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The saturation of the Weibel instability in the relativistic regime is investigated within the

Hamiltonian reduction technique based on the multistream approach developed in paper I in the

linear case and in paper II for the nonlinear saturation. In this work, the study is compared with

results obtained by full kinetic 1D2V Vlasov-Maxwell simulations based on a semi-Lagrangian

technique. For a temperature anisotropy, qualitatively different regimes are realized depending on

the excitation of the longitudinal (plasma) electric field, in contrast with the existing theories of the

Weibel instability based on their purely transverse characters. The emphasis here is on gaining a

better understanding of the nonlinear aspects of the Weibel instability. The multistream model

offers an alternate way to make calculations or numerical experiments more tractable, when only a

few moments of the velocity distribution of the plasma are considered. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4817752]

I. INTRODUCTION

In our Refs. 1 and 2, further referred as papers I and II,

we have extended the multistream model to the treatment of

the Weibel instability (WI) in the relativistic regime. This

Hamiltonian reduction technique is an valuable theoretical

tool for analyzing not only the linear regime of WI in Paper I

in Ref. 1 in the relativistic regime but also in nonlinear situa-

tions when both electric and magnetic trappings play a key

role at the saturation as shown in paper II in Ref. 2. WI is an

instability that does not rely on selective particle resonances

and is characterized by persistent modes having non propa-

gating spatial wave structures that require only a slight

anisotropy in the distribution function to exist. Whereas WI

is known to be purely electromagnetic and non resonant, a

few simple theoretical predictions can be made about the

coupling with the electrostatic field when the stream symme-

try is broken. Thus, when the plasma distribution function is

not only anisotropic but also dissymmetric, then there is a

marked change in the features of the instability because now

the coupling with the electrostatic branch is possible.

As the WI develops, we expect that the distribution

function changes in the p momentum space, so that the

degree of anisotropy decreases and the instability exhibits

saturation. However, the saturation mechanism remains a

fundamental plasma physics open question. The dynamics of

saturation of WI has been insufficiently studied until now,

especially in the relativistic regime and with respect to the

generation of quasi-state coherent (probably unstable) mag-

netic vortices in phase space. The first theoretical studies of

stationary solutions during the saturation regime of WI date

back to the 1970’s in Ref. 3, when it was recognized that

(pure) magnetic Bernstein-Greene-Kruskal (BGK) equilibria

can be formed in the non relativistic regime for a circularly

polarized magnetic field. This sort of behaviour is highly

reminiscent of the nonlinear equilibrium solution of

Akhiezer and Polovin4 met in relativistic laser-plasma

interaction, which strongly indicates that the decoupling

between longitudinal (electrostatic) and transverse (electro-

magnetic) contributions can be found only for circularly

polarized electromagnetic wave. Furthermore, in the case of

a linear polarization, this type of equilibrium must include

an electrostatic contribution and it becomes now difficult to

separate the magnetic and electric trapping processes.

It is usually expected that the saturation of WI through

magnetic trapping sets in, once the magnetic bounce fre-

quency becomes comparable to the linear growth rate of the

instability. Indeed the situation is probably more complex,

since we have shown in paper II that each population of

particles, located inside a given “stream,” can experience its

own bounce frequency depending of the local canonical

invariant Pc?. Thus, within the quasilinear framework, the

concept of bounce frequency of the whole system induced

by magnetic trapping must be interpreted as a “mean” value

connected to the interaction between streams. Indeed, the

streams do not interact with each other directly, but are sub-

ject to the same electrostatic field in addition to the Lorentz

force. In particular, the electrostatic component is, in turn,

induced by the collective space charge of all the streams.

Thus, the effects induced by the plasma field cannot be

neglected.

Furthermore, a critical role in the complex interaction

between magnetic-type BGK structures and plasma is

expected to be played by the presence of such large self-

generated electrostatic fields. Longitudinal plasma fields

can have profound influence on the resonant character of

particle-wave interactions. An extremely surprising aspect

arises on the long-time dynamics of trapped particles, which

may trigger secondary electrostatic-type instabilities such

that the longitudinal two-stream instability recently observed

in Particle-In-Cell (PIC) simulations in Refs. 5 and 6, Vlasov

simulations in Refs. 7 and 8 or within the framework of the

multistream model in Ref. 9 in the non relativistic regime of

WI. However, the existing kinetic codes (both PIC and
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Vlasov) cannot account for effects caused by trapped

particle populations of very low densities. In particular,

those effects require a very accurate numerical treatment

and the codes may not render the underlying physics trans-

parent. Therefore, it would be more beneficial to use a reduc-

tion multistream technique, when available, to accommodate

trapped-particle effects.

