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Abstract

Silhouettes provide rich information on three-
dimensional shape, since the intersection of the associated
visual cones generates the “visual hull”, which encloses
and approximates the original shape. However, not all
silhouettes can actually be projections of the same object
in space: this simple observation has implications in object
recognition and multi-view segmentation, and has been
(often implicitly) used as a basis for camera calibration.
In this paper, we investigate the conditions for multiple
silhouettes, or more generally arbitrary closed image sets,
to be geometrically “consistent”. We present this notion as
a natural generalization of traditional multi-view geometry,
which deals with consistency for points. After discussing
some general results, we present a “dual” formulation for
consistency, that gives conditions for a family of planar
sets to be sections of the same object. Finally, we introduce
a more general notion of silhouette “compatibility” under
partial knowledge of the camera projections, and point out
some possible directions for future research.

1. Introduction
When can a set of 2D silhouettes be projections of the

same object in space? This seemingly simple question is
related to a variety of practical problems in computer vi-
sion, such as multi-view segmentation [9], object recogni-
tion [34], and multi-view stereo [11]. Geometric consis-
tency is sometimes taken for granted, when appearance-
based features give reasonable evidence that the silhouettes
are associated to the same object. However, it is clear that
incorporating geometric constraints can be important, either
in the process of inference, or for correcting the effects of
noisy data.

In this paper, we analyze the notion of “consistency” for
silhouettes and for more general closed image sets. We con-
sider opaque objects projected in different images and as-
sume, in our initial setting, the knowledge of all camera pa-
rameters. The theory can be seen as a natural extension of
classical multi-view geometry, which provides conditions
for points (and sometimes lines) to be consistent (i.e., to
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correspond) in terms of given camera projections [10, 14].
This also expands an analogy initiated by the generalized
epipolar constraint introduced in [1]. Throughout our dis-
cussion, we point out several results that hold for arbitrary
closed image sets (or sometimes convex image sets), that
have identical counterparts in the theory of point correspon-
dences.

As consistency is clearly not a metric property of sil-
houettes, it is natural to adopt the framework of projective
geometry [6], since this eliminates various degenerate sit-
uations and allows, for example, to unify the cases of or-
thographic and perspective projections. This is also typical
in multi-view geometry.1 Another advantage of the projec-
tive language is that it provides a homogeneous formulation
of duality. In particular, we exploit the fact that perspec-
tive projections are related to planar sections in the dual
space [24], to define a very natural “dual” notion of consis-
tency, expressing conditions for a family of planar sets to be
sections of the same object.

Finally, we also consider the case of having only partial
knowledge of the camera parameters, and discuss a more
general concept of “compatibility” for silhouettes. This ex-
tends a setting first considered in [2].

The overall goal of the paper is not to give the “final” an-
swer to the complex problem of silhouette consistency, but
rather to make a first formal foray in that field, with pre-
cise definitions that have been missing so far in a general
setting, spelling out rigorously what is known in this area
and adding a set of new results. For example, we do not
deal with algorithmic issues here, and we assume through-
out the presentation an ideal setting with no noise. We be-
lieve this to be a necessary first step, much in the same way
as multi-view geometry initially characterizes exact point
correspondences, and then makes use of the theory to infer
camera parameters from real world data.

1The most significant difference between the euclidean and projective
frameworks in our setting is that in the latter case visual cones are two-
sided. However, we will make one general assumption that will cause
this distinction to be irrelevant. An alternative (but perhaps less natural)
approach would have been the use of oriented projective geometry [27].
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Previous work.
The most widespread application of silhouette consis-

tency has been for designing alternatives to point-based
methods for camera calibration, required for dealing with
smooth and textureless surfaces. Indeed, ever since the
seminal work of Rieger [25], the problem of estimating
camera motion or calibration parameters using only sil-
houettes has received considerable attention: see, e.g.,
[3, 12, 15, 18, 22, 32]. Albeit with some variations, all these
methods exploit (more or less directly) the geometric con-
straints provided by the epipolar tangencies [1].

In addition to camera calibration, silhouette consistency
has been enforced explicitly for other tasks; for example
multi-view segmentation [4], or 3D-reconstruction [7] and
recognition [21]. Another interesting “artistic” application
is discussed in [23].

There exists limited theoretical work on silhouette con-
sistency, and it is always restricted to special situations. In
particular, the problem of determining whether a family of
silhouettes can correspond to a real object is considered in
[2, 17, 33], but results are only given for the case of or-
thographic projections and somewhat restricted camera mo-
tion. Some theoretical facts, e.g., the fact that epipolar tan-
gency conditions do not imply global consistency, can be
found in [3, 5].

