krutetskii, 1976, p. 350); Retaining mathematical in-
formation, meaning memorizing mathematical ap-
proaches etc.; and a General synthetic component, con-
necting and interrelating all other components and 
forming a mathematical cast of mind. Mathematically 
talented students can be characterized by possessing 
these abilities to a great extent. Therefore Krutetskii’s 
categories should be considered when learning en-
vironments and tasks for these students are being 
designed. 

In the investigation presented, the focus was – on the 
one hand – on the students’ ability to mathematize 
situations and – on the other hand – on their ability 
to generalize, which means being able to (a) recognize 
similar situations and (b) handle the generalized solu-
tion in these situations (Krutetskii, 1976, p. 237). It 
was investigated in how far the students were able to 
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mathematize and generalize when handling the tasks 
of the developed learning environment.

Task design and realistic 
mathematics education
For refining and (re-)designing our learning environ-
ment, we focused especially on students’ abilities to 
mathematize and generalize (see above). In our proj-
ect, research was not supposed to be separated from 
a practical perspective, on the contrary: research 
and design were closely interwoven (Gravemeijer 
& Bakker, 2006). The Design Research alignment 
meant a focus on task design, which is of significant 
importance in mathematics education (Drijvers, Boon, 
Doorman, Bokhove, & Tacoma, 2013). However, the 
terms task and task design vary widely (Watson et al., 
2013). The aim of our investigation was to develop and 
refine tasks in their meaning of being “what students 
are asked to do. Then ‘activity’ means the subsequent 
mathematical (and other) motives that emerge from 
interaction between student, teacher, resources, en-
vironment, and so on around the task” (Watson et al., 
2013, p. 11). In our case, task design means the design 
of tasks for the above-mentioned purpose as well as 
possible oral impulses of the teacher and correspond-
ing material. 

The design of the learning environment within our 
investigation is being guided by the domain-specific 
instruction theory of Realistic Mathematics Education 
(RME). RME “itself is the result of a long history of 
design research in the Netherlands” (Gravemeijer & 
Bakker, 2006, p. 2). 

“According to RME, mathematics should be seen as an 
activity (Freudenthal, 1973), and students, rather than 
being receivers of ready-made mathematics, should 
be active participants in the educational process, in 
which they develop mathematical tools and insights 
by themselves” (Drijvers et al., 2013, p. 56). 

Mathematical learning should – according to RME – 
originate from problem situations in realistic con-
texts, which do not necessarily need to be from the real 
world (Van den Heuvel-Panhuizen, 2005, p. 2). Based 
on their activity within these situations, students use 
their individual concepts in order to handle situations 
and therefore extend them. In our project, students 
were supposed to handle the presented tasks and 
hence the mathematical information (cf. Krutetskii, 
1976, see above), and thereby apply their mathematical 

concepts, develop them and generalize them for being 
able to apply them in different situations (Krutetskii, 
1976).

Graph theory as subject matter for 
mathematically talented students
The application of graph theory as a subject matter for 
talented students offers different advantages. Most 
of these are connected to the large applicability and 
therefore its huge potential for fostering students’ 
creativity (cf. Leuders, 2007). 

In graph theory, the notion of graph is fundamental: 
“A graph G consists of a finite set V, whose members 
are called vertices, and a set E of 2-subsets of V, whose 
members are called edges” (Biggs, 1985, p. 158; par-
tially highlighted in the original). As graphs repre-
sent networking structures, they can be visualized 
by points and connecting lines between two points. 
Especially graph coloring is a central scope of appli-
cation in the focus of our study. “A vertex-colouring 
of a graph G = (V, E) is a function c: V → ℕ with the 
property that c(x) ≠ c(y) whenever {x, y} ∈ E. The chro-
matic number χ (G) is defined to be the least integer 
k for which there is a vertex-colouring of G using k 
colours” (Biggs, 1985, p. 172). Due to graph coloring, we 
can distinguish adjacent vertices and, thereby, create 
disjoint partitions of vertex-sets.

Research questions 
In this Design Research project, the following ques-
tions were at the core of the research interests (based 
on Krutetskii, 1976). These are: 

1)	 To what extent are the talented students able to 
mathematize the realistic problem situations in 
the given tasks? 