In the Vlasov simulations discussed in II based on a

multiring model (for a circular polarization of the electro-

magnetic field), the main process of saturation begins with

magnetic trapping with eventually pair-wise merging of

phase space trapping structures leading to a “downward

chirp” in wave number. This is the process which is seen to

give a stable state characterized by a magnetic version of a

BGK equilibrium established on the mode k0. At later time,

charge effects lead on the growth of the electrostatic counter-

part, which is also made on the same mode k0 allowing to

maintain the stability of the BGK structure. However, if the

dominant mode differs from k0 (in that case, the plasma does

not see the action of the ponderomotive field purely on the

mode twice of k0 in presence of electrostatic fluctuations), a

reorganization of the plasma is observed. Thus, a self-

reorganization of the plasma, at saturation, begins with a

symmetry-breaking instability of pair-wise merging of phase

space vortices, where the plasma adjusts itself in wave num-

ber to give a stable state dominated by trappings of both

electric and magnetic nature. In the case of a linear polariza-

tion, we expect that the mode 2k0, induced by the Lorentz

force, plays a key role by imposing a strong contribution of

the mode 2k0 on the electrostatic plasma field component,

leading to the destabilization of the magnetic BGK equilib-

rium. Guided by these first analytical predictions based on

our multistream model in paper II, the main purpose of this

article is to investigate the nonlinear saturation regime of WI

by means of simulations based not only on our reduced

Hamiltonian model but also by using full-kinetic 1D 1
2

(i.e.,

1D2V) Vlasov simulations. Here, the emphasis is put on the

regime of strong electric and magnetic coupling, which takes

place in the case of a linear polarization. Thus, numerical

experiments will be performed in the framework of a semi-

Lagrangian scheme, which allows fine description of the

dynamics of trapped particles. The paper is organized as fol-

lows. Section II is devoted to the study of WI in the nonrela-

tivistic regime allowing us to recall the main features of the

topology of nonlinear solutions met in the whole phase

space. The case of the relativistic regime is then studied in

Sec. III with a detailed description of the particle dynamics

afforded by both models. Finally, Sec. IV is reserved for the

conclusions.

II. PHYSICAL FEATURES OF THE WEIBEL
INSTABILITY IN THE NON RELATIVISTIC REGIME

Before describing the numerical results obtained by our

kinetic Vlasov codes, let me recall the main features of our

numerical scheme. Because the numerical integration of the

Vlasov equation is one of the key challenges of computa-

tional plasma physics, an intensive work on this subject has

produced many different numerical schemes, which however

can be bunched together in two main groups. On the one

hand, PIC codes have proven to be useful in studying plasma

dynamics even for 2D or 3D problems and complex geome-

tries. However, only a few particles per cell have been used

particularly in 3D PIC codes leading to a high level of nu-

merical noise, especially in regions of phase space where the

density is low. These PIC codes may largely overestimate

the plasma heating because of intrinsic “numerical heating.”

On the other hand, semi-Lagrangian Vlasov codes display an

extremely low level of numerical noise but demand a stron-

ger numerical effort than their particle counterparts and

require the discretization of the whole phase space.

In both 1D2V Vlasov plus multistream codes, used here,

the numerical algorithm is based on a semi-Lagrangian

scheme detailed in Ref. 10 allowing the integration of the

Vlasov equation directly in phase space. The semi-Lagrangian

Vlasov solver implies, for a time step,

(i) to determine the “particle” motion along the back-

ward characteristics and

(ii) to compute the value of the distribution function at

the origin of the characteristics by reconstructing the

distribution function using B-spline or cubic-spline

interpolation schemes from the different mesh point

values.

It must be pointed out that semi-Lagrangian Vlasov sim-

ulations13 are slowly introduced in place of the well-known

Lagrangian PIC simulations for two main reasons: the lack

of numerical noise and the very good resolution of the distri-

bution function in phase space provided the dimension of the

momentum space is low as possible. The first property makes

“Vlasov” codes a powerful tool to study the growth of insta-

bilities of laser-plasma interaction even in 2D problem in

Refs. 11 and 12. Second, the very good resolution in phase

space allows a precise study of wave-particle interactions

including particle trapping and particle acceleration.

We now briefly illustrate the physical mechanism for

the thermal anisotropy-driven Weibel instability. Motivated

by direct numerical comparisons, the case of a linear polar-

ization of the electromagnetic field is only considered here.

Notice that, in that case, the coupling between the transverse

electromagnetic and electrostatic branches of the dispersion

relation is strong (as shown in paper I). We carry out 1D2V

Vlasov simulations of WI, first in the non relativistic regime.

