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II. Bernstein-Greene-Kruskal-type waves in magnetic trapping
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The stationary state with magnetically trapped particles is investigated at the saturation of the

relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework.

The multistream model and its multiring extension have been developed in Paper I, under the

assumption that the generalized canonical momentum is conserved in the perpendicular direction.

One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are

addressed using similar mathematical formalism developed by Lontano et al. [Phys. Plasmas 9,

2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both

electrostatic and magnetic trapping mechanisms. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4817751]

I. INTRODUCTION

Nearly 50 years ago, Bernstein, Greene, and Kruskal in

Ref. 1 discovered a class of nonlinear equilibria (BGK

waves) in collisionless plasmas. Owing the existence of par-

ticle trapping process in the wave’s potential, BGK modes

require a kinetic Vlasov-Poisson description. In these stud-

ies, plasma is able to support stationary large amplitude spa-

tially periodic structures exhibiting “holes” in phase space.

Such BKG waves can be excited experimentally today.2 The

formation of the holes in the phase space density corresponds

to the presence of a small population of trapped particles but

which plays here the fundamental role in the stopping of the

Landau damping. Such an equilibrium is described by a dis-

tribution function depending only on the energy of particles.

In numerical Vlasov-Poisson experiments presented in Ref.

3, such BGK waves have been found to be unstable, although

they first appear at the initial stage of a two-stream homoge-

neous plasma. But in all cases, the interaction of vortices

brings a coalescence until only one vortex subsists. In fact,

the stabilization is here related to the finite size of the sys-

tem, since a system exhibiting only one BGK structure is

indeed marginally stable. Another point observed in Vlasov

simulations (see Ref. 4) is the possibility to obtain holes hav-

ing frequency well below the plasma frequency xp due to

the tendency of holes to merge. In particular, the coalescence

of two electron holes leads to a wave vector divided by a typ-

ical value close to two (due to pair-wise vortex merging) and

thus the frequency of the driven mode kvk is not quite di-

vided by two but jumps from a value of x � xp (given by

the standard Bohm-Gross dispersion relation) to a value

found well below xp. Such an aspect of the instability shows

the major role played by kinetic effects.

Also deserving of mention here is the magnetic version

of BGK waves with resonant particles becoming magnetically

trapped which is observed when the Weibel instability (WI)

saturates. Stabilization occurs when the magnetic bounce fre-

quency becomes roughly as large as the linear mode growth

rate. Recently, the classic Weibel instability received atten-

tion for its applicability in various contemporary problems of

laser-plasma interaction as the fast ignitor (see Refs. 5–7) or

in the various astrophysical situations as the study of physical

processes for generating magnetic fields in gamma ray burst

sources (see Refs. 8–13). Plasmas in these astrophysical and

cosmic environments are highly energetic and therefore the

Weibel instability requires a relativistic treatment. As previ-

ously indicated, the theoretical studies of large-amplitude

transverse waves include investigations of the quasilinear

evolution and nonlinear saturation via magnetic trapping15 of

Weibel instabilities. The system tends to a quasi-steady state

which supports a magnetic-type BGK wave. However, previ-

ous analytical studies concern the non relativistic regime of

the Weibel instability. Analytical studies on the derivation of

relativistic Vlasov-Maxwell solutions are still rare. The first

theoretical studies of relativistic laser pulses in plasmas date

again back to 1950s,14 when it was recognised that an analyti-

cal simplification of coupled relativistic fluid equations is

allowed by the introduction of a circularly polarized electro-

magnetic wave. More recently, relativistic solutions concern-

ing electromagnetic solitons have been published using a

kinetic treatment by Lontano et al. in Refs. 16 and 17, while

later Eliasson and Shukla revisited the concept of relativistic

holes in phase space in Ref. 18. In Ref. 17, localized aperi-

odic stationary solutions have been found in the case of a hot

plasma sustaining a relativistically intense soliton-type elec-

tromagnetic structure. In the present paper, we revisit the

problem of the Weibel instability and its nonlinear saturation

via magnetic trapping in the relativistic regime.

Our aim is here to study and characterize the magnetic

BGK-type equilibrium, met at saturation of WI, by applying

the multistream concept recently proposed in Refs. 19 and 20.

The multistream model is a reformulation of the invariance

properties of the canonical momentum in the perpendicular

direction in the usual reduction techniques used in the

Hamiltonian formalism. In Ref. 21, further called Paper I, this

formalism was restated to also accommodate the relativistic

effects in WI. In Secs. II and III, we focus our attention on

the properties of relativistic stationary solutions of the

Vlasov-Maxwell system in the presence of magnetic trapping,
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which differ here from the relativistic soliton-type solutions

predicted by Lontano et al. Here, the obtained equilibria can

be viewed as the relativistic counterpart of the magnetic

BGK modes introduced by Berger and Davidson in Ref. 15.

The analytical calculations are checked against numerical

simulations of the multistream model, shown in Sec. IV. The

coupling with the electrostatic particle trapping is investi-

gated in Sec. V. Our conclusions are presented in Sec. VI.

Some auxiliary calculations are also given in Appendix.

Results obtained here will also be used in paper III in

Ref. 22 where numerical comparisons will be performed to

study the saturation regime of WI.