2)	 In how far are they able to recognize the simi-
larity of different situations and generalize their 
solutions? 

On the basis of these questions, it is considered how 
the task design can be refined in order to optimize the 
learning processes.

DESIGN OF THE INVESTIGATION

Designing the tasks 
We developed tasks, according to two kinds of prob-
lem situations (cf. Joklitschke, 2014). The first kind of 
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problem situations is rather abstract. Here, a concrete 
problem situation may be the assignment of persons 
to different groups. Persons can be represented by 
vertices – and the do-not-like-relation by edges. If 
the vertices are being colored, the colors signify the 
emerging groups. The number of colors then rep-
resents the number of groups. A second field of ap-
plication addresses problem situations with rather 
geometrical visualizations, for instance the color-
ing of maps. Here, the dual graph is needed, which 
includes the information about adjacent areas: every 
area is represented by a vertex, and adjacent areas 
are visualized by an edge (cf. Leuders, 2007, p. 141). By 
finding the chromatic number, we get to know how 
many colors are needed.

Our tasks comprised certain subtasks and were sup-
posed to serve for a 90 minutes lesson. Two of them 
are being focused in this paper. As we assumed prob-
lem situations with a geometrical representation to 
be easier to grasp for the students (see Bronner, 2014), 
the first task was a map task. Students were supposed 
to find the minimum number of colors for coloring 
the 16 federal states of Germany (see Leuders, 2007, 
pp. 132ff, Figure 1). The second task, then, comprised a 
problem situation without geometrical visualization 
(cf. Leuders, 2007, pp. 133f ). We chose the context of 
the soccer world championship with national sup-
porters who are – due to rivalries – supposed to be 
accommodated in different places (Figure 1). 

Implementation and data collection at school
The developed tasks were investigated in a group of 
eleven 7th-graders – aged twelve or 13 – at a German 

secondary school. This group had already been active 
for two years and was supposed to give mathematical 
talented and interested students the opportunity to 
enhance their abilities. The selection of the students 
for this course depended on their performance in 
mathematics (according to the teachers’ assessment) 
and their motivation to participate. Since this course 
was already well-established, all students had experi-
ence in the field of graph theory: They had worked on 
realistic problem situations (shortest path problems, 
spanning trees and Euler graphs, developing algo-
rithms) beforehand. The students were used to work 
in small groups on open problems and to generate the 
mathematical contents by themselves.

In this investigation, the students worked in groups of 
four (or three) as they were used to. The group work 
took 90 minutes. The group work of all groups was 
videotaped. The analysis focused on one “focus group” 
because here, the students communicated a lot so that 
the analysis could be undertaken on a profound em-
pirical base. The videos were transcribed.

The four students of this focus group were additional-
ly interviewed in semi-structured partner post inter-
views. Here, every group got the same tasks and ques-
tions. The students were interviewed in pairs of two as 
this was expected to foster their communication and 
give them safety. The interviews took place two weeks 
after the group work. The interview guide comprised 
questions on the approaches that the students had 
worked on before as well as two new, but analogous 
problem situations (one problem regarding map col-
oring and one problem regarding partitioning). The 

Figure 1: “Map coloring task” and “Soccer world championship task”

Task 1: Color selection
GeoPaint Inc. wants to include a colored map of 
Germany with its federal states in their assortment.

a)	 What should the company consider? Note the nec-
essary criteria and try to color the map. 

b)	 As the company has to order each color separately, 
the map gets cheaper when they use as few colors 
as possible. How many colors are needed? 

c)	 In order to develop a computer program that helps 
designing the colored map, GeoPaint has to create 
an illustration that represents the neighborhood of 
the federal states. How could such an illustration 
look like?

Task 2: A Peaceful World Championship
At the soccer world championship 2014, many 
European teams compete. But the national sup-
porters partly do not stand well with each other. 
Therefore, fans with a special rivalry shall be accom-
modated in different locations. Now, the organizing 
committee has to find a suitable allocation of the na-
tional supporters. These are the conditions:

―― German supporters do not stand well with fans 
from the Netherlands and England. 

―― ...

