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Competing conceptual systems and their 
impact on generating mathematical models

Jennifer A. Czocher

Texas State University, San Marcos, USA, czocher.1@txstate.edu

Using a models and modelling perspective, this paper 
examines instances of competing conceptual systems 
within a problem situation for an engineering under-
graduate. The goal is to explore how conflict impacts 
the framing of a mathematical model and to present 
evidence that the assumptions the modeller makes are 
influenced by his mathematical framing of the problem 
context.

Keywords: Mathematical modelling, tertiary education.

Research on mathematical thinking often focuses on 
pointing out or classifying student misconceptions. 
Fewer studies have examined how an individual 
makes sense of the problem context, though the stu-
dent’s interpretation may differ from what the task 
writer intends (Stillman, 2000). Sense making in 
modelling tasks is worth examining explicitly because 
student work leading to errors or incorrect models 
may be attributed to mathematical misconceptions 
rather than to the student’s interpretation of the task.

It is unclear how an individual’s framing of a mod-
elling task is tied to the generation of a conventional 
mathematical representation, especially in a case 
where there are multiple possible framings. Each 
framing comes with its own set of assumptions, varia-
bles, parameters, and even constraints against which 
the model and its predictions must be checked. In a 
group work setting, Lesh & Doerr (2003) identified the 
production and resolution of “competing conceptual 
systems” as part of model creation and Lesh, Doerr, 
Carmona, & Hjalmarson (2003) classified the cognitive 
conflicts that accompany competing conceptual sys-
tems. But what is the interplay between mathematical 
framing and conceptual systems?

Drawing on a models and modelling perspective, 
this paper closely examines instances of competing 

conceptual systems for a problem situation within a 
single individual in order to explore how the math-
ematical framing impacts the creation of the math-
ematical model. I argue that model construction is 
influenced by the mathematical framing adapted 
or derived from the individual’s interactions with 
the problem context and that additional sources of 
knowledge, beyond mathematical and contextual, are 
necessary for resolving the conflicts that arise from 
competing conceptual systems.

THEORETICAL PERSPECTIVE AND DEFINITIONS

The theoretical perspective adopted here draws on the 
models and modelling perspective (MMP) (Lesh et al., 
2003) and a characterization of modelling as a process 
(the mathematical modelling cycle or MMC) (Blum & 
Leiß, 2007). The theories are taken together in order to 
operationalize mathematical framing (defined below) 
and examine its connection to the conventional math-
ematical representation constructed to represent the 
real life situation being modelled.

In the most general terms, a model is a simplified 
representation of a system. A mathematical model 
has three components: a situation in the real world, a 
mathematical representation, and an invertible rela-
tionship between the two constructed by the modeller 
(Blum & Niss, 1991) that preserves structural char-
acteristics as mathematical properties. A key com-
ponent is identifying appropriate structural char-
acteristics that can be put into correspondence with 
appropriate mathematical structures and concepts.

The MMP emphasizes the usefulness of mathemati-
cal concepts, that models (and not solutions) are the 
important products of modelling tasks, and that an 
individual approaches a task with an initial inter-
pretation of the task. The process of formulating a 
well-posed mathematical problem can be summarized 
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as framing – how an individual renders a problem 
setting, giving it context, determining which facts and 
relationships are relevant, and which rules are usa-
ble for reasoning (Schwarzkopf, 2007).  The framing 
process can be operationalized in terms of the MMC, 
which is briefly introduced below. 

Blum & Leiß (2007) decomposed the mathematical 
modelling process into six stages of modelling con-
struction supported by six transitional activities. 
The first three stages of model construction are: the 
situation model (an understanding of the problem; 
a conceptual model of the problem), the real model 
(an idealized version of the problem with simplifica-
tions and assumptions), and the mathematical rep-
resentation (in conventional mathematical terms). 
The stages are connected by activities. The situation 
model is brought about by an individual forming an 
understanding of the problem. During simplifying/
structuring the modeller identifies assumptions, var-
iables, parameters, and conditions that reduce the 
potentially messy problem to an idealized real model. 
For example, an object falling from a height might 
be thought of as an object in free fall and a freebody 
diagram could be drawn where the relevant forces 
from Newtonian mechanics are identified. Next, math-
ematizing occurs where the individual represents the 
real model (in essence, a collection of assumptions 
and constraints) in conventional mathematical terms. 
This is the mathematical representation from Blum & 
Niss’s (1991) definition.