II. BASIC MODEL FOR MAGNETIC BGK WAVES

We start from the work of Lontano et al., which has

allowed the authors in Refs. 16 and 17 to construct a class

of relativistic electromagnetic soliton-type solution of the

Maxwell-Vlasov system. In Refs. 16 and 17, the theoretical

investigation is based on the use of two key hypotheses: the

invariance property of the perpendicular canonical momen-

tum and the introduction of a circular polarization for the

electromagnetic field followed the pioneer work of Alkiezer

and Polovin in Ref. 14. The authors use the assumption of a

cold transverse direction in momentum, while keeping a

finite constant parallel temperature. The structure of the

equilibrium corresponds to a Dirac-type distribution in

the perpendicular momentum direction. Such a hypothesis

allows the authors to build a class of exact solutions for

describing aperiodic Vlasov-Maxwell equilibria leading to

the soliton-like solutions. However, when Weibel-type

instabilities are considered, such a hypothesis is no longer

valid since we need to introduce a finite perpendicular tem-

perature which makes the calculations more difficult. An al-

ternative is then to consider a multi-stream approach in the

perpendicular direction in momentum space which allows

to take into account a finite plasma temperature in p?.

However, the mathematical treatment is here very similar to

that used in Refs. 16 and 17 since we use an ensemble of

Dirac-type distributions for the different streams or “particle

bunches.”

By extending the analogy with the Lontano’s solution,

we may infer further that particle trapping scenario met at

saturation of WI, in the relativistic regime, would be simi-

larly described by a nonlinear theory using Dirac distribution

in p?. We may surmise that similar “BGK-waves” must exist

for the plasma in the relativistic regime and we may use our

knowledge of the soliton-type solution of Lontano, which

exhibits a mixed electromagnetic-electrostatic character to

guess the nature of the electromagnetic particle trapping act-

ing as a saturation process for WI. Finally, one might also

expect that, in the limit of weak magnetic fields, the self-

consistent solution of the reduced Vlasov-Maxwell system

(here described by the multistream model) would correspond

to a dominant magnetic particle trapping version, at least in

the case of a circularly polarized potential vector. In the gen-

eral case and for a linearly polarized electromagnetic field,

particles experience a mixed electrostatic and magnetic trap-

ping. This inference would be confirmed later directly by

numerical simulations based from the multistream model,

both in the strongly nonlinear and relativistic regimes.

Following the approach of Akhiezer and Polovin in Ref.

14 or that of Berger and Davidson in Ref. 15, the research of

a stationary solution is thus facilitated by the introduction of

a circularly polarized potential vector in the form

A?ðx; tÞ ¼ A0 cosðk0xÞey þ A0 sinðk0xÞez: (1)

Therefore, it is then possible to introduce the concept of

“ring” and to allocate the different streams on a circular ring

of constant radius C?j as previously proposed in Part I com-

panion paper in Ref. 21. Thus, without loss of generality, for

a class of exact solutions of streams having a canonical

momentum

Cj ¼ C?j cos hjey þ C?j sin hjez (2)

we can introduce random phases hj which determine the

position of streams on the considered “ring.” In order to fix

the basic ideas, we first consider the one-ring case and take

Ns ¼ N streams (for j ¼ 1; :::;N) distributed on a circular

ring of radius C? in a random way. Notice that C?j ¼ C? for

j ¼ 1; :::;N while keeping the central stream (here denoted

by j¼ 0) at the origin in the momentum space. For this cen-

tral stream, we have indeed C?0 ¼ 0 and we may consider

this system as a two-ring case for which the central ring is a

Dirac-type distribution—i.e., a stream- of zero radius.

Here, we choose to solve a system of several Vlasov-

type equations in the multistream approach rather than the

one-dimensional 1D3V Vlasov equation, which is frequently

considered in other works. Thus, in the multi-stream

approach, we have to solve N þ 1 reduced Vlasov-type equa-

tions, which can be written in the form (for 0 � j � N)

@fj

@t
þ px

mcj

@fj

@x
� @

@x
ðmc2cj þ e/Þ @fj

@px
¼ 0: (3)

The stationary solution (@=@t ¼ 0) of Eq. (3) is any function

FjðejÞ of the total relativistic energy ej ¼ mc2cj þ e/ for the

particle stream noted j and the dependence on the variable Cj

is made through the Lorentz factor cj given by c2
j ¼ 1þ p2

x

m2c2

þ ðCj�eA?Þ2
m2c2 . The structure of the electron distribution function

can now be taken as a multistream-type and the particle dis-

tribution, for the jth stream, writes in the form of a Maxwell-

Boltzmann-J€uttner distribution

fjðx; pxÞ ¼ Sj expð�lcjÞexp �l
e/
mc2

� �
; (4)

where l ¼ mc2

Tk
is the relativistic factor which determines the

features on temperature in the longitudinal direction in px.

Here, the quantity Sj is a constant of normalization. By inte-

grating (4) over px, it is easy to calculate the density of the

jth stream, so one obtains

njðxÞ ¼ Sj exp �l
e/
mc2

� �
2mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU2

j ðxÞ
q

K1

�
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU2

j ðxÞ
q �

;

(5)
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where we have introduced the quantity U2
j defined by

U2
j ðxÞ ¼

ðCj � eA?Þ:ðCj � eA?Þ
m2c2

: (6)

In addition to nj that we presented, we can also define the

perpendicular component of the current density, for the jth
stream. In a similar way, one gets

J?j ¼ 2mcSj
e

m
ðCj� eA?Þexp �l

e/
mc2

� �
K0

�
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU2

j ðxÞ
q �

;

(7)

where Kn is the modified Bessel function of second kind and

of order n. Using the expressions of the potential vector A?,

in a circular polarization and of the canonical momentum

given by Eqs. (1) and (2), respectively, the function U2
j ðxÞ

rewrites as follows:

U2
j ðxÞ ¼ a2

0 þ
C2
?j

m2c2
� 2C?ja0

mc
cosðk0x� hjÞ (8)

with the standard normalized potential vector amplitude of

a0 ¼ eA0

mc . From the normalization condition on fj for the jth
stream, which writes as

Ð L
0

dx
L

Ðþ1
�1 dpxfjðx; px; tÞ ¼ n0aj (and

where the summation over the different beam densities is

taken to one), it can be easily verified that the normalized

factor Sj reads as

Sj ¼
n0aj

Dj

¼ n0ajðL

0

dx

L
exp �l

e/
mc2

� �
2mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU2

j ðxÞ
q

K1

�
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU2

j ðxÞ
q � :

(9)

Using the density nj and the corresponding current density

J?j, associated to the stream j, defined by Eqs. (5) and (7),

respectively. Equations for the potential vector A? and the

electric potential write now, respectively

@2A?
@t2
� c2@

2A?
@x2
þx2

pe�l e/

mc2

XN

j¼0

2mcaj

Dj
K0

�
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU2

j ðxÞ
q �

A?