A set of numerical simulations of WI has been performed

by using, as initial conditions, Maxwellian distribution

functions with a temperature anisotropy corresponding to

Tx ¼ 1 keV and Ty ¼ 50 keV along the longitudinal px and

perpendicular py components, respectively. We first consider

a single unstable mode k0. The numerical space domain, in

dimensionless units, is given by L ¼ 2p=k0. Here, we choose

k0de ¼ 1:75. We perturb the system by a magnetic field term

dBz ¼ b0 sin k0x with eb0=mxp ¼ 10�4 as initial amplitude.

The phase space sampling for the full kinetic 1D2V Vlasov

simulation (here denoted the V-model) is NxNpx
Npy

equal to

2563 and we choose a time step of �txp ¼ 0:005. Although

in general WI can occur within a range of wave number k,

the fact to introduce here a perturbation on a single mode is

not only an excellent opportunity to compare the analytic
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theory with numerical simulations but may also provide an

insight of how a more realistic multimode plasma evolves

and saturates. It must be pointed out that it is the noiseless

character of the semi-Lagrangian scheme that affords such a

possibility since other modes remain at the level of round-off

errors during the simulation.

From a physical point of view, the picture used in

the multistream (mS) model is highly reminiscent of the

one due to B. Fried in Ref. 14 of WI in which a mag-

netic field perturbation is made to grow. For simplicity,

we describe the dynamics of the electrons only and

assume that ions are fixed providing global charge neu-

trality. Let us consider two opposite streams C�j and Cj

among the streams, with equal particle fluxes in opposite

directions, i.e., a “symmetrical” case with C�j ¼ �Cj, so

that the net current is zero for both considered streams.

The introduction of a small perturbation of the magnetic

field leads to the separation of the currents in space,

thereby producing the amplification of the magnetic field.

Thus, both currents and magnetic fields increase exponen-

tially. Even though it is a problem clearly stated, theoreti-

cal and numerical simulations reveal novel and surprising

features of the instability. Indeed, it is these alternating

currents that drive the instability and lead to the well-

known Y-shape of the distribution function met in the

x� py phase space, already observed by Stockem et al. in

PIC simulation in Ref. 15 or by others in Vlasov simula-

tions in Ref. 9.

The net total current Jy created depends on how effec-

tively the “partial” currents of the opposite sign can be

reduced by transverse deflection of particle “bunches” away

from the region of interest. In Fig. 1, snapshots of the elec-

tron distribution function in the x� py phase space is shown

on the middle panel at time txp ¼ 67:5, i.e., in the saturation

phase of WI. The figure exhibits a “layered” Y-shape struc-

ture. More interesting are the top and bottom panels, which

show the corresponding distribution but now in the x� px

phase space. Here, we have selected the particle distribution

for two different values of py ¼ 62py;th, i.e., we have plotted

the quantities f ðx; px; py ¼ 62py;thÞ where py;th is the thermal

momentum along py (i.e., in the nonrelativistic regime such a

quantity is defined by py;th=mc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTy=mc2

p
). Here, the top

panel in Fig. 1 corresponds to the distribution located at

py ¼ 2py;th while the bottom panel represents the data of f at

py ¼ �2py;th. As revealed by global 1D2V Vlasov simula-

tions, an isolated “stream” is formed in the region of high

momentum. These particle beams are linked to the property

of invariance of the canonical momentum in the perpendicu-

lar direction, since in the 1D model, the distribution f does

not depend explicitly of the y variable. Not only the results

of the nonlinear Vlasov simulations show that the nonlinear

saturation is governed by strong magnetic trapping as

expected but that the concept of “stream” is important in WI.

Moreover, in magnetic trapping theory (Davidson

1972 in Ref. 16), the instability reaches its saturation

level when the magnetic bounce frequency xb becomes

comparable to the linear growth rate C. The magnetic

bounce frequency is then defined in the non relativistic

regime by

xb

xp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0c

xp

p?
mc

eBmax

mxp

s
: (1)

An estimation of xb, for a given stream, can be obtained

through the data obtained by the Vlasov simulation. Thus, to

choose k0de ¼ 1:75; eBmax=mxp ’ 0:12—a typical value of

the saturated magnetic field amplitude observed in Vlasov

simulation—and to take p? � 1:5py;th ¼ 0:469mc gives rise

to a value of xb1 ’ 0:31xp, while the linear growth rate was

found close to the numerical value of Cnum ¼ 0:40xp.