Cognitive conflicts, in the Piagetian sense, often arise 
as the modeller attempts to frame the problem. Lesh, 
Doerr, Carmona, & Hjalmarson (2003) described three 
kinds of cognitive conflicts that arise as conceptual 
models develop: within-model mismatches (incongru-
ence among aspects of representational media), mod-
el-reality mismatches (when predictions do not match 
reality), and between-model mismatches (incongru-
ence between ways of thinking about a problem). For 
example an object falling from a great height could 
be modelled using the algebraically based kinematics 
equations. We know from mechanics that these equa-
tions hold only when air resistance is negligible. In a 
situation where an extended body is falling a great 
distance the effect of air resistance is not negligible. 
If we used kinematics equations to predict the veloc-
ity of the body at time , the prediction might differ 
significantly from an actual measurement. This is 
an example of a model-reality mismatch. Debating 

whether to use kinematics equations or more accurate 
differential equations to model the situation would be 
an example of a between-model mismatch.  

The three mismatches are not mutually exclusive 
but are evidence of competing conceptual systems 
and highlight where the individual is considering 
alternative framings of the task. In this paper, I refer 
to the mismatches with regard to local mathematical 
model construction rather than global mathematical 
knowledge construction. The results are presented as 
a set of illustrative vignettes purposefully selected for 
their ability to demonstrate and explain the impact of 
framing on model construction.

METHODOLOGY

This study followed a case study logic found in social 
sciences (Walton, 1992) where the guiding principle 
was to provide evidence that challenged dominant 
ideas about the modelling process. Specifically, the 
goal was to provide insight into how competing 
conceptual models in order to argue that framing is 
idiosyncratically tied to the modeller’s experiences. 
The phenomenon to be illustrated, competing concep-
tual systems “coalesced in the course of the research 
through a systematic dialogue of ideas and evidence” 
(Ragin, 2004, p. 127). The case is presented through a 
set of illustrative vignettes purposefully selected for 
their ability to demonstrate and explain the impact of 
framing on model construction. 

Data were collected from a series of seven task-based 
interviews with four undergraduate engineering stu-
dents enrolled in differential equations. Tasks were 
designed in order to evoke the mathematical mod-
elling cycle (Blum & Leiß, 2007) and in accordance 
with guiding principles on openness of the problem 
statements (Lesh & Zawojewski, 2007; Maaß, 2010). 
The participants were selected in order to maximize 
variety in their approaches to modelling tasks and 
so they had a range of mathematical strength. The 
participant whose work is reported in this paper, 
Trystane, did not score top marks in his mathemat-
ics or engineering classes. His work on the Falling 
Body Problem (described below) was selected to share 
because within one task he exhibited all three kinds 
of cognitive conflict.

The interviews were video recorded and transcribed. 
Cognitive conflicts were identified in two ways. First, 
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the transcripts were coded according to the transi-
tions in the MMC and the occurrences of the first three 
transitions were examined to be sure that framing was 
taking place. Second, transcripts were summarized as 
thick descriptions (Geertz, 1973) of the mathematics 
used by each student during each task. Introduction, 
changes, or adjustments in mathematical framings 
were tracked. Throughout the reduction, my focus 
was on the student’s mathematics and on its struc-
tural ties to the real world situation presented by the 
problem statement. This analysis through writing 
produced a second-order model (Steffe, 2013) of the 
student’s mathematics during modelling.  Instances 
were interpreted as competing conceptual frame-
works when the student was debating among mathe-
matical framings or among assumptions that would 
simplify the problem but would require different 
mathematical framings.

The Falling Body Problem, for which Trystane’s work 
is presented below, is a first-year physics or calculus 
problem solvable by kinematics if one assumes that 
there is no wind resistance. Otherwise, a differen-
tial equation is necessary to model the falling body’s 
velocity.

On November 20, 2011, Willie Harris, 42, a man living on 
the west side of Austin, TX died from injuries sustained 
after jumping from a second floor window to escape a 
fire at his home. What was his impact speed?

ANALYSIS AND RESULTS

The vignettes presented below are based on the thick 
descriptions but reference the transcripts from a 
problem common to a first year kinematics course, 
The Falling Body Problem. Trystane’s work on this task 
was selected to illustrate cognitive conflict and com-
peting conceptual models within a single individual 
because it offers a sense of tension as he debated the 
merits of each. The ongoing tension is not conveyed 
when examining model revision among multiple in-
dividuals.