¼
x2

p

e
e�l e/

mc2

XN

j¼0

ajCj

Dj
K0

�
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU2

j ðxÞ
q �

; (10)

d2/
dx2
¼ n0e

�0

1� e�l e/

mc2

XN

j¼0

2mcaj

Dj

2
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2

j ðxÞ
q

K1

�
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2

j ðxÞ
q �#

: (11)

Therefore, we are faced with the mathematical problem of

solutions of a coupled nonlinear system of two second order

differential equations given by Eqs. (10) and (11), depending

on the physical parameters fl; aj;C?j; hjg. They can be put

into a Hamiltonian form, using a procedure similar to the

one employed by Lontano et al. in Refs. 16 and 17 or by

Haas et al. in Ref. 23 in the case of the study of quantum

plasmas using a multistream model. Equations (10) and (11)

constitute a closed set of one-dimensional relativistic equa-

tions for the potential fields / and A?, interacting with a hot

plasma, whose macroscopic state has been consistently

derived from the stationary solution given in Eq. (4) of the

reduced Vlasov equations (3). While the set of Eqs. (10) and

(11) admits an aperiodic solution in the case of a single

stream, it is however possible to build a periodic (BGK-type)

solution when several streams are considered, allowing to

take into account a finite perpendicular temperature.

III. MAGNETIC BGK WAVE IN THE LIMIT OF WEAK
FIELDS

It is then instructive to examine the structure of the sta-

tionary solution of the set of Eqs. (3), (10), and (11) in the

limit of weak fields or when strong perpendicular tempera-

ture is considered. It follows that we can now assume that

a0 � C?
mc and the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2

j ðxÞ
q

can be approximated.

To simplify the presentation, we assume also that /! 0. In

the general case, the electric potential can be chosen to be as

small as possible in the case of a circularly polarized poten-

tial vector at least in the limit where the amplitude of the

potential vector is weak.

At this step, we introduce normalized quantities as

a? ¼ eA?ðx;tÞ
mc , the spatial x and time t coordinates become

now dimensionless quantities, respectively, normalized to

de ¼ cx�1
p and to x�1

p . One getsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2

j ðxÞ
q

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?j

q
� a?:Cj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?j

q
� a0C?j cosðk0x� hjÞ;

(12)

where the vector Cj, of modulus C?j, is now normalized to

mc. By using Eq. (12), one can express the modified Bessel

function Kn of argument l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2

j ðxÞ
q

in terms of zj

¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?j

q
and a?:Cj as

Kn

�
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2

j ðxÞ
q �

’ KnðzjÞ � a?:Cj
dKn

dz
ðzjÞ: (13)

In dimensionless quantities, it is possible to write the equa-

tion for a? which becomes, to the first order in a?:Cj, and by

using for the first derivative of dK0

dz ¼ �K1ðzÞ

@2a?
@t2
� @

2a?
@x2
þ a?

XN

j¼0

aj

Dj
½K0ðzjÞ þ la?:CjK1ðzjÞ�

¼
XN

j¼0

ajCj

Dj
½K0ðzjÞ þ la?:CjK1ðzjÞ�: (14)

We can now perform an average over the random phase hj of

the streams distributed on the ring of radius C?j ¼ C? for

1 � j � N (included in the term a?:Cj). Notice that for the
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central stream, i.e., j¼ 0, the corresponding value is C?0

¼ 0. This average operator will be used to eliminate all terms

of first order in a?:Cj except the contribution in ða?:CjÞCj in

the right-hand member in Eq. (14).

Assuming that the streams are distributed in a random

way on a given ring and the mean value of hCjihj
! 0,

allowing to suppress the contribution of the ða?:CjÞa? non

linear term in Eq. (14), one gets

@2a?
@t2
�@

2a?
@x2
þ
XN

j¼0

aj

Dj
K0ðzjÞa? ¼

XN

j¼0

aj

Dj
lhCjða?:CjÞihj

K1ðzjÞ:

(15)

By replacing now the expression of Dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?j

q
K1ðzjÞ in Eq. (15) and keeping the nonlinear contribution in

Cj, we remain with a single linearized equation for a? in the

form

@2a?
@t2
� @

2a?
@x2
þ
XN

j¼0

ajl
K0ðzjÞ

zjK1ðzjÞ
a? ¼

XN

j¼0

aj

zj
l2hCjða?:CjÞihj

:

(16)

Several remarks must be pointed out:

(i) First, it can be easily verified that the case where Cj ¼ 0

in Eq. (16) cannot sustain periodic BGK-type solu-

tions. We indeed recover the standard dispersion rela-

tion of propagating electromagnetic waves in plasma

which reads in normalized quantities as x2 ¼ k2

þ
PN

j¼0 laj
K0ðzjÞ

zjK1ðzjÞ.
(ii) More generally, in the case of WI, dropping now the

time derivative ð@@t ¼ 0Þ in the linear version of the

potential vector equation in Eq. (16) (but keeping the

nonlinear contribution in Cj), we seek steady-state

solutions of Eq. (16) for the case where the right-hand

side in Eq. (16) is now different of zero. By replacing

the averaged term hCjða?:CjÞihj
by its value 0:5C2

?ja?,

Eq. (16) reads now

d2a?
dx2
þ

XN

j¼0

ajl2C2
?j

2zj
�
XN

j¼0

ajlK0ðzjÞ
zjK1ðzjÞ

2
4

3
5a? ¼ 0: (17)

