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This theoretical paper introduces the notions of connect-
ing, coordinating and integrating models to analyse and 
reflect on how models are created and developed. We 
define, discuss and apply these constructs to some the-
oretical perspectives in the present modelling discourse. 
We draw on an example from a model application activ-
ity within a model development sequence to illustrate 
these constructs. Our hope is to spark a discussion that 
will enhance our understanding about the nature of 
mathematical modelling and the teaching and learning 
of, and through, modelling.
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There are many different perspectives on modelling 
that researchers can adapt when studying the teach-
ing and learning of mathematics (Kaiser & Sriraman, 
2006). One commonly made distinction in the liter-
ature is the one between modelling and application. 
Often this characterisation is based on a philosophical 
stance about the nature and relation between ‘math-
ematical knowledge’ (mathematics) and ‘knowledge 
about the rest of the experienced world’ (reality) 
(Blum, Galbraith, & Niss, 2007). Stillman (2012, p. 903) 
describes this distinction as follows:

With applications the direction (mathematics à 
reality) is the focus. “Where can I use this particu-
lar piece of mathematical knowledge?” The model 
is already learnt and built. With mathematical 
modelling the reverse direction (realityàmath-
ematics) becomes the focus. “Where can I find 
some mathematics to help me with this problem?” 
The model has to be built through idealising, 
specifying and mathematising the real world 
situation. Both types of task have their place in 
school classrooms.

Research on modelling perceived in the latter char-
acterisation often uses, or is based on, an idealized 
conceptualization of modelling as a cyclic process (e.g., 
Blum & Leiβ, 2007; Borromeo Ferri, 2006).

The role and function of applications and modelling 
in the teaching and learning of mathematics is also 
an important dimension in the on-going discussion – 
is teaching modelling a goal in itself, or is modelling 
a vehicle for teaching and learning mathematics? 
Both modelling as described by Stillman as well as 
most modelling perspectives represented by a cycle 
diagram of the modelling process include, or at least 
point out, the potential driver in modelling for teach-
ing and learning mathematics. 

Another perspective on modelling is the models and 
modelling perspective (Lesh & Doerr, 2003b), which 
provides a coherent framework to think about mul-
titude aspects involved in teaching and learning. 
Central in the models and modelling perspective 
(MMP) are the students’ previous experiences and 
knowledge, and how contexts are chosen and used 
in modelling tasks. Whereas perspectives aligning 
with the cyclic view on modelling (c.f. Blum & Leiβ 
(2007) and others) clearly are modelling according 
to Stillman’s distinction, it is not in our view possible 
to situate the MMP in this dichotomy. Rather, MMP 
blends applications and modelling to form a model-
ling-based pedagogy, and through this use of model-
ling and applications students arguably learn both 
mathematics and mathematical modelling. 

Although our overall research interest aims to better 
understand the teaching of mathematical modelling, 
and the teaching of mathematics through modelling, 
in this paper we ask more fundamental questions 
about the nature of modelling. We also wish to ini-
tiate a discussion about the nature of mathematical 
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modelling, as well as teaching and learning mathemat-
ics through modelling, by examining the constructs 
of connecting, coordinating, and integrating models.

Before addressing the notions of connecting, coordi-
nating and integrating models, we will discuss some 
of the central ideas in the models and modelling per-
spective. Our initial thinking is based on our work 
within this perspective, and the examples used for 
illustrational purposes are from this context. 

THEORETICAL FRAMEWORK

In the models and modelling perspective, “[m]odels 
are conceptual systems (consisting of elements, rela-
tions, operations, and rules governing interactions) 
that are expressed using external notation systems, 
and that are used to construct, describe, or explain 
the behaviours of other system(s) – perhaps so that 
the other system can be manipulated or predicted 
intelligently. A mathematical model focuses on struc-
tural characteristics … of the relevant systems” (Lesh 
& Doerr, 2003a, p. 10, italics in original). It is by engag-
ing in learning activities that students’ models are 
developed, modified, extended and revised through 

“multiple cycles of interpretations, descriptions, con-
jectures, explanations and justifications that are it-
eratively refined and reconstructed by the learner” 
(Doerr & English, 2003, p. 112).