Trystane explicitly considers three different math-
ematical framings of the task that eventually lead 
to model revision. The framings were identified be-
cause he returned to understanding and simplifying/
structuring the problem, according to the MMC. He 
first considers using algebraic kinematics equations, 
which wouldn’t account for air resistance. He then 

considers algebraic energy equations, until he realiz-
es he doesn’t have information about the man’s weight. 
He then tries to derive a differential equation in order 
to account for air resistance. These distinct framings 
account for different variables, require different sets 
of assumptions, and rely on different mathematical 
concepts and structures. 

Within-model mismatch
Trystane began by reading the task silently to himself 
and then stated that he would need to know how big 
the man was in order to account for air resistance. He 
indicated that mass was not an important factor and 
that his approach would be to use a “bunch of kine-
matics formulas.” The kinematics formulas would not 
account for air resistance. He then indicated that he 
would like to use energy equations but that he’d need 
to know the man’s weight. Since that information was 
unavailable, he’d have to “do it a different way and 
[he’d] have to know how high he fell from.” Trystane’s 
conflict arose due to a between-model mismatch. He 
was considering the merits of adopting different 
mathematical framings. Note that this is distinct from 
adopting different mathematical representations be-
cause both framings would be expressed in terms of 
an algebraic formula. There was a mismatch between 
the information perceived as available (note that he 
could have used m for mass) and his preferred math-
ematical framing (energy equations) leading him to 
adopt the kinematics equations. This framing subse-
quently influenced the variables and assumptions 
that could be made, prompting him to seek the height 
the body fell from. 

Model-reality mismatch
Next, Trystane estimated that the window was 16 feet 
above ground. He attempted to use kinematics equa-
tions to calculate the impact velocity but encountered 
difficulty since “it’s [the equation] got time in it and 
I don’t know how long he fell.” He resolved this issue 
and obtained an impact velocity of 32 ft/sec. He vali-
dated his answer: “At 32 feet, is actually the height of 
my house, is how I would think of it. He would fall, he 
would go that distance in 1 second. I’d say that’s rea-
sonably fast for a human to go.” The interviewer then 
asked whether the size of the man mattered. Trystane 
responded, “Technically, yeah. If he’s a really big guy, 
he’s gonna have more wind resistance falling down. 
Other than that it wouldn’t.” Trystane indicated that 
he wanted to take wind resistance into account, but 
didn’t know how to. This suggests a model-reality mis-
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match because he knows that the extended body will 
experience air resistance but his model does not ac-
count for it.. The competing conceptual systems were 
acknowledged (desire to include wind resistance and 
the fact that the kinematics equations did not incor-
porate it) and led to Trystane rejecting the kinematics 
equations and seeking to use a differential equation 
to describe the body’s velocity throughout the fall.

Trystane began speaking about changing rate-of-de-
scent and the interviewer responded by challenging 
his choice of model.

Trystane: Air resistance is more the faster you 
go, rather than the slower you go. So in 
[the man’s] case, the higher up he fell 
from, the more wind resistance until he 
reached his terminal velocity. Which is 
when wind resistance is pushing up as 
much as gravity is pulling down.

Interviewer: What I’m hearing you say is that in 
very few cases wind resistance is actu-
ally negligible. You have to have a very 
short fall or be in a vacuum. Does it both-
er you at all that you don’t learn how to 
take that into account or that the models 
you use all assume no air resistance?

Trystane responded that he felt that including air 
resistance in the models early in his physics studies 
would have been “needlessly complicated.” He ex-
plained that wind resistance is negligible for most 
applications and offered an empirical demonstration 
by dropping a pencil and stated that “the pencil falling 
this high [placed pencil lower, near the desk surface] 
and this high [placed pencil higher, further from the 
desk surface] is so close to the same that it’s not worth 
taking the effort to figure out what it is.” This expla-
nation demonstrates that negligibility of wind resist-

ance has to do with height rather than other factors he 
had mentioned previously such as mass or the value 
or change in value of the force due to wind, or size of 
the object. In general, negligibility of a variable is an 
assumption that is related to the estimated sensitivity 
of predictions to that variable and also to available 
information.