Substituting Eq. (1) into Eq. (17) determines k0 self-

consistently in the dimensionless form (with zj

¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?j

q
)

k2
0 ¼

XN

j¼0

ajl2C2
?j

2zj
�
XN

j¼0

ajlK0ðzjÞ
zjK1ðzjÞ

: (18)

In Eq. (18), k2
0 can take a positive value provided thatPN

j¼0

ajl2C2
?j

2zj
>
PN

j¼0
ajlK0ðzjÞ
zjK1ðzjÞ . As a specific example, consider

the Yoon’s and Davidson’s solution for a single ring without

central beam, i.e., for a0 ¼ 0 and
PN

j¼1 aj ¼ 1. Therefore, we

have (using z ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?

p
)

k2
0 ¼ l

C2
?

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?

p � K0ðzÞ
zK1ðzÞ

 !
> 0 (19)

provided that we take C? sufficiently large, or equivalently,

by considering large relativistic perpendicular temperature

ðC? � 2:5Þ. In fact, for 0:5 � z � 5, the function

K0ðzÞ=zK1ðzÞ decreases from 1.116 to 0.189.

To summarize periodic stationary solutions may be

found after applying the Hamiltonian reduction technique to

the Vlasov-Maxwell model, when a single ring is introduced

in the transverse direction in momentum space, in addition

to the central Dirac-type stream. For a given stream, local-

ized on the ring, particles experience their own magnetic

bounce frequency which, from Eq. (A10) in Appendix, can

be written, for a deeply trapped particle population as

x2
bj ¼

k2
0C?ja0

c2
0j

: (20)

Here, c0j is given by the Lorentz factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?j

q
in

normalized units (see Appendix). Notice that, from Eq. (16),

the periodic solution breaks down, when the second member

of Eq. (16) disappears, showing the key role played by the

contribution of the C2
? term. Because the magnetic-type

BGK waves arise naturally in the asymptotic behaviour of

Weibel instabilities (as we will see in future section and in

Paper III), the Hamiltonian multistream model can be used

to obtain an accurate description of complex phenomena met

in WI at saturation.

IV. NUMERICAL SIMULATIONS AFFORDED BY THE
MULTISTREAM MODEL

In our simulations, we make use of a kinetic and full rel-

ativistic semi-lagrangian solver24,25 which solves the Vlasov

equation by direct discretization of the phase space. Such a

code displays a very low noise level, even in zones of low

density and is thus to be preferred to usual particle-in-cell

(PIC) codes. Our numerical model solves the Vlasov equa-

tions (3) for each stream j coupled with the Maxwell equa-

tions for fields in a self-consistent way. In this section, we

present first results from the multistream Vlasov simulations

to investigate the key role played by the magnetic trapping

during the saturation regime of WI and the stability of the

resulting magnetic BGK structures occurring in phase space.

The mechanism of WI depends on the free energy which

is stored in an anisotropy particle distribution in momentum

space. For relativistic plasmas, the most common distribu-

tion function is the Maxwell-J€uttner distribution. There is an

extensive literature relating to dispersion in finite tempera-

ture, especially relativistic and thermal plasmas. While

Saheer et Murtaza introduced a semirelativistic Maxwellian

distribution in Ref. 26 to investigate WI, the Yoon’s

model27,28 represents the first attempt to generalize the

Maxwell-J€uttner distribution to include temperature anisot-

ropy in the relativistic regime. More recently, Schlickeiser

introduced a newly bi-Maxwellian distribution from covari-

ant approach of dispersion theory of linear waves in Ref. 29.

To show the possibilities of our multistream approach, we
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adopt to characterize the temperature anisotropy using the

normalized distribution function of Schlickeiser while keep-

ing a Dirac comb in p?. Thus, at the equilibrium, the distri-

bution reads

F0ðpx;p?; t ¼ 0Þ ¼
XN

j¼0

aje
�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2

xþp2
?

p
�lwp2

x dðp? � CjÞ;

(21)

where the different streams, except the case of the “central”

beam, are distributed over a single circular “ring” in the per-

pendicular momentum space p? of radius chosen here as

C?j ¼ p?th for every value of j taken between 1 and N, and

where p?th denotes the thermal momentum in the perpendic-

ular direction approximated by
p2
?th

2
ffiffiffiffiffiffiffiffiffiffiffi
1þp2

th;?

p ¼ 1
l ¼

T?
mc2. For each

stream j, the density is aj given by aj ¼ 1�a0

N . For the central

stream, the density corresponds to a0 and we take C?0 ¼ 0.

Here, the normalization condition for F0 writes
PN

j¼0 aj ¼ 1

and the coefficients aj are calculated numerically from the

data of the Schlickeiser’s distribution. Notice that the tem-

perature anisotropy is described by the factor w taken close

to 4 and we have checked that no instability arises when

w ¼ 0. The distribution function is then perturbed by mag-

netic fluctuations on the components of the magnetic field by

using

dB ¼
XM

m¼1

b0 cos
2pmx

L
þ �m

� �
ey

þ
XM

m¼1

b0 sin
2pmx

L
þ �m

� �
ez; (22)

where �m are random phases and b0 ¼ 10�5 is the normal-

ized mode amplitude. We have taken M¼ 20 modes and a

plasma length of L ¼ 16pde. Finally, ions were taken to

form an infinitely massive uniform background. This is a

valid approximation since, for realistic ion masses, the ion

motion would not participate in the instability on the time

scale of interest.