A well-established line of research within this per-
spective has focused on model eliciting activities 
(MEAs) in multiple contexts with learners from pri-
mary school through university (see references in 
Ärlebäck, Doerr, and O’Neil (2013)). MEAs are activ-
ities where students are confronted with a problem 
situation in which they need to construct a model in 
order to make sense of the situation. There are six 
well-established principles for designing MEAs. The 
six design principles are: the reality (or sense-making) 
principle; the construction principle; the self-eval-
uation principle; the documentation principle; the 
simple prototype; the generalization principle (Lesh 
& Doerr, 2003a; Lesh, Hoover, Hole, Kelly, & Post, 2000). 
However, isolated MEAs can fall short of supporting 
students developing a generalized model that can 
be used and re-used in a range of contexts (Doerr & 
English, 2003). What is needed are multiple struc-
turally related modelling activities offering multiple 
opportunities for the students to explore, apply and 
test relevant mathematical constructs in different sit-

uations and contexts. This is the idea and function 
of model development sequences (Doerr & English, 
2003; Lesh, Cramer, Doerr, Post, & Zawojewski, 2003).

Model development sequences begin with a MEA 
to confront the student with the need to construct a 
model to make sense of a problem situation. The MEA 
is then followed by one or more model exploration 
activities and model application activities (see Figure 
1). Model exploration activities (MXA) focus on the 
underlying structure of the elicited model in the MEA 
with special attention to the use and function of differ-
ent ways to represent the elicited model. The initially 
elicited model is further developed by examining the 
strengths of various representations and ways of us-
ing representations productively. Model application 
activities (MAA) engage students in applying their 
model to new situations and contexts, thereby refin-
ing their language for interpreting and describing 
the context.

When students work through the model development 
sequence, they engage in multiple cycles of descrip-
tions, interpretations, conjectures and explanations, 
resulting in iteratively refining and developing their 
models. In this process, interacting with other stu-
dents and participating in teacher-led class discus-
sions are key practices for facilitating this develop-
ment. 

A model development sequence focusing 
on the average rate of change
We now turn to briefly describe a model develop-
ment sequence focusing on average rate of change 
consisting of one MEA, two MXAs, and two MAAs 
(see Figure 2). For a more detailed description see 
Ärlebäck, Doerr and O’Neil (2013). From this point 
an onwards, references to the particular activities 

Figure 1: The general structure of a model development sequence
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in this sequence will be indicated with an asterisk (*). 
In the MEA* of this sequence, students analysed their 
own bodily motion along a straight line. They exper-
imented with motion detectors attached to graphing 
calculators generating position vs. time graphs, cre-
ated linear graphs based on written specifications, 
replicated the motion behind given position vs. time 
graphs, and generated written descriptions of how 
they moved. Within this context, students’ initial 
thinking and models about function values (position), 
average rate of change (average velocity), sequences of 
differing values of average rate of change (sequences 
of differing average velocities) and the relationship 
between these quantitates were elicited.

In the two MXA*s the students explored various rep-
resentations to describe and interpret changing phe-
nomena using their emerging model of average rate of 
change. Using two different computer environments, 
the students generated motion of animated characters 
by creating velocity vs. time graphs, created position 
graphs from velocity information, investigated how 
the average rate of change of a function is represented 
as table values, graphs, and equations, and explored 
representations of exponential growth and decay. 

In the two MAA*s that followed, the students used 
their models to make explicit interpretations, de-
scriptions and predictions about the behaviour of, 
first, the intensity of light with respect to the distance 
from a light source, and second, the voltage drop over 
a fully charged discharging capacitor in an simple 
resistor-capacitor circuit. The MAA*s gave the stu-
dents opportunities to use their models in different 
contexts (one having distance rather than time as the 
independent variable), and to work with phenomena 
with negative rates of change.

A model application activity – the light lab
In this section, we will briefly describe the Light Lab 
model application activity (MAA). The overall struc-
ture of the six tasks in this MAA is shown in Figure 2.

The first pre-lab task focused on the students’ intu-
itive and initial models about how intensity varies 
depending on the distance from a point light source. 
In a one-dimensional scenario of an approaching car 
the students sketched graphs of how the intensity of 
the car’s headlights varied depending on the distance 
to the car, and described how light disperses from a 
point source in terms of light rays.