Between-model mismatch
Trystane’s treatment of wind resistance demonstrates 
that he weighed expended effort against improvement 
of results when determining which variables to in-
clude and therefore which mathematical model to 
adopt. Though not in competition, Trystane enter-
tained two conceptual models of the problem situa-
tion, one with wind resistance and one without. The 
source of the dispute was a between-model mismatch. 
The resolution was to choose the less-complex model 
because the extra effort necessary to build a more 
accurate model was not worthwhile.

Later, the interviewer suggested that Trystane use 
a differential equation to model the velocity of the 
falling body. He concurred and then began by inden-
tifying the man’s movement rate as a function of time 
as an important variable. He then wrote the equation  
(in Figure 1), which is a first-order, linear, homoge-
neous equation in standard form. He then wrote the 
generic solution where Q represents position and dQ/
dt represents velocity.  He wrote the solution  with 
the intention of determining the value of .  Assuming 
the initial positions and velocity were both zero, he 
substituted the general solution into the equation and 
obtained the expression  and thus the result 

Within-model mismatch
Trystane pondered the correctness of the model:

I‘m not sure that that’s right because I’m not sure 
if there should be some sort of constant increase 

Figure 1: First order linear differential equation with initial conditions
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as you get faster, um, I guess that just stems from 
fluid mechanics. For instance, I don’t know if it’s 
a linear graph [draws left graph in Figure 2] or 
if as you’re going faster it gets [traces figure on 
the right].

The graphs represented force due to wind vs veloci-
ty. Trystane knew that there should be an increasing 
relationship between the two quantities, but didn’t 
know what the relationship would look like and he 
was debating which representation best matched the 
situation. He concluded that the model was incorrect 
because velocity should not increase exponentially 
with position as but that it was the best he could do 
without a fluid dynamics book. 

Here, Trystane struggled to validate the model he 
selected because his conceptual model of the rate of 
change of the body’s velocity was not well defined. The 
within-model mismatch surfaced as he tried to use the 
two distinct graphical representations of force versus 
velocity. The consequence was that he rejected the dif-
ferential equations model because it was incompatible 
with his conceptual interpretation of ever-increasing 
velocity described by an exponential solution.

Next, Trystane noted that wind resistance was 

sort of like friction where it’s an opposing force. 
Actually, that kinda sparks an idea. If the wind is 
always just an opposing force, it could be treat-
ed like the force of friction. I dunno. Maybe in 
a certain density wind you would multiply the 
coefficient of wind friction or air friction times 
the surface area of the body moving. 

Here Trystane reintroduced the size of the man as an 
important variable and spent the remainder of the ses-
sion attempting to include it in his differential equa-
tions representation. His final mathematical model 
(after he “waive[d] the white flag”) is the nonlinear 
differential equation shown in Figure 3. 

Between-model mismatch
The transition from a first order linear equation with 
an incorrect solution to the final version of Trystane’s 
model was provoked by competing conceptual sys-
tems that had been acknowledged at the start of the 
modelling task. One conceptualization of the physical 
system included wind resistance, which depended on 
the man’s size, as a variable. The other conceptualiza-
tions ignored wind resistance in favour of algebraic 
equations with either known or easily-estimated pa-
rameters. This ongoing conflict, which was set aside 
while Trystane explored other possible models, was 
a between-model mismatch. Trystane’s insistence 
on including wind resistance is a testament to how 
competing conceptual systems can provoke model 
development. Moreover, this look at competing con-
ceptual systems suggests that the conceptual system 
determined the framing of the problem. That is, his 
selection of which mathematics to use was interactive-
ly determined by the data he had available.

DISCUSSION AND CONCLUSIONS

Analysis illustrated three kinds of mismatches that 
arise as cognitive conflict during mathematical mod-
el construction. The mismatches were symptoms of 
competing conceptual systems each of which came 
with their own sets of assumptions, variables, and 
expectations. The conflicts were identified during val-
idating activity when the modeller noted mismatches 
between expectations of how the mathematical model 
should be constructed and its congruence with his 
idealized conceptualization of the situation to be 
modelled. Thus, expectations were based on both 
real world experiences, such as Trystane’s claim that 

Figure 2: Exponential and linear relationships between air 

resistance and velocity Figure 3: Nonlinear differential equation including wind resistance 

and surface area



Competing conceptual systems and their impact on generating mathematical models (Jennifer A. Czocher)

846

mass does not affect the velocity of a falling body, and 
the mathematical structure selected underlying the 
model, such as when Trystane rejected an exponential 
growth model for velocity.