Finally, the duality between projections and planar sec-
tions is well known in both the euclidean (orthographic) set-
ting [30, 26], as well as in the projective (perspective) case
[24, 28]. However, we are not aware of work on consistency
for planar sections.

Main contributions.
• We formally introduce a notion of geometric consis-
tency for arbitrary closed sets in the case of general pro-
jective (perspective) cameras. We present some new results
(Propositions 1, 3, 5), and collect others which are scattered
in more applied work (Propositions 2, 4).
•We investigate in detail the relationship between pairwise
consistency, epipolar tangencies, and our more general no-
tion of consistency (Sections 2.2 and 2.3). We also discuss
the (rather counterintuitive) topology of the visual hull as-
sociated to two views.
• We restate the notion of consistency in terms of duality,
expressing the condition for planar sets to be sections of the
same object. For convex silhouettes, we show that the dual
of the visual hull coincides with the convex hull of the dual
image of the silhouettes (Proposition 6).
• We define the notion of compatibility for silhouettes,
which characterizes silhouettes that may be geometrically
consistent for appropriate camera parameters. This setting
generalizes a viewpoint first introduced in [2].

Proofs. Proof sketches are given in the main body of the
presentation; full proofs and technical details can be found
in the supplemental material.

Notation. Our analysis will be coordinate free, so we con-
sider projective cameras as linear mapsM : P3\{c} → P2,
where c is the camera pinhole or center. The action of a
camera will be indicated withM(p) = u (no need to use
proportionality as u is seen a geometric point in P2, rather
than a vector of coordinates). For any cameraM and set of
points T ⊆ P2 in an image, we define the associated visual
cone asM−1(T ), whereM−1 denotes the pre-image set.

2. Consistency of image sets
In this section, we introduce a notion of geometric con-

sistency for arbitrary closed sets in different images. Our
definition is very natural, and similar concepts have previ-
ously been used to introduce “incoherence” measures for
silhouettes [3, 15]. Compared to these works, we focus on
analyzing some theoretical properties of consistency, rather
than finding strategies for putting it into practice. After a
general discussion, we consider the important case of two
silhouettes (Section 2.2), pointing out how the consistency
condition is basically equivalent to the popular “epipolar
tangency” constraint, but only applied to extremal tangents.
We then turn to the case of an arbitrary number of convex
silhouettes (Section 2.3), where we note that all geometric
impediments to consistency can only involve at most three
silhouettes. We also introduce a special class of “tangen-
tial” triple points that help clarify the distinction between
the epipolar tangency constraint and more general consis-
tency.

2.1. Basic definitions
LetM1, . . . ,Mn be n perspective cameras with distinct

centers c1, . . . , cn, and let T1, . . . , Tn be a family of closed
sets, one in each image. For example, the sets Ti could be
a finite collection of points, curves or closed regions. For
each i = 1, . . . , n, we let Ci = M−1i (Ti) be the visual
cone associated to Ti.

Definition 1. The sets T1, . . . , Tn are said to be consistent
if there exists a non-empty set R ⊆ P3 \ {c1, . . . , cn} such
thatMi(R) = Ti for all i = 1, . . . , n.

When T1, . . . , Tn are consistent, the visual hull associ-
ated with T1, . . . , Tn is given by H =

⋂
i Ci, and it is the

largest set that projects onto T1, . . . , Tn.2

If all T1, . . . , Tn are singletons, then consistency reduces
to the classical notion of point correspondence [10, 14]; in
this case, the visual hull is simply the triangulated 3D-point.
Extending this analogy, consistent image sets can be seen as

2This notion of consistency is a property of the sets T1, . . . , Tn relative
to the camerasM1, . . . ,Mn. However, in reality the condition is based
on geometric properties of the visual cones Ci, rather than of the actual
image sets. In fact, a more “geometric” definition of consistency only in
terms of cones could have been given (analogous to requiring the conver-
gence of lines). For our purposes, this approach would have probably been
less natural.



n-tuples of candidate projections of the same object (“can-
didate” because, just as for point correspondences, there
might not be an actual object occupying R). Moreover, it
is clear that there is a one-to-one correspondence between
n-tuples of consistent sets, and the (exact) visual hulls as-
sociated with a fixed set of n cameras.