A first numerical simulation was performed using a

phase space sampling of NxNpx
¼ 1024� 513 while the typi-

cal time step is Dt ¼ 0:025. Together with the central beam

located at C?0 ¼ 0, of density a0 ’ 0:217, we have intro-

duced N¼ 8 streams, of same density aj ¼ 1�a0

N ’ 0:0978,

distributed in random way on a single “ring.” We choose

here to take C? ¼ pth;? ’ 2:40mc which corresponds to T?
’ 570 keV while the parallel temperature is close to Tk
¼ T?

2wþ1
’ 60 keV.

Fig. 1 exhibits the time evolution of the magnetic energy

for the dominant Fourier mode m¼ 3 in a logarithmic scale.

WI proceeds through the linear stage (for 0 � txp � 40), in

which the magnetic field strength grows exponentially in

time, followed by the nonlinear saturation stage, in which

magnetic trapping is expected. Here, the numerical growth

rate of WI is found close to Cnum ’ 0:23. The corresponding

time evolution of the mode m¼ 3 of the inductive part of the

electric field Ey is shown on top panel in Fig. 2, showing a

strong decrease of the electric energy when the instability

saturates. A similar behaviour is observed for the y-compo-

nent of E indicating that the vector potential A? (linked to

the field E? through the relation E? ¼ � @A?
@t ) tends to a

quasi-stationary solution. In order to completely figure out

the electric energy of the system, one must also consider the

electrostatic contribution due to the x-component of the elec-

tric field. The time evolution of the normalized quantity Ex is

FIG. 1. Time evolution of the magnetic energy for the dominant Fourier mode

m¼ 3 in a logarithmic scale. WI proceeds through the linear stage for

txp � 40, in which the magnetic field strength grows exponentially in time, fol-

lowed by the nonlinear saturation stage where magnetic trapping takes place.

FIG. 2. On top panel: Corresponding time evolution of the mode m¼ 3 of

the inductive part of the electric field Ey showing a strong decrease of the

electric energy when the instability saturates. On bottom panel: correspond-

ing electrostatic part Ex showing that the field is non negligible at the

saturation. Thus, the mode m¼ 3 results from the mixture of both

magnetic and electrostatic contributions. The perpendicular temperature is

here T? ’ 570 keV and we have used w ¼ 4.
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thus plotted on the bottom panel in Fig. 2. It should be

noticed that the growth is delayed in comparison with that of

Ey but reaches a high level of saturation. The study of the

long-term evolution of Ex in the system shows, that after a

stage during which the field grows, due to nonlinear cou-

pling, the evolution goes on, until the field starts to oscillate

at a high frequency value close to x ’ 0:80. Note that one

can estimate the square of the relativistic plasma frequency

by the relation

�x2
p ¼

XN

j¼0

aj

c0j

’ 0:48 (23)

i.e., the electric field oscillates at a frequency somewhat

higher than �xp ’ 0:70 in xp-units. This behaviour of Ex im-

mediately points out a feature that distinguishes the asymp-

totic solution seen in the simulation from the purely

magnetic BGK solution studied previously in the limit of

weak fields. Now the dominant mode m¼ 3 is a mixture of

longitudinal and transverse fields due to the nonlinear cou-

pling induced by the A2
?-terms. In these conditions, to obtain

an electrostatic field Ex so strong, we expect that the particles

resonate with the plasma frequency leading to growth of a

longitudinal plasma wave which can also contribute to the

particle trapping. However, the dominant trapping mecha-

nism seems to be the magnetic trapping, at least at the begin-

ning of the saturation mechanism.

The multistream model allows us to separate the dynam-

ics of streams and focus on the time evolution of a distribu-

tion function fjðx; px; tÞ in phase space. The most striking

advantage of this model is the very fine resolution in phase

space capable of resolving the finest mechanism of particle

trapping. This is because, our model renders possible a

detailed examination of the low density regions of the phase

space, especially the description of the tail phenomena,

where only a small number of particles is involved and

where particle trapping occurs. The impact of the magnetic

trapping on the distribution function shape is shown in Fig. 3

where we have displayed the x� px phase space for a stream

chosen among the different streams located on the circular

ring. We show the shaded iso-contours of one of the streams

located on the ring of momentum C? ¼ 2:42mc. The case of

the central beam located at the origin of the perpendicular

momentum space is shown in Fig. 4.

In Fig. 3, we observe the formation of three vortex-type

structures, not in phase, due to the initial fluctuations on the

magnetic field, exhibiting a perturbation made on several

modes. Owing to the very good resolution in phase space

afforded by our Vlasov code, one can begin to understand

much of the details of the saturation process. The asymptotic

behaviour of the stream particle population is shown on bot-

tom panel in Fig. 3. The numerical model implies necessarily

a discretization of phase space, which can create a “cleaning”

in the temporal evolution of the fine structure developed by

the Vlasov equation. When the filamentation in momentum

space reaches the size of the elementary cell DxDpx, the treat-

ment of the information is not exactly effected, leading to the

phenomenon of “cleaning” of the distribution in phase space.

We see clearly on the two first pictures of Fig. 3 the formation

of the vortices with a filamentary structure rotating around

the vortex. Then the “cleaning” takes place, filling the gaps

between the filaments, destroying consequently the mathe-

matical topology properties of the Vlasov equation (the vac-

uum region of the vortex must be continuously connected to

the external px

mc � 12 vacuum region), but in a certain sense,

restoring the physical properties of the plasma, since we must

remember that the Vlasov equation model is an asymptotic

one whose diffusion process in velocity space (or in momen-

tum space here) has been neglected. However, this numerical

diffusion does not affect here the behaviour of the plasma

provided that the phase space sampling is sufficient. Thus af-

ter txp ¼ 150, the apparent vortex structure in the plasma

evolves any more and we obtain a stationary state at

txp ¼ 250. The formation of the vortices corresponds to the

presence of a small population of trapped particles, but which

play a fundamental role in the stopping of the growth of the

Weibel instability.