In the second task, students used a point source of 
light to collect 15 measurements of light intensity data 
at one cm intervals from the source. In part one of 
the lab, students made scatter plots of their data and 
wrote descriptions of how the intensity of the light 
changed with respect to distance from the light source, 
and compared this relationship to their predictions 
from the first pre-lab. The students also calculated, 
described and plotted the average rate of change of 
the data in one cm intervals, and created rate graphs 
of the calculated average rates of change.

The second pre-lab introduced an inverse square mod-
el for how the light intensity varies with distance from 
a light source. Using four images representing light 
intensity indicated by number of dots per square inch 
at different distances, students determined the inten-
sity at given distances from the light source.

In the second part of the lab, students determined a 
function fitting their collected data, explained their 
work, and analyzed the average rates of change of 
their function using the difference quotient; they cal-
culated and graphed the average rates of change of the 
function, and described and interpreted the graphs of 
the average rates of change values. We will use these 
tasks from within this model application activity to 
examine our notions of connecting, coordinating and 
integrating models.

Figure 2: The model development sequence (top) and the six Light Lab tasks (bottom)
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CONNECTING, COORDINATING 
AND INTEGRATING MODELS

We take connecting models to mean the establishing 
of a relationship between two or more previously un-
related models. As used here, connecting models cap-
tures the realization that previously isolated and unat-
tached models, potentially from different disciplines 
or subject matters, partially overlap or have points of 
interest in common that in a given problem solving 
situation seem productive to explore. Connecting 
models also means taking the initial steps in identi-
fying and delimiting the models being connected in 
the first place. Connecting models can thus be thought 
of as a united set of models together with some ini-
tial ideas and rationale for why these models might 
productively be considered together (see Figure 3). 
The reasons and rationale for connecting the models 
can be intuitive, tentative or speculative in nature, 
and to a large extent will depend on the modeller’s 
previous experiences and knowledge. An example 
of an activity connecting models is the first pre-lab 
in the Light lab MAA*. Here, students’ intuitive and 
initial models about how intensity varies depending 
on the distance from a point source of light in terms 
of previous experiences of car’s headlights and how 
light disperses from a point source in terms of light 
rays (knowledge from previous courses in physics) 
are elicited. The juxtaposition of these questions im-
plicitly suggests that it might be productive to con-
sider these conceptual systems (or models) together. 
Another example of an activity connecting models 
from the Light lab MAA* comes from the second pre-
lab which introduces a new representation (density 
of dots at varying distances) to be examined and con-
sidered along with the set of models the students are 
currently working with.

When a set of models has been connected, the coor-
dinating of the models is the successively more sys-
tematic exploration and pursuit of the overlaps and 

points of interest in common across the models. The 
coordination of the models transforms the set contain-
ing the previously disjoint models into a set of more 
aligned models. This is a process entailing gradually 
mapping out where, and becoming clearer about how, 
the models partially overlap. The goal for moving be-
yond having a connected set of models and striving 
towards a coordinated sets of models is to facilitate 
the latter set of coordinated models as a whole to func-
tion in a more intertwined and concerted way when 
put into action and applied to the problem solving 
situation at hand. This is achieved by creating one or 
multiple bonds between the models, and successively 
making these clearer and stronger (see Figure 3). The 
coordinating of models is a multi-dialectic process 
where the specifics of all of the models in the set are 
important. The process of coordination results in the 
set of models becoming more aligned or (perhaps) 
more alienated. We note that the process of iterative 
refinement in a models and modelling perspective 
includes the sorting out and filtering of ideas, where 
some constructs (or models) are rejected as others 
become more aligned and subsequently integrated. 
A consequence of an unsuccessful coordination can 
give rise to the possible exclusion of the alienated 
model(s) or the rejection of the whole set altogether. 
An example of an activity facilitating students to co-
ordinate models is the first part of the Light lab MAA* 
(Lab, part 1). Here the students are urged to keep think-
ing about their initial ideas and models elicited in the 
first pre-lab alongside representations (scatter plots, 
descriptions, rate graphs) of their collected real data 
and calculated values of the average rate of change 
over one centimeter intervals.