Both mathematical and nonmathematical knowl-
edge have been identified as important to model con-
struction. Indeed, modelling is often characterized 
as bringing together both bodies of knowledge. In 
the vignettes above, Trystane generated and referred 
to ideas not explicitly in the problem statement. He 
relied on additional resources beyond mathemat-
ical and contextual knowledge. His spontaneous 
demonstration with the falling pencils and his res-
olution of the within-model mismatch between the 
two graphs of force against velocity suggest that he 
appeals to common sense and to thought experiments 
as resources for generating missing information. At 
times, Trystane had to abandon a particular framing 
because of a conflict where he did not have the rele-
vant information to use the framing. In another case 
he was able to generate the missing information via 
a thought experiment. For example, the task did not 
give the height the body fell from but he was able to 
validate his answer (32 feet per second) by using the 
corresponding length of time it would take to fall 32 
feet. In such a case, Trystane used a thought experi-
ment to obtain and validate an appropriate estimate 
of the height. 

Conflict resolution may depend certainly depends 
on student knowledge about the context and student 
characteristics (such as persistence). It may also de-
pend on the modeler’s values in model construction, 
and these values may be discipline specific. For exam-
ple, Trystane demonstrated that he valued economy 
of effort. He valued avoiding “needlessly complicated” 
problem idealizations. He also valued avoiding revi-
sions that made the model overly complex for only a 
marginal gain in accuracy or predictive power.

Trystane used knowledge both of plausible alterna-
tive mathematical representations and structures as 
well as sufficient knowledge of the problem context 
in order to resolve the conflict product productively. 
Trystane demonstrated reasoning based on a blend of 
mathematical and nonmathematical knowledge: his 
value judgments about effort and worthwhileness and 
his ability to willingness missing information.  This 
suggests that mathematical and contextual knowl-
edge alone do not account for how the conceptual 

model or subsequent mathematical model are revised. 
Future research should investigate criteria or factors 
students use to decide how to resolve competing con-
ceptual systems.

Two related aspects that merit further examination 
are how the conflict resolution is executed and how 
conflict recognition can be promoted. When cognitive 
conflicts arose, at times Trystane rejected the initial 
model (such as his rejection of the energy equations) 
or to the revision of a model (such as his decision to in-
clude air resistance in the differential equation). One 
resolution required an additional assumption (ne-
glect air resistance) while another required a change 
in mathematical structure (regarding net force as a 
function of time). 

Mismatches between the individual’s expectations 
and the model produce the cognitive conflict and the 
mismatches point to the presence of competing con-
ceptual systems.  When conflict is absent, the task 
may be too easy or familiar or the student may not 
recognize a particular kind of incongruence that is 
noticeable to the teacher or researcher. It should be 
noted that Trystane, as an engineering student was 
trained to look for such mismatches.

The conflicts arose when Trystane tried to fit available 
data to selected framings, such as setting initial veloc-
ity to zero in the differential equation. He changed 
representation and structure as information became 
available rather than undertaking derivations. He 
made progress when he had a mathematical frame 
that fit his personal (or scientific) experiences. This 
suggests that at least in some cases, framing precedes 
(or even determines) the relevant assumptions and 
variables sets.

Aside from theoretical consequences to perceptions 
of mathematical modelling as a cyclic, linear process, 
these observations have practical consequences. First, 
tasks should be selected that are amenable to multiple 
possible framings. Second, if a goal of using modelling 
tasks is to help students learn to make simplifying 
assumptions, it may be beneficial to use modelling 
tasks where potential framings are not obvious. 

Mathematical modelling cycles have been long of-
fered as descriptions of the mathematical modelling 
process, but the community still does not have an ad-
equate explanation for how mathematical and non-
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mathematical knowledge are blended to render a real 
world problem as a mathematical one. The models 
and modelling perspective adopted here, along with 
the cognitive conflict framework (Lesh et al., 2003) 
revealed  that competing conceptual systems play an 
important role in the selection of appropriate mathe-
matical structure, mathematical representation and 
the subsequent fitting of available data into the se-
lected model. The cognitive conflicts framework is 
a promising avenue to reveal how validation of the 
mathematical model leads to resolution (or lack of 
resolution) of the competing conceptual systems.
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