In principle, the concept of visual hull is not well defined
if the original silhouettes (or image sets) are not geomet-
rically consistent. This is rarely taken into consideration,
and it is customary to define the visual hull simply as the
intersection of the cones

⋂
i Ci for arbitrary (non necessar-

ily consistent) silhouettes: this operation can be justified by
noting that if

⋂
i Ci is not empty, then it is the visual hull

associated with the subsets T̃i =Mi(
⋂

j Cj) ⊆ Ti, which
will always be consistent. In fact, consistency is clearly
equivalent to the fact that T̃i = Ti = Mi(

⋂
j Cj) for all

i = 1, . . . , n, or to Ti ⊆ Mi(
⋂

j Cj), since the opposite
inclusion is always true. We collect a few other simple but
useful properties:

Proposition 1. Let T1, . . . , Tn be arbitrary closed image
sets.

1. T1, . . . , Tn are consistent if and only if for each i =
1, . . . , n, and for all ui ∈ Ti, the visual rayM−1(ui)
intersects

⋂
j 6=i Cj .

2. T1, . . . , Tn are consistent if and only if

Ti ⊆Mi

⋂
j 6=i

Cj

 , ∀i ∈ {1, . . . , n}. (1)

3. If T1, . . . , Tn are consistent, then any subfamily
Ti1 , . . . , Tis is consistent (for the associated cameras
Mi1 , . . . ,Mis ).

Proof. The first property follows from the fact that Ti ⊆
Mi(

⋂
j Cj) can be expressed as M−1i (ui) ∩

⋂
j Cj 6= ∅

for all ui ∈ Ti, which in turn is equivalent toM−1i (ui) ∩⋂
j 6=i Cj 6= ∅, sinceM−1i (ui) ⊆ Ci. The second and third

properties are consequences of the first one.

This might be a good moment to point out that the notion
of geometric consistency discussed in this paper is some-
what independent from a more intuitive (but less formal)
concept of “similarity” of appearance. For example, Fig-
ure 1 shows that consistent silhouettes may actually look
completely different; on the other hand, almost identical
silhouettes may be geometrically inconsistent. Thus, the
concept might be well suited for being used alongside more
traditional feature-based methods for recognition.

Figure 1: In shadow art very different looking consistent sil-
houettes are exploited for artistic effects. Figure from [23].

Finally, for the rest of the paper we will make the follow-
ing assumption for all n-tuples of image sets T1, . . . , Tn and
camerasM1, . . . ,Mn:

(A) For each camera center ci and visual cone Cj , with
i 6= j, ci does not belong to Cj .

This condition is useful for excluding various degenerate
situations; for example, it guarantees that the visual hulls as-
sociated with all subfamilies of T1, . . . , Tn are closed sets.3

2.2. Pairwise consistency
Let us assume that we are given only two image sets

T1, T2 (and, as usual, two cameras M1,M2). According
to Proposition 1, we know that T1, T2 are consistent if and
only if

T1 ⊆M1 (C2) , and T2 ⊆M2 (C1) (2)

In other words, we require for each set to be contained in
the projection of the visual cone associated to the other one
(see Figure 2). Pairwise consistency is closely related to the
popular epipolar tangency constraint [1, 32]. Indeed, we
can restate the condition (2) in terms of epipolar geometry
as follows.
Proposition 2. Two arbitrary closed sets T1, T2 are consis-
tent if and only if the set of epipolar lines in the first image
intersecting T1 is in epipolar correspondence with the set of
epipolar lines in the second image intersecting T2.

Proof. The statement can be seen as a consequence of the
first property in Proposition 1. In fact, the epipolar corre-
spondence condition guarantees that for all i = 1, 2, and
for every point ui ∈ Ti there exists at least one correspond-
ing point uj ∈ Tj (j 6= i), so that triangulating all pairs
of associated points (i.e., intersecting the cones C1, C2) we
obtain a set R ⊆ P3 \ {c1, c2} that projects exactly onto T1
and T2. Note that assumption (A) guarantees that, in each
image, the epipole lies outside of the given set.

This result can also be stated in more geometric terms:
in order for T1, T2 to be consistent, we consider the pencil
of planes through the two centers c1, c2, and require the set

3This condition is not actually necessary for all of our results, and
weaker assumptions may often be considered. However, for the sake of
simplicity, we give a single condition that is valid throughout the paper.