Integrating models means merging the models so that 
the set now is conceived as one model in its own right 
(see Figure 3). Coordinated models are said to be inte-
grated when the level of coordination is so high that 
further coordinating of the models in principle does 
not change the understanding and function of the 
newly merged models. A central feature of an inte-
grated model is that it is self-contained. In the Light 
Lab MAA*, the students write a final lab report. The 
goal for the student is to present an integrated model 
of how intensity varies depending on the distance 
from a point light source. The purpose of the report 
is to reflect the students’ integrated understanding 
of light dispersion on a qualitative and quantitative 
level using their collected data, average rate of change, Figure 3: A conceptualization of connecting (A), coordinating (B), 

and integrating (C) models 



At the core of modelling: Connecting, coordinating and integrating models (Jonas Bergman Ärlebäck and Helen M. Doerr)

806

rate of change graphs, the difference quotient, and a 
spherical light emission model.

Having introduced and exemplified the notions of con-
necting, coordinating and integrating models, we now 
turn to discuss how these constructs might be used 
and applied to current discussions about the nature 
of mathematical modelling, as well as the teaching of, 
and through, modelling. 

MEAs, MXAs, and MAAs
Generally within a model development sequence, an 
MEA elicits the students’ initial thinking about a prob-
lem situation, as that thinking is externally represent-
ed. This means that the students start to structure 
the problem solving situation by trying to identify 
and connect models that can work productively in the 
specific situation. An example of an MEA function-
ing to connect models is the MEA* where the students 
are working with motion detectors to make sense of 
bodily motion along a straight path. In this activity, 
the students are placed in a situation that exposes 
them to multiple representations through which to 
make sense of the situation. Centred on their own 
bodily motion, students are offered an opportunity 
to form and connect an initial set of models, consisting 
of their previous ideas and models together with the 
representations introduced in the MEA*, which then 
can be furthered explored and applied.

Generally within a model development sequence, the 
MXAs focus on supporting the students in developing 
the models elicited in the MEA by examining differ-
ent representations: graphs, symbols and algebraic 
representations, tables, everyday language, manip-
ulatives, embodied and animated motions as well as 
students’ self-constructed representations. Regarding 
representations as models in their own right (Lesh, 
Post, & Behr, 1987), MXAs can then primarily be seen 
to be about the coordination of models with occasion-
al elements of connecting models if new representa-
tions or models are introduced during the activity.  
Typically, this is done by either exploring commu-
nalities of the models connected in the MEA, but the 
emphasis of a MXA is really on connecting, coordi-
nating and using representations. The two MXA*s in 
the model development sequence on average rate of 
change are good illustrations of this. In these two ac-
tivities students use computer programs that provide 
access to digital environments and work on tasks that 

explore different representations of key ideas in their 
own right as well as the relationships among these.

The main purpose of MAAs is to provide students 
with new contexts and situations where they can ap-
ply their developing or previously developed models. 
However, to do this some sort of connection has to be 
established mapping the models of the students to 
the context of the problem situation at hand. In other 
words, the context of the problem situation and the 
models of the students first have to be connected. Then, 
in order to ensure the adequacy, legitimacy and the 
proficiency of this connection, it has to be coordinat-
ed, integrating the specifics of the new situation and 
context with the model being applied.

Applications, modelling, and 
the modelling cycle
Returning to Stillman’s (2012) distinction between 
applications and modelling, it is now possible to ar-
gue analogously that connecting, coordinating and 
integrating models are necessary and fundamental 
processes both for applying models “already built 
and learned” (p. 903) and when “model has to be built 
through idealising, specifying and mathematising the 
real world situation (p. 903). The important difference 
between applications and modelling is not the point of 
departure (the mathematics vs. the real world) per se; 
rather, the difference manifests itself in the amount 
of effort and time spent on coordinating the context 
of problem situation and the models of the modeller 
before one ends up with an integrated model for ade-
quately make sense of, and use for, the situation.