Of course certain specific aspects of the instability are

here lost because we have only used one ring in the perpen-

dicular space; however, general features induced by mag-

netic trapping can be recovered when a single ring is used.

The behaviour of the different streams of a same ring is

FIG. 3. Phase space representation of a selected “stream” of the ring in the

x� px phase space. The distribution of the trapped particle population exhib-

its a three-vortex structure as the result of the magnetic trapping. The per-

pendicular temperature is here T? ’ 570 keV and we have used w ¼ 4.
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slightly different due to the effects generated by the random

phases introduced initially. The streams experience a mag-

netic effective potential energy a?:Cj (see Eq. (12)) or equiva-

lently a0C?j cosðk0x� hjÞ depending of the random phase hj.

In many aspects, the results presented here confirm the

key role played by the magnetic trapping. It was also found

that the electric field is very weak compared to the magnetic

field. Although they are a minority in number, these trapped

particles of the ring contribute significantly to the saturation

process (it is not the case of particle population of the central

beam as we will see later). On the other hand, there is a strik-

ing difference between the time evolution for particles of the

central beam and those for the ring. Fig. 4 shows a represen-

tation of the distribution of the central stream in phase space.

From Fig. 4, it is clear that nonlinear effects induced by the

Lorentz force, i.e., the a2
?-term are here important. Fig. 4

shows clearly the formation and the growth of vortices

induced by the presence of both modes m¼ 3 (i.e., the mode

k0) and m¼ 6 (the harmonic 2k0). Note that, for the central

stream, the magnetic bounce frequency tends to zero since

C?0 ¼ 0. We found that strong magnetic trapping effects

occur only for the particle population of streams of the ring

and that the size of the magnetic vortices, in momentum, is

bigger in comparison with that of the phase space vortices

observed in the central stream, which are indeed induced by

the “electrostatic” contribution.

The vortices associated to the growing mode m¼ 6,

clearly visible at the beginning at t¼ 56.2, start to pair even-

tually (however without reaching the coalescence) leading to

three global structures, each structure being formed by two

smaller vortices. For a deeply trapped particle population of

the ring, a value of the magnetic bounce frequency, in the

relativistic regime, is given by Eq. (20) which becomes in

normalized units

xB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

C?
c?

xce

s
; (24)

where xce ¼ Bmax

c?
is the electron cyclotron frequency (nor-

malized to xp). By introducing standard normalization units,

we have then C? ’ 2:40 and the corresponding Lorentz fac-

tor is close to c? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?

p
’ 2:67 for a value of

a0 ¼ Bmax=k0 ¼ 0:40=0:75 ¼ 0:533. We obtain a corre-

sponding estimate of the magnetic bounce frequency for a

stream of the ring close to xB ’ 0:32, i.e., a value somewhat

higher than the linear growth rate of C ¼ 0:23. In the multi-

stream representation, a physical picture emerges: it is possi-

ble to represent the “quasi-linear” version of the magnetic

bounce frequency as a mean frequency �xB seen by the dif-

ferent particle stream populations. Thus, �xB can be defined

by the following relation:

�xB ¼
XN

j¼0

ajxbj ¼ ð1� a0ÞxB; (25)

where aj ’ 0:0978 is the beam density for a given stream

located on the ring, while the density of the central stream is

here a0 ’ 0:217. Note that
PN

j¼0 aj ¼ 1 is the normalization

condition. Thus, we obtain �xB ¼ ð1� a0ÞxB ’ 0:249 in

well agreement with the linear growth rate of WI observed in

Fig. 1.

V. ROLE OF THE ELECTROSTATIC TRAPPING AND
STABILITY

In previous sections, the magnetic trapping is shown to

produce a topologically symmetric structure of the distribu-

tion function in the stationary state, in the form of a chain of

magnetic vortices on the mode k0, coupled with a chain of

electrostatic vortices on the mode twice of k0. For the better

understanding of the nature of phase space structures

observed in the central stream, governed by the electrostatic

trapping of resonant electrons, we now perform the same

simulation by increasing the perpendicular temperature till

a value of T? ’ 840 keV (i.e., pth;? ’ 3:40mc) while Tk
¼ T?

1þ2w ’ 90 keV corresponding to an anisotropy factor of

w ¼ 4, and keeping the other physical parameters identical.

While allowing now the possibility of coupling between both

FIG. 4. Representation of the central stream in phase space for the same sys-

tem shown in Fig. 3. We can see clearly the formation and the growth of

vortices induced by the presence of both modes m¼ 3 (i.e., the mode k0) and

m¼ 6 (the harmonic 2k0). Notice that the plasma “heating” is weaker for the

plasma bulk. Numerical results correspond to T? ’ 570 keV and to an ani-

sotropy factor of w ¼ 4.
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kinds of particle trappings, the multistream model offers also

the interpretation of structures observed in the central stream

and describes also new mechanisms associated with resonant

particles, such as pair wise magnetic vortex merging

observed in all streams. It will be shown below that the mag-

netically trapped particles of streams located on the ring also

undergo the effects of the electrostatic trapping. In fact, elec-

trostatic trapping is clearly observed in the central stream for

which the magnetic bounce frequency vanishes, we can fur-

ther distinguish two subclasses of trapped particles, the elec-

trostatically and magnetically trapped ones.

Fig. 5 shows the time history of the mode m¼ 2 for the

magnetic field Bz component, and of the electric field Ex, in

normalized units, respectively, on the top and bottom panels.