Figure 2: Parwise consistency. Left: the lines `A1 , `
A
2 and the

lines `B1 , `
B
2 must be in epipolar correspondence. Right: the set

of planes through the centers c1, c2 that intersect C1 must be the
same as the set of planes intersecting C2.

of planes which intersecting C1 to be the same as the set
intersecting C2. See Figure 2.

If we assume that T1, T2 are connected closed regions
bounded by smooth curves, then pairwise consistency basi-
cally reduces to the fact that extremal epipolar tangents (i.e.,
“outermost” epipolar lines that are tangent to the contours)
are in epipolar correspondence [3]. It is worth emphasiz-
ing that pairwise consistency does not require non-extremal
epipolar tangents to be matched. Indeed, assuming that
their extremal epipolar tangents correspond, any two silhou-
ettes determine an actual visual hull, as can be seen from
the proof of Proposition 2. In fact, perhaps unintuitively,
the visual hull of two silhouettes with non-extremal epipo-
lar tangencies, (matched or unmatched) will always exhibit
the kind of self-occlusions shown in Figure 3 (although for
close viewpoints the visual hull will be extremely “deep”).
This can be argued investigating the topology of the visual
hull, by walking along all possible paths α in H: these are
equivalent to pairs of paths β1 in T1, β2 in T2 that are such
that β1(t) ∈ T1 and β2(t) ∈ T2 remain in epipolar corre-
spondence for all t; in particular, if the images are assumed
to be rectified, then such pairs of paths are those that can be
traveled along simultaneously in the two silhouettes while
always remaining at the same “height” (interestingly, this
setting is closely related to what is known as the “mountain
climbing problem” [31]). See Figure 4 (and the supplemen-
tal material for more details). Using similar arguments we
also observe that, again rather surprisingly, the visual hull
associated to two connected and consistent sets may be dis-
connected: an example is shown in Figure 5.

Returning to the case of an arbitrary number of sets, we
will say that T1, . . . , Tn are pairwise consistent if each pair
Ti, Tj , i 6= j is consistent. From Proposition 1, we know
that this holds whenever T1, . . . , Tn are consistent. The
converse is not true, as pointed out in [3, 5] (see also Fig-
ure 7). However, it would be useful to clarify the practical
distinction between these two notions: much of our discus-
sion in the following will be aimed at a better understanding
of this issue. For example, in the case of three sets, pairwise
consistency often implies that there is at least an “approx-
imate” consistency: this property directly generalizes the
fact that three non-coplanar visual rays that converge pair-
wise will always converge [14].

Figure 3: The visual hull of two “hook-shaped” silhouettes al-
ways presents self-occlusions. See Figure 4 for an explanation.

Figure 4: Topology of two silhouettes (left and center) and their
visual hull (right). In both the top and bottom cases (matched
and unmatched internal epipolar tangencies), the visual hull has
four “bumps”, that correspond to four pairs of paths in the pro-
jections (“long” and “short” side for each silhouette) that occlude
each other. The difference between the two situations is that in the
first case there exist objects (other than the visual hull) that project
onto the two silhouettes with only two bumps, while in the sec-
ond case any object that projects consistently must have at least
three bumps (and self-occlusions must occur). See the supplemen-
tal material for a more detailed discussion.

Figure 5: Two special “M” figures give rise to a (very complex)
disconnected visual hull. To prove this, consider a pair of corre-
sponding points located in the two sillhouettes at “A”, and a pair
of corresponding points located at “B”. These may be viewed as
two points on the visual hull, and no path on the visual hull can
connect them, since there is no pair of admissible paths in the pro-
jected silhouettes (i.e., it is not possible to go from “A” to “B” in
both silhouettes while always remaining at the same height).



Figure 6: Proof of Proposition 3. The set T1 (dark gray) and
M1(C2∩C3) are both “inscribed” in the quadrilateralM1(C2)∩
M1(C3) (light gray), and must thus intersect.

Proposition 3. Let T1, T2, T3 be connected closed sets that
are pairwise consistent. If the centers of the cameras
c1, c2, c3 are not collinear, and if each visual cone Ci does
not intersect the plane spanned by c1, c2, c3, then

⋂
i Ci is

not empty.