How many locations do the organizers need to en-
sure a peaceful meeting? How can you represent the 
problem adequately?
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semi-structured interviews – which allowed not only 
to inquire their approaches to the same tasks, but also 
to go into detail to see certain differences between 
the pairs, especially in their inferential reasoning – 
took 30 minutes each. The students were supposed 
to comment on their approaches by thinking aloud. 
The interviews were videotaped and transcribed af-
terwards. For the data analysis, both, the transcripts 
of the group work and of the interviews, were taken 
into account. 

ANALYTICAL FRAMEWORK 

For investigating students’ individual approaches, 
we used a framework that arises from a philosoph-
ical perspective, founding on ideas of Kant, Frege, 
Wittgenstein, Heidegger, and Brandom’s (1994) 
theory of semantic Inferentialism. Based on these 
philosophical notions, a theoretical and analytical 
framework was developed for mathematics education 
(e.g., Schindler, 2014), whose applicability has been 
shown for different subject matters (e.g., Schindler 
& Hußmann, 2013). The philosophical background 
signifies that individual approaches and students’ 
concepts can only be understood in their use, i.e. in 
reasoning processes. Therefore, the data analysis is 
being conducted on the basis of three crucial analyt-
ical elements, which are: individual commitments, 
inferences and focuses (see below).

The concept of language game plays an important 
part in the theoretical background. For our analysis 
it is important to analyze the use of concepts in these 
language games, since concepts and their meaning 
can – in this holistic perspective – only be understood 
by means of the role that they play here: “grasping a 
concept involves mastering the properties of infer-
ential moves that connect it to many other concepts” 
(Brandom, 1994, p. 89). The basic elements in this 
framework are propositions that individuals hold to 
be true and explicate, like for example “Four colors 
are enough to color the map”. These individual com-
mitments constitute the building blocks in our data 
analysis, which is carried out turn-by-turn on the 
basis of the transcripts at hand. 

Furthermore, the reasoning process itself is being 
analyzed, as it is crucial for reconstructing students’ 
understanding. Inferences embody the reasoning pro-
cess, as they constitute the relation between commit-
ments if a student entitles a commitment with another 

commitment, like e.g. “Five colors are one too many, 
thus four colors are enough to color a planar graph”. 
For our data analysis, it is important that these in-
ferences, as well as the commitments, do not have to 
be formally correct but to be held as true by the indi-
vidual student. Besides commitments and inferences, 
focuses – as individual categories that are used to pick 
up, select and handle the information at hand – are be-
ing reconstructed in our data analysis. Students can – 
consciously or not – utilize e.g. concepts, properties, 
or other entities as categories, such as the number of 
colors and partitions. Via the analysis of these three 
elements (students’ focuses, the commitments and 
inferences), we analyzed how students mathematize 
the realistic situations and in how far they are able to 
generalize (see results).

RESULTS 

An insight into students’ 
mathematization process
In general, the analysis revealed that students showed 
an enormous performance handling the maps task 
and mathematize the information at hand. First, they 
focused on painting the map with colored pencils. 
While doing so, they did not yet gain access to the 
formal structure of the problem and some stuck to 
the real-world conditions of the problem situation. 
For example, they committed to “The company can 
blend colors, then they do not have to buy so many of 
them”. During their work, their focus became more 
and more structure-oriented. It was only when they 
started with the task to support a computer program 
(see task 1c, Figure 1), that they focused on graphs for 
the first time. 

Sasha:	 Well, we have to do this with a graph, 
right?

Tim:	 Yes. I already worked on two or three 
graphs, but they do not yet work out.

Klara:	 (reading the task out loud) The neigh-
bors of federal states…

Sasha:	 Yes, let’s see.
Klara:	 So, simply a graph?
Sasha:	 Yes.

In this excerpt, Sasha at once commits that they can 
focus on a graph. Tim agrees and therefore acknowl-
edges Sasha’s commitment. Klara seems to be in doubt 
if this focus is adequate, as she asks “Simply a graph?”. 
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But after Sasha’s conclusive confirmation, everyone 
of them starts drawing a graph (focus: graph). 

