Algebraic independence of $G$-functions and congruences "à la Lucas" - Archive ouverte HAL
Article Dans Une Revue Annales Scientifiques de l'École Normale Supérieure Année : 2019

Algebraic independence of $G$-functions and congruences "à la Lucas"

Résumé

We develop a new method for proving algebraic independence of $G$-functions. Our approach rests on the following observation: $G$-functions do not always come with a single linear differential equation, but also sometimes with an infinite family of linear difference equations associated with the Frobenius that are obtained by reduction modulo prime ideals. When these linear difference equations have order one, the coefficients of the $G$-function satisfy congruences reminiscent of a classical theorem of Lucas on binomial coefficients. We use this to derive a Kolchin-like algebraic independence criterion. We show the relevance of this criterion by proving, using p-adic tools, that many classical families of $G$-functions turn out to satisfy congruences "à la Lucas".
Fichier principal
Vignette du fichier
ABD_09mars2016.pdf (436.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01287140 , version 1 (11-03-2016)

Identifiants

Citer

B Adamczewski, Jason P. Bell, E Delaygue. Algebraic independence of $G$-functions and congruences "à la Lucas". Annales Scientifiques de l'École Normale Supérieure, 2019, 52 (3), pp.515-559. ⟨10.24033/asens.2392⟩. ⟨hal-01287140⟩
277 Consultations
107 Téléchargements

Altmetric

Partager

More