Proof. It is sufficient to prove that, say, T1 ∩M1(C2 ∩C3)
is not empty. Let R =M1(C2) ∩M1(C3). The assump-
tions on the centers guarantee that R is a quadrilateral (it
is the intersection of two connected projected cones; see
Figure 6). From pairwise consistency (2), we know that
T1 ⊆ R and, moreover, T1 will contain points belonging to
each of the four edges of R. The same actually holds for
M1(C2 ∩C3): indeedM1(C2 ∩C3) ⊆ R is true from ba-
sic set theory, and it must contain points on every edge of
R since C2, C3 are themselves pairwise consistent (an ex-
tremal epipolar line inM1(C2) is the projection of a line in
C2 which must intersect C2 ∩ C3). The claim now follows
from simple continuity arguments: for example, consider
paths in T1 andM1(C2 ∩C3) connecting different pairs of
opposite edges.

2.3. Consistency for convex sets

Let us now assume that T1, . . . , Tn are closed convex
sets. The careful reader might object that the usual notion
of convexity cannot be used in a projective setting, since
two points do not determine a segment. In practice, this
is not an issue: we can say that a closed set T ⊆ P2 is
convex if its intersection with every line consists of at most
one connected component, and there is at least a line in P2

that doesn’t intersect T (in other words, T is convex if there
exists an affine chart in which T is finite and convex). In
particular, a set lying in a physical image that is convex in
the traditional sense is clearly also convex according to our
definition in the projective closure of the image. We refer to
the supplemental material for a more detailed discussion on
convexity in the projective setting. If T1, . . . , Tn are consis-
tent closed convex sets, then the associated visual hull H is
also closed and convex.

Although considering the convex case may appear re-
strictive, we note that: 1) The pairwise consistency con-
straint discussed in the previous section is actually a condi-
tion on convex hulls, since Proposition 2 clearly implies that
an n-tuple of connected sets is pairwise consistent if and

Figure 7: The convex sets T1, T2, T3, with respect to appropriate
orthographic projections, are pairwise consistent but not globally
consistent. This figure can be understood as a multi-view ortho-
graphic drawing: in particular, the epipolar lines that are shown
guarantee pairwise consistency, but, for example, the point p in
T1 corresponds to a segment in T2 that reprojects outside of T3:
this implies that the visual ray associated to p does not intersect
C2 ∩ C3.

only if the associated convex hulls are pairwise consistent.
2) If an n-tuple of connected sets is consistent, then their
convex hulls will also be consistent, as a consequence of
Proposition 1. 3) Even in the restricted case of convex sets,
pairwise consistency does not imply global consistency, as
can be seen in Figure 7 (contradicting a claim in [3]). We
thus believe that it is useful to investigate this case first,
and clarify the distinction between pairwise consistency and
global consistency in this simplified setting.

For example, although not equivalent to pairwise consis-
tency, general consistency for convex sets is actually guar-
anteed by “triplet-wise” consistency (see also [33], where
this result is stated for orthographic projections):

Proposition 4. Let T1, . . . , Tn be closed convex sets. If
Ti, Tj , Tk are consistent for every {i, j, k} ⊆ {1, . . . , n}
then T1, . . . , Tn are consistent.

Proof. From Proposition 1, it is sufficient to prove that
for every i = 1, . . . , n, and for all ui ∈ Ti, we have
M−1(ui) ∩

(⋂
j 6=i Cj

)
6= ∅. Because of convexity, the

sets U i
j =M−1i (ui) ∩ Cj are intervals; moreover, they in-

tersect pairwise because of the assumption of “triplet-wise”
consistency: this implies that they all intersect.4 See Fig-
ure 8.

This statement closely resembles “Helly-type” theorems
in computational geometry [29], and is a generalization of
the fact that point correspondence is always implied by
triplet-wise point correspondence. An inspection of the
proof also shows that it is not actually necessary for the
sets Ti to be convex, but only for their intersections with
epipolar lines (rather than all lines) to be intervals.

4To be precise, it should be noted that, although in projective space,
none of the cones Cj contain ci (because of assumption (A)), so we may
treat the sets U i

j as intervals on a real line.



Figure 8: Proof of Proposition 4: the visual ray corresponding to
p meets the other visual cones in intervals that intersect pairwise,
and thus must all intersect.

If we assume that T1, . . . , Tn are closed convex regions
bounded by curves γ1, . . . , γn, then condition (1) for con-
sistency can be simplified as

γi ⊆Mi

⋂
j 6=i

Cj

 , ∀i ∈ {1, . . . , n}, (3)

since the sets Mi

(⋂
j 6=i Cj

)
are convex. This condi-

tion has actually been used in [15] as a practical relax-
ation of (1) to measure consistency for general (non-convex)
silhouettes: indeed, (3) is actually equivalent to general
consistency wheneverMi

(⋂
j 6=i Cj

)
is simply connected.