In this dialogue, it is interesting that all students im-
mediately focused on an edge representing a neigh-
borhood, which is adequate from a mathematical 
perspective, as it implies constructing the dual graph 
(Figure 2). As Leuders (2007, p. 140) shows, it is also 
possible to choose the borders to represent the edges 
and the vertices to represent the “corners” of three 
countries bordering. But the students seemed to im-
mediately realize that “it is not of interest to know 
the exact shape of country’s frontiers […], but only to 
know who is adjacent to whom” (Leuders, 2007, p. 138, 
translated by M.S./J.J.). During their prolonged activ-
ity, in which they constructed the dual graph, they fo-
cused on the numbering of the countries, i.e. vertices, 
in order to keep track of the neighborhoods and to 
communicate about them more easily. The focuses on 
(dual) graphs, on numbering, on edges representing 
the neighborhood reveals that the mathematization 
process was successful in the first task.

Similarity recognition and generalization
The second task on the soccer world championship 
and national supporters represented more of a chal-
lenge for the students. Here, they had much more trou-
ble to capture the formal structure of the problem 
situation and to recognize the similarity to the first 
task. When dealing with the task, students proceed-
ed intuitively and tried splitting the supporters into 
distinct groups.

Alex:	 Well, we can definitely put Russia, 
Greece and Switzerland together.

Tim:	 I suggested the same.
Alex:	 Because they do not oppose each other.
Tim:	 With whom does Germany not get on 

well? Germany does not get on well 
with the Netherlands and England, but 
they get on well with Spain and France, 
don’t they? Yes, Germany does not get 
along with the Netherlands. Therefore, I 
would put Germany together with Spain 
and France.

In this heuristic approach, the students’ common fo-
cus is on dividing the sets of supporters into groups. 
In mathematical terms, it is the concept of partition, 
and the idea is to find an optimal (i.e. smallest possible) 

partition. The students justify their partitioning via 
harmonies or compatibilities. 

In this excerpt of the group work, the students focused 
on splitting the sets of supporters (i.e. building par-
titions) and on the number of locations needed. They 
did not mention that the formal structure of this 
problem is similar to the first one; that the sets of sup-
porters can be depicted – just like the countries – as 
vertices and the rivalries as edges – just like the bor-
ders. They did not seem to realize that both problem 
situations are about objects and their (binary) rela-
tions to each other and that the mathematization is 
obvious (cf. Leuders, 2007, p. 138). On the contrary, the 
focuses of the students in our investigation remained 
in the real-world situation in the second task. When 
the teacher tried to help students focusing on graphs, 
they disliked this focus and committed for instance to 

“But that would only be the same that we did with the 
other approach” or “That only brings the same result 
that we can find otherwise”. They did not see a reason 
for focusing on graphs.

Then, in an additional, further task, students were 
confronted with a problem situation that dealt with 
four groups of national supporters, which each have a 
rivalry against each other. Here, students were again 
explicitly asked if it is possible to depict this with a 
graph and if there are edges, which necessarily have 
to cross over each other.

Tim:	 Well, I have drawn one without cross-
ings. Where one can see that everyone 
hates everyone. (…) 

Sasha:	 Huh? How do you want to draw that with 
a graph?

Tim:	 Four points and connect them one to 
each other. (…)

Figure 2: Students’ drawings
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Sasha:	 But how do you want to draw rivalry 
with a graph?

Tim:	 Well, because if they are connected then 
they do not like each other. And here, ev-
eryone is connected to everyone.

Sasha:	 But this is actually the other way round!
Alex:	 Yes, I would also say that…
Tim:	 Yes, okay. So, simply four points. That 

also works. (…)
Sasha:	 (while writing, talking to himself ) Mhm, 

but that’s right.

Here, we see that the students acknowledge the focus 
on graphs. Tim directly seems to generalize – probably 
unconsciously – the idea of dissociation represented as 
edges from the first task (boundaries as edges) to the 
second task (rivalry as edges). Sasha and Alexander, 
however, are obviously not convinced: Sasha asks for 
reasons and explanations, but Tim’s reasoning is not 
convincing for them. Instead, the group focuses on 
compatibility as edges – and not on the similarities 
between the two kinds of dissociation and of the two 
problem situations. When writing his findings down, 
Sasha then acknowledges Tim’s focus: Afterwards, 
he continues drawing dissociation as edges  – but 
this does not become subject of discussion anymore. 
Sasha’s final commitment as well as his drawing might 
indicate a generalization process. 