Regarding modelling ideally conceived as a cyclic 
process (e.g., Blum & Leiβ, 2007,  and others), connect-
ing, coordinating and integrating models provides a 
more dialectic and dynamic conceptualisation of the 
processes involved. For example, each of the transi-
tions in cyclic perspectives on modelling, such as the 
modelling cycle used by Blum and Leiβ (2007) and 
Borromeo Ferri (2006), e.g., transitions between real 
situation – mental representations of the situation – 
real model – mathematical model, have to be subject-
ed to sequential connecting, coordinating and finally 
developed into an integrated model to tackle the pre-
vailing situation. In addition, the different transitions 
in terms of connecting, coordinating and integration 
should not be thought of as carried out sequential-
ly, but rather as processes fundamentally evolving 
simultaneously, nested and organically. From this 
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perspective, the typically one-way pointing arrows 
indicating the transitions in cyclic conceptualizations 
of modelling (e.g., Blum & Leiβ, 2007, and others) are 
misleading when trying to understand the complex-
ity of, first, the modelling process in its own right, 
and second, and more importantly, the teaching and 
learning of modelling as well as teaching and learning 
mathematics through modelling.

THE SELF-SIMILAR NATURE OF TEACHING 
MATHEMATICS THROUGH MODELLING 

Lesh and Doerr (2003b) discuss the connection be-
tween MMP and complexity theoretical ideas. One 
foundational idea of complexity theory is the prin-
ciple of self-similarity, that structure and pattern re-
peat itself at different scales (Davis & Simmt, 2006). 
We wish to argue that this is also the case for the 
structure of model development sequences and the 
activities therein (at least for the MXAs and MAAs). 
The structure of the model development sequence at 
large and the activities that constitutes the sequence 
naturally varies from design to design, but using the 
notions of connecting, coordinating and integrating, 
the self-similarity of the two levels starts to stand out. 
In this paper we have tried to illustrate this point by 
providing examples from the model development se-
quence on average rate of change and the tasks in the 
Light Lab MAA*. We have argued that the two pre-labs 
in the Light Lab MAA* are activities connecting models, 
a characteristic of an MEA.  In other words, Pre-lab 
1, focusing on the students’ initial ideas in the Light 
Lab MAA* (see Figure 3), has the function of an MEA. 
The elicited models and ideas are then subsequently 
coordinated in part one and part two of the lab un-
der the support of an activity of data collection and 
a connecting activity (Pre-lab 2). However, the two 
parts of the lab (Lab, part 1&2) both function as MXAs 
with the primary goal of supporting the students in 
developing their model based on work on representa-
tions. The last task of the Lab, when students write 
a report, really aims at pulling the whole Light Lab 
MAA* together in an integrating sense. Looking at any 
MXA in a model development sequence, a similar ar-
gument applies: models need to be connected to set up 
the activity before the coordinating of the models can 
start. This self-similar aspect of model development 
sequences and the activities within occurs because 
when teaching mathematics through modelling, it is 
a necessity (by definition!) to bring in extra-mathe-
matical contexts and situations.

DISCUSSION

One of the main points we have tried to emphasis in 
this paper is that regardless what theoretical stance 
on modelling is adapted, the three processes of con-
necting models, coordinating models, and integrating 
models are fundamental in all types of modelling situ-
ations. In our opinion, these three constructs capture 
and acknowledge the dialectic and complex nature of 
creating and developing models. Constructs like this 
might be the first steps towards a common conceptu-
alization of modelling that bridges the research field 
so that we might better understand, coordinate and 
summarize research findings from different research 
traditions based on different perspectives.

By applying the three notions of connecting, coordi-
nating and integrating models to the model develop-
ment sequences, MXAs and MAA respectively, the 
self-similarity between the sequence and the MXAs 
and MAAs within the sequence came to the fore. The 
implication of this structural finding for teaching and 
the design of tasks might be profitably considered in 
future research.

While thinking about how models really develop and 
are formed in terms of connecting, coordinating and 
integrating models, we also found strong similarities 
to the principles of variation theory. The four types 
of variation within variation theory discussed by 
Marton, Runesson and Tsui (2004), contrast, gener-
alization, separation, and fusion especially seems to 
resonate with the notions put forward in this paper: 
connecting models – contrast variation; coordinating 
models – generalization and variation of separation; 
integrating – fusion. To further investigate this, and 
what more variation theory has to offer, seems a prom-
ising way to continue the research initiated in this 
paper.
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