While this is often a reasonable assumption, it is not clear
how to easily verify it when the sets Ti are not convex.

Finally, we can use (3) to provide a condition that can be
added to pairwise consistency in order to guarantee general
consistency. We first need to observe that a visual ray can
intersect two other convex silhouettes in several qualitative
ways, which are shown in Figure 9. In particular, we will
call a point u ∈ γ1, such that the visual rayM−1(u) is as
in case (e) a “tangential” triple point (our terminology). We
now can state the following result:

Proposition 5. Let T1, . . . , Tn be pairwise consistent con-
vex regions with smooth boundaries γ1, . . . , γn. Assume
also that γi ∩ Mi(

⋂
j 6=i Cj) 6= ∅ for all i = 1, . . . , n.

If γ1, . . . , γn do not contain tangential triple points, then
T1, . . . , Tn are consistent.

Proof sketch. By virtue of Proposition 4 we may assume
n = 3. Consider u ∈ γ1 ∩M1(C2 ∩ C3): as u varies con-
tinuously along the contour γ1, the visual rayM−1(u) will
always intersect C2 and C3 in two segments (possibly re-
duced to points, as shown in Figure 9) because of pairwise
consistency; moreover these segments will “slide” contin-
uously along the ray. It is clear that, in order for there to
exist a point u′ ∈ γ1 such thatM−1(u′) ∩ C2 ∩ C3 = ∅, a
tangential triple point must occur. A more formal argument
is given in the supplemental material.

Figure 9: Intersections of a visual ray with two other convex sil-
houettes. Cases (a) and (b) are the “generic” intersections; case
(c) is a ray tangent to another silhouette (corresponding to a point
of epipolar tangency); case (d) is a “typical” triple point; case (e)
is a “tangential” triple point.

3. A dual view of consistency
In this section we revisit the notion of consistency from

the viewpoint of duality. In particular, we show how the
consistency of projections relates to a different notion of
consistency for planar sections. In this section, we focus
mainly on the case of convex sets, for which this relation-
ship is especially transparent. For completeness, we first
recall in Section 3.1 some basic definitions of duality in the
projective setting.

3.1. Projective duality

The basis of many similar notions of duality is the fact
that points and hyperplanes in some n dimensional space
can play symmetric roles. In Rn, for example, a hyperplane
through the origin can be described by its orthogonal vector.
In projective space Pn, any hyperplane H ⊆ Pn represents
a point in the dual space (Pn)∗. More generally, duality
associates k-dimensional linear subspaces in Pn with (n −
k)-dimensional linear subspaces in (Pn)∗, by interchanging
the role of “join” and “meet” [6].

Now if S ⊆ Pn is a smooth hypersurface, the set of
tangent hyperplanes at points of S forms a dual hyper-
surface S∗ ⊆ (Pn)∗. Although seemingly intuitive, it
is still remarkable that (S∗)∗ = S [28], so duality de-
fines an involutive correspondence between smooth hyper-
surfaces. However, dual hypersurfaces will typically have
self-intersections: for example, in the case of curves, cross-
ings correspond to bitangents of the original curve. With
some care, duality can also be extended to piecewise smooth
surfaces and curves, assuming these are oriented. We refer
to the supplementary material for details. For our purposes,
we will only be interested in curves in P2 and surfaces in
P3.

3.2. Duality and visual hulls

Projective duality is useful in studying vision because
taking perspective projections of a surface S is equivalent



Figure 10: Dual-pairwise-consistency. The dual images of the
silhouettes M∗

1(T
∗
1 ) and M∗

1(T
∗
2 ) must have the same intersec-

tion with the “dual baseline” (c1 ∧ c2)
∗.

to taking planar sections of the corresponding dual sur-
face S∗. Indeed, a perspective camera M with center c
also defines a dual map M∗ that associates lines in P2 to
planes in P3 through c: in particular, the image of M∗ is
a plane in the dual space (P3)∗, namely c∗. If γ ⊆ P2 is
the boundary of the projection of some surface S ⊆ P3,
thenM∗(γ∗) ⊆ (P3)∗ is a planar curve that coincides with
S∗ ∩ c∗. We also refer to [24], where projective duality is
used to investigate the qualitative relationship between im-
age contours and projective shapes.