In the post interview, however, neither Tim nor Sasha 
saw the similarities between the geometrical and the 
abstract problem situation. The frequent changes of 
focuses as well as the low level of inferential reason-
ing during the lecture series go hand in hand with 
the lacking generalization. However, an impulse of 
the interviewer encouraged the similarity recog-
nition in one case (Sasha). This was initiated by the 
interviewer’s explicit focus on similarities between 
the maps problem and the problems with the football 
supporters.

Interviewer:  Are there any similarities between 
the two problem situations?

Sasha:	 (Looking straight ahead, then looking 
out of the window, beginning to smile 
and looking back to the interviewer) Yes. 
Because here (pointing onto the map), 
adjacent countries were supposed to 
have different colors. And here, it is ef-
fectively the same. Because, then the col-

ors are the locations, and the locations 
just differ from each other.

The interviewer’s question seems to foster the stu-
dent’s similarity recognition: After thinking about the 
question, he affirms the similarity. The inferences that 
he makes underpin that he understands the reason: 
He is able to see the functional similarity of countries 
and locations and commits to “The colors are then 
the locations”. This indicates that students are able to 
focus on graphs and on coloring in problem situations 
without geometrical visualization, but this needs spe-
cific support.

Consequences for the task design
Task 1: One of the prominent results revealing from 
the above-mentioned data analysis is that the math-
ematization process was fostered by the sub-task to 
think of an illustration for a computer program. Here, 
students were able to focus on graphs easily. This was 
very useful for systematic approaches in which the 
students focused more structurally and systemati-
cally and thus fostered the mathematization process. 
This indicated that this task does not need modifica-
tions in this regard.

Task 2: It was not easy for the talented students in our 
investigation to grasp the formal structure of a graph 
in problem situations, which do not have a geometri-
cal visualization. On the one hand, this indicates that 
these tasks have a huge potential for talented students 
to exert themselves, because it was shown that these 
students can gather the mathematical structure when 
having the right focuses. On the other hand, the analy-
sis reveals that the tasks and even the impulses of the 
teacher did not prompt the students to perceive the 
structure and to generalize their focuses and com-
mitments from the geometrical problem situations. 
In order to foster these abilities in this context even 
more, the task has to be modified: There have to be 
more reflective aspects that make the students think of 
similarities. Possible impulses would be e.g. “Look for 
similarities of both problem situations. Is it possible 
to solve the second task with the same strategy that 
you used in task 1?”. For generalization purposes, it 
seems to be important for the students to recognize 
the focus on dissociation in both kinds of problem situ-
ations. But without a profound inferential reasoning, 
even the right focus is not sufficient for students’ sim-
ilarity recognition and especially their generalization. 
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CONCLUSION

The overall aim of the empirical investigation at hand 
was to explore the students’ approaches and abilities 
(esp. mathematization and generalization) for refin-
ing the design of a learning environment.

The results indicate that the students were able to 
perceive mathematical information and the struc-
ture of problem situations formally (cf. Krutetskii, 
1976). But this ability strongly depended on the tasks 
presented. It was manifested as highly-developed in 
problem situations which had a geometrical visualiza-
tion, whereas in problem situations without a direct 
geometrical visualization, students were less able to 
see the mathematical structure. In the consequence, 
it was not easy for the students to generalize their 
focuses from a problem situation with a geometrical 
visualization to one without the latter. Our findings 
indicate that Krutetskii’s framework constitutes a 
profound basis for developing tasks for talented 
students: On the one hand, the students showed the 
abilities to a certain extent, on the other hand, it was 
shown how these abilities can be fostered even more.

The results of the investigation revealed many aspects 
which can be used for optimizing the tasks and sup-
port students in their specific abilities: for instance, 
giving adequate impulses that lead students to focus 
on graphs; and fostering a purposeful and conscious 
reflection about similarities of problem situations 
much more explicitly. 
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