The evolution of the magnetic field is plotted in a logarith-

mic scale. For the simulation shown in Fig. 5, magnetic

fluctuations are introduced on the mode m¼ 1 till m¼ 20

using a small amplitude of b0 ¼ 10�5 to assure a low initial

level of magnetic field fluctuations. The mode m¼ 2 is

observed to be the dominant mode although another

modes are also excited to a weaker levels. For the parameters

used in the simulation of Fig. 5, we find from Eq. (25) that

�xB ’ 0:21 in xp units using the relation (24) for xB and the

values of k0 ¼ 0:50 (i.e., the mode m¼ 2 here), Bmax ’ 0:60

and c? ’ 3:77 in normalized units. The numerical growth

rate is close to Cnum ¼ 0:20.

We discuss at first, the behaviour of a ring’s stream dur-

ing the evolution process. The stream is plotted in Fig. 6 at

three different times. The top panel in Fig. 6 shows the be-

ginning of the saturation mechanism indicating the presence

of both modes m¼ 2 and m¼ 3. We see clearly the formation

of a three-vortex structure at time t¼ 50, emerging for the

growth of the most unstable mode m¼ 3. However, the phase

space structure is unstable and the coalescence of two vorti-

ces takes place at time t¼ 75. We see indeed that the phase

space structures in Fig. 6 that characterize the plasma

response caused by both magnetic and electrostatic trapping

processes seems to reach a stationary state formed by a two-

vortex structure.

As already discussed, the model provides the opportu-

nity of an accurate picture of the instability with respect to

the full kinetic approach by looking at the dynamics of each

single stream. We focus now on the behaviour of the central

stream. Fig. 7 displays the evolution of the central stream at

the same times. Even though the main saturation process is

the magnetic trapping, at least at the beginning of saturation,

the analysis of the behaviour of the particle population of the

central beam has revealed novel and surprising features of

FIG. 5. Time history of the mode m¼ 2 for the magnetic field Bz component

on top panel, and of the electric field Ex on bottom panel. The evolution of

the magnetic field is plotted in a logarithmic scale. The simulation was per-

formed for a higher value of the perpendicular temperature of T? ’ 840 keV

using an anisotropy factor of w ¼ 4.

FIG. 6. Plots of the electron distribution function in the phase space for a

selected stream of ring. We see clearly the formation of a three-vortex struc-

ture on the middle panel, emerging for the growth of the most unstable

mode m¼ 3. The phase space structure is however unstable and the coales-

cence of two vortices takes place at time t¼ 75 on bottom panel. The per-

pendicular temperature is here T? ’ 840 keV and we have used w ¼ 4.
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the instability. Particles experience also a trapping of electro-

static nature.

One point is especially significant here. Let me consider,

for simplicity, a population of resonant particles which expe-

riences only magnetic trapping induced by a strong magnetic

field having a dominant mode k0. Such particles are steadily

accelerated and their coherent velocity depends on the

elapsed time since phase mixing occurred. Now, the longitu-

dinal electric field in plasma is driven by charge effects (the

plasma exhibiting inhomogeneous vortex structures) and

grows and it is this self-consistent field that can accelerate

individual particles and maintain the stability of the BGK

structure provided that the dominant mode for the electric

field remains k0. For the Lorentz force, the dominant mode is

2k0. It is the case shown in Figs. 3 and 4 where no vortex

merging is observed and the magnetic BGK structure is sta-

ble. However, when the growth of the magnetic and electric

fields leads of a couple of wave vectors which does not

match together with k0 then the system adjusts itself to sat-

isfy the stability condition of the BGK equilibrium. As a

consequence, there is a change in the nature of the initially

electron plasma wave, which is no longer a simple Langmuir

wave at later times, but, as we hypothesize, a more complex

structure characterized by electric trapping effects in the

form of phase space “bumps” rather than standard holes met

in the non relativistic regime. For instance, the dominant

mode, in Figs. 6 and 7, is initially before txp � 50, the mode

m¼ 3 for the magnetic field and the mode m¼ 5 for the con-

tribution of the Lorentz term in the presence of the electric

perturbation. It must be pointed out that it is not the mode

m¼ 6 here. Later, the resulting phase space vortex structures

turn out to be unstable and not obviously self-sustained and

are apparently able to merge together in a pair wise vortex

merging process.

By comparing behaviours of the first selected streams on

the ring, shown in Fig. 6 with the one of the central stream, it

appears that the plasma evolution is now driven by the self-

reorganisation of the magnetic field and the electric potential

modes in terms of a nonlinear shift to the mode m¼ 2 (or

equivalently the mode k0) and m¼ 4 (i.e., the mode 2k0).

Our investigation reveals that it is the resonant behaviour of

the electrostatic trapping process which determines the reso-

nance condition by imposing the nonlinear shift and the

resulting pair wise vortex merging. The choice of the wave

number is hardly constrained at all. The resonance is made

here on the mode 2k0, due to the Lorentz force and where k0

denotes the dominant mode in the growth of the magnetic

field. Thus, if the resonance mode is made on a different

mode, the reorganisation of the plasma becomes now possi-

ble to reach the equilibrium state, solution of the Vlasov-

Maxwell system. On top panel, the behaviour of the central

stream is shown at the beginning of the saturation process

and it is clear that the selected mode is m¼ 5, different to the

expected modes m¼ 4 and m¼ 6 (middle panel in Fig. 7).

The mode m¼ 5 is however unstable and a pair wise vortex

merging takes place. We found that strong trapping effects

occur for even small amplitude electrostatic waves, resulting

in undamped stationary waves. The fusion is achieved at

time txp ¼ 250. Such a vortex merging has been recently

observed in PIC simulations in Ref. 30.