If T1, . . . , Tn are silhouettes bounded by curves
γ1, . . . , γn, then we can try to express the condition for
consistency in terms of the dual curves γ∗1 , . . . , γ

∗
n. For

simplicity, we assume that T1, . . . , Tn are convex: in this
case, γ∗1 , . . . , γ

∗
n do not have self-intersections (because

γ1, . . . , γn do not have bitangents) and they bound con-
vex regions T ∗1 , . . . , T

∗
n in (P2)∗. Fixing appropriate affine

charts, the sets T ∗i are the dual convex bodies associated to
Ti [26]. See the supplemental material for a more detailed
discussion.

We now introduce the notion of “sectional consistency”
for planar sets sets in P3:

Definition 2. Let S1, . . . , Sn be convex and planar sets in
P3, so that Si ⊂ πi for distinct planes π1, . . . , πn. We say
that such sets are sectionally consistent if there exists a con-
vex set K ⊆ P3 such that K ∩ πi = Si for all i = 1, . . . , n.

Note that if S1, . . . , Sn are sectionally consistent, the
smallest set K from the previous definition is simply the
convex hull of S1, . . . , Sn. In particular, this means that if
S1, . . . , Sn are bounded (relative to the planes πi) by curves
τ1, . . . , τn, then sectional consistency is equivalent to the
fact that each curve τi lies on the boundary of their convex
hull K.

The notion of sectional consistency can be seen as a dual
version of consistency. Indeed, it is a simple consequence
of duality that a set of convex silhouettes T1, . . . , Tn is con-
sistent if and only if the planar setsM∗1(T ∗1 ), . . . ,M∗n(T ∗n)
are sectionally consistent. Moreover, the following holds:

Figure 11: Structure of the dual visual hull. The dual visual hull
is composed of planar curves, ruled surface patches and planar
triangular patches: each of these are associated to specific compo-
nents of the visual hull. See text for details.

Proposition 6. If T1, . . . , Tn are consistent convex silhou-
ettes and H is their associated visual hull, then H∗ =
K, where K is the convex hull ofM∗1(T ∗1 ), . . . ,M∗n(T ∗n).
Thus, K is the “dual visual hull” of T1, . . . , Tn.

Indeed,H∗ is the smallest possible set with the “correct”
sections (since H is the largest possible set with the correct
projections); thus it must coincide with K, because duality
reverses containments for convex sets. See the supplemen-
tal material for a more detailed proof. Alternatively, it is a
standard result in convex analysis that if K1,K2 are convex
sets in Rn, then (K1∩K2)

∗ = Conv(K∗1 ∪K∗2 ), assuming
that 0 ∈ K1 and 0 ∈ K2 [26] (here Conv denotes the con-
vex hull): by choosing appropriate affine charts, this can be
used to show Proposition 6.

Consistency is arguably more intuitive in its dual for-
mulation, since planar regions in space are conceptually
easier to grasp than families of intersecting cones. For
example, the pairwise consistency constraint for two con-
vex silhouettes T1, T2 reduces to the fact thatM∗1(T ∗1 ) and
M∗1(T ∗2 ) have the same intersection with the “dual base-
line” (c1 ∧ c2)

∗ (here ∧ denotes the “join” of two points):
see Figure 10.

We also briefly describe a “combinatorial” relationship
between the visual hull H and its dual K = H∗. Let π be a
plane tangent toH (i.e., a supporting plane in an appropriate
affine chart). If π is also tangent to a visual cone Ci, then it
represents a point in the dual space that belongs to a planar
curveM∗i (γ∗i ); if π only intersects H along an intersection
curve [20] belonging to ∂Ci∩∂Cj , then it represents a point
on a ruled patch of H∗ connectingM∗i (γ∗i ) andM∗j (γ∗j );
finally, if π only intersects H at a triple point belonging to
∂Ci ∩ ∂Cj ∩ ∂Ck, then it represents a point on a planar
patch of H∗ connectingM∗i (γ∗i ),M∗j (γ∗j ),M∗k(γ∗k) (ruled
and planar patches are typical for convex hulls of curves in
space [19]). See Figure 11.

The notion of sectional consistency given in Definition 2
is reminiscent of questions in geometric tomography [13],
or stereology [16]. In tomography, for example, the duality
between projections and sections is well studied, but typi-
cally in a euclidean setting that considers only orthographic
projections. Nevertheless, it is quite possible that tools from



these related fields could provide interesting new insight for
problems in computer vision: for example, the correspond-
ing algorithms may give alternative approaches for the con-
struction of the (dual) visual hull.