VI. CONCLUDING REMARKS

The multistream model is a very interesting concept

which allows us to express, in a simple manner, the property

of invariance of the generalized canonical momentum in a

perpendicular direction. Starting from the existence of math-

ematical analogies, we have been able to construct a class of

solutions of the reduced Vlasov-Maxwell system in the form

of stationary BGK waves in the presence of both electric and

magnetic trapping processes. What emerges from the analy-

sis and numerical investigations is the direct result on the

particle distribution, of interactions between streams, stem-

ming from the invariance of the canonical momentum. An

interesting consequence is the recovery of the quasilinear

mechanism where the magnetic bounce frequency for the

plasma can be expressed as an average over the particle pop-

ulations of streams which experience, for each considered

stream, their own (local) magnetic trapping scenario. Again,

the numerical results confirm that saturation occurs when

FIG. 7. Phase space representation of the central stream. Particles of the cen-

tral stream experiences a trapping mechanism induced by the electric poten-

tial. The simulation has been performed for T? ’ 840 keV and w ¼ 4.
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this mean magnetic bounce frequency becomes roughly as

large as the expected linear mode growth rate, even with a

small number of streams.

While the general formalism was reported in Paper I

with particular emphasis on the linear behaviour, a detailed

analysis of the saturation mechanism is presented here.

Within the framework of the multistream theory, a periodic

solution, describing the BGK-type solutions, where resonant

particles are magnetically and electrically trapped can be

only recovered when we consider several streams, so that

the calculation may be applied directly to the study of the

saturation of the temperature anisotropy driven Weibel

instability.

Because the model is fundamentally nonlinear, it turns

out to be of more general importance and offers a new

approach in the determination of stationary Vlasov-Maxwell

solutions in the relativistic regime. In the problem of BGK

waves, in their magnetic trapping version, we have shown

that even a weak electrostatic contribution can have pro-

found implications for the stability of magnetic vortices and

changes the nature of waves. Much more work remains to be

done beyond the possibilities afforded by the multistream

model, but we hope that the first attempts to characterize the

nature of solutions of the set of Vlasov-Maxwell equations

can provide guidance and new insight.

On the other hand, from a computational point of view,

the multistream model provides a saving factor of order of

Np?=N � 104 in the considered case of a circularly polarized

wave. First numerical simulations have explored initial

conditions constituted by a circular “ring” in perpendicular

momentum space with a temporal evolution where the

different regimes coexist (purely Weibel instability, coupled

electrostatic-magnetic particle trapping, inverse cascade-like

instability) illustrating the complexity and the richness of

Weibel-type instabilities, that are only grasping owing to the

multistream approach.
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APPENDIX: MAGNETIC TRAPPING FEATURES
IN STREAM DECOMPOSITION PICTURE

Here, we summarize explicit expressions for the mag-

netic bounce frequency for a given particle “bunch” in the

multistream representation. We assume that there is no elec-

trostatic potential /. Here, dimensionless variables have

been defined as eA?
mc ! a?;

eA0

mc ! a0; txp ! t,
xxp

c ! x;
Cj

mc! Cj;
px

mc! px. Notice that, in mc2 units, cj denotes also

the total energy. We assume a potential vector field in the

form (8). Consider the Lorentz factor cj be constant and be

determined by c0j (for px ¼ 0) with c0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0 þ C2
?j

q
.

To evaluate the magnetic bounce frequency experienced by

a particle population of a given stream j, we start with the

equation of motion in the longitudinal direction x

dx

dt
¼ px

mcj

¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ej þ

2C?ja0 cosðk0x� hjÞ
c2

0j

s
(A1)

and where

ej ¼ 1� 1

c2
0j

�
ðC2
?j þ a2

0Þ
c2

0j

: (A2)

Defining q ¼ k0x� hj where hj is a random phase and where

we have omitted the index j for simplifying the notation, one

obtains then

dq
dt
¼ k0

dx

dt
(A3)

and substitute (A3) into (A1) to find, as a function of the q
variable

1

k2
0

dq
dt

� �2

¼ 2C?ja0ðcos q� cos q0Þ
c2

0j

; (A4)

where we have introduced q0 defined by

ej ¼
�2C?ja0 cos q0

c2
0j

: (A5)

Moreover, Eq. (A4) can be rewritten in the following form:

c2
0j

4a0C?jk2
0

dq
dt

� �2

¼ sin2 q0

2
� sin2 q

2
: (A6)

Equation (A6) can be solved in terms of Jacobian elliptic

functions by making use of the transformation sin q
2

¼ sin
q0

2
sinn and a little algebra leads to

dw
dt

� �2

¼ C?ja0k2
0

c2
0j

1� sin2 q0

2
sin2n

� �
: (A7)

By using the usual pitch angle variable j ¼ sin
q0

2
where

0 � j � 1, Eq. (A7) becomes

dn
dt
¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2sin2n

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C?ja0k2

0

c2
0j

s
(A8)

and the bounce temporal period, for the stream j, driven by

magnetic trapping is defined by

sbj ¼
2p
xbj
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C?ja0k2

0

c2
0j

s ðp
2

0

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2sin2n

p (A9)

or equivalently, we have

xbj ¼
p

2KðjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C?ja0k2

0

c2
0j

s
: (A10)

Here, KðjÞ ¼
Ð p

2

0
dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�j2sin2n
p is the complete elliptic function

of first kind. For deeply trapped particles, we can take
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Kð0Þ ¼ p
2

and we recover for xbj the standard expression

given by Eq. (20). The fact that each stream j experiences a

different bounce magnetic frequency xbj appears completely

natural when we introduce the conservation of the perpendic-

ular canonical momentum Pc? ¼ Cj ¼ const.
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