4. Compatible silhouettes
Throughout the paper, we have always considered fami-

lies of silhouettes (or image sets) T1, . . . , Tn together with
known camera projectionsM1, . . . ,Mn. However, we can
introduce a more general notion of “geometric compatibil-
ity”, that can be applied in the case of incomplete knowl-
edge of the camera parameters. More precisely, we define
an arbitrary family of silhouettes (or image sets) T1, . . . , Tn
to be compatible with some partial knowledgeP of the cam-
era parameters when there exist projections M1, . . . ,Mn

that agree with P and for which T1, . . . , Tn are consistent
according to Definition 1.

Simply put, this notion characterizes the most general
condition for a family of silhouettes (or sets) to be feasible
projections of a single object. The study of similar issues
was initiated in [2], where the authors assume the external
parameters of the cameras to be unknown, and analyze in
detail the geometric constraints for compatibility in a par-
ticular case (orthographic viewing directions parallel to the
same plane).

The first theoretical problems raised by our definition of
compatibility is to understand, in a given setting, 1) how
“large” the space of compatible silhouettes is, and 2) the
extent to which the complete camera parameters are deter-
mined by compatible silhouettes. For example, in [2] it is
pointed out that if one considers internal as well as exter-
nal parameters to be unknown, then any family of silhou-
ettes will be compatible (they note that considering a con-
vex object, and applying local protrusions with appropri-
ate shapes, one is able to produce arbitrary silhouettes by
placing cameras near the surface). This interesting obser-
vation, however, would seem to imply that SfM methods
can never exploit the geometry of the silhouettes in order to
recover camera parameters, since a particular family of sil-
houettes would provide no information on the viewing con-
ditions. On the other hand, we note that the construction
proposed in [2] violates our assumption (A) for all pairs of
cameras and silhouettes (viewing cones must be extremely
“wide”, and thus contain all other centers which lie near
the surface of the convex object): instead, we argue that by
restricting ourselves to certain regions in the space of pa-
rameters so that (A) is satisfied by sufficiently many pairs
of views (or, in practice, by considering appropriate initial
estimates for the parameters), then a sufficient number of
generic silhouettes will allow camera projections to be lo-
cally (over)determined, even with no prior knowledge about
the parameters. See Figure 12 or the supplemental material.

In general, a better understanding of these issues can be
important for several practical reasons, such as spelling out

Figure 12: In the case that (only) two silhouettes T1, T2 are given,
we can express the fundamental matrix as F = [e2]×H [14], and
note that if the homography H is such that H(T1) is not contained
in or does not contain T2, then e2 is basically uniquely determined
by H (it must be at the intersection of two bitangents: see [8]
that exploits this idea with parallax); on the other hand if, say,
H(T1) ⊆ T2 then e2 is only constrained to belong to H(T1). We
see that with appropriate assumptions camera geometry is con-
strained by silhouettes (in this case, 5 dof instead of 7).

conditions for when silhouettes may or may not be used to
determine camera geometry (and possibly help design bet-
ter algorithms), or similarly to give conditions for a family
of silhouettes alone to provide a unique representation of
(the visual hull of) an object. Duality might also prove to
be a useful tool for investigating these kinds of questions:
much in the same way as in Section 3, we realize that the
notion of compatibility of silhouettes can be expressed in
terms of the compatibility of planar regions, which need to
be “assembled” consistently in order to be feasible sections
of a single object.

5. Conclusions

We have analyzed in detail the notion of “geometric con-
sistency” for arbitrary image sets, in a setting that can be
seen as an extension of traditional multi-view geometry.
In the case of convex silhouettes we have also discussed a
“dual” interpretation of consistency, expressing conditions
for planar sets to be sections of a single object. These con-
cepts lead to a more general notion of silhouette “compat-
ibility”, that does not require (complete) knowledge of the
camera parameters.

We plan to extend this work in various directions. On
the practical side, our results need to be revisited for dealing
with noisy data, and the theory may be used for comparing
different measures of “inconsistency” such as the ones con-
sidered in [3, 15, 22]. On the theoretical side, in addition to
the questions on “compatibility” discussed above, there re-
mains to gain a better understanding of (primal and dual)
consistency for non-convex silhouettes. In geometric to-
mography, for example, it is typical to study sections of con-
vex bodies [13]; however, for applications in vision, this as-
sumption may be restrictive. Solutions to all of these prob-
lems would be useful in many practical settings, and would
help us clarify the fundamental relationship between two-
dimensional projections and the natural concept of “shape”.
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