The help of the high resolution phase space diagnostics

of the multistream code allows to give a much more precise

explanation. For the mS-model, we have used a phase space

sampling of NxNpx
of 512� 1024 grid points (such a phase

space sampling allows a very accurate description of phase

mixing). The time step used in the multistream simulation is

taken as �txp ¼ 0:0025. We model the nonlinear evolution

of WI by using seven streams in the perpendicular momen-

tum space; each stream being spaced from its neighbouring

from �C ¼ Cjþ1 � Cj � py;th. Since in the considered case

FIG. 1. On middle panel snapshots of the electron distribution function in

the x� py phase space, exhibiting a “layered” Y-shape structure. On top and

bottom panels, the selected particle population in the x� px phase space,

corresponding to “streams” located at py ¼ þ2py;th (top) and py ¼ �2py;th

(bottom) where py;th is the thermal momentum along y. This simulation has

been performed using the 1D2V full kinetic Vlasov-Maxwell solver phase

space, exhibiting a “layered” Y-shape structure.
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here of WI, the macroscopic description requires only the

first moments of f, only a small number of streams is

required here for an accurate description of the instability

even in the nonlinear regime. Numerical simulations using

the mS-code have been carried out using identical parameter

of k0 and of Tx ¼ 1 keV and Ty ¼ 50 keV as previously used

in the full kinetic treatment.

In Fig. 2, we show the plot the stream’s distribution in

phase space at different times during the beginning of the

particle trapping process, the stream being initially located at

Cj ¼ 2py;th. We see the formation of the rotating trapping

vortex in phase space and the occurring of “arms,” which are

constituted by filaments. We see clearly in Fig. 2 that fila-

ments get thinner17 as time goes on due to several rotations

of the central trapping structure. Furthermore, the distribu-

tion of trapped particle exhibits also a weak modulation on

the mode m¼ 2 inside the magnetic vortex, as the result of

the presence of the Lorentz force on bottom panel.

To explore the physics of the multistream model, we

have plotted in Fig. 3 the time evolution of the total magnetic

energy 1
2l0L

Ð L
0

B2
z dx as a function of time: the version of the

full kinetic simulation (the V-model) is shown on the top

panel while the result obtained directly by the mS model is

plotted on bottom panel. The density energy of Bz increases

in an exponential way with the same growth rate of C ¼
0:40xp in both simulations until txp ¼ 60. Thus, after the

instability saturates, the amplitude of the magnetic energy

density oscillates for a few cycles and the period of oscilla-

tion is approximately close to sbxp ’ 20:37, i.e., corre-

sponding to the numerical bounce frequency of xb ¼ 2p=sb

’ 0:308xp, which is also in good agreement with the value

determined from Eq. (4), i.e., xb1 ’ 0:31xp for the selected

beam. Such an agreement supports the argument that mag-

netic trapping is responsible for the saturation of a single

unstable mode and that the mS model is capable to recover

the saturation mechanism by using a small number of

streams. It must be pointed out the oscillation of the mag-

netic field energy is clearly recovered using the mS model

and is accompanied by a somewhat weak damping around an

asymptotic saturated value of eB ’ 0:0034, identical in both

kinds of simulations.

Although the number of streams is restricted in the mul-

tistream simulation, compared with the full kinetic one, these

streams are however described with a high level of accuracy,

allowing to recover the oscillatory damping process observed

FIG. 2. Phase space behaviour of a selected electron population of the

stream initially located at Cj ¼ 2py;th, at different times during the evolution

of the system. Results were obtained using the multistream model with

seven streams. WI is here driven by a temperature anisotropy of Tx ¼ 1 keV

and Ty ¼ 50 keV in the longitudinal and transverse directions, respectively.

Just before the saturation of the instability, particles experience the begin-

ning of a particle trapping mechanism dominated by the magnetic field. We

observe here the formation of the magnetic trapping structure rotating in

phase space.

FIG. 3. Time evolution of the magnetic energy obtained, respectively, from

the V-model on top panel and the mS-model on bottom panel. The physical

parameters are identical in both numerical simulations. The perturbation is

made on the magnetic field on the mode k0de ¼ 1:75 with a small amplitude

of b0 ¼ 10�4 in dimensionless units. The density energy of Bz increases in

an exponential way in both simulations until time txp ¼ 60. Thus, after the

instability saturates, the amplitude of the magnetic energy density oscillates

for a few cycles and the period of oscillation is found to be close to the

bounce frequency of xb ’ 0:308xp.
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in the time evolution of the magnetic energy in the saturation

regime as can be seen on bottom panel in Fig. 3. Such fea-

tures signify an important role of stream effects on the satu-

ration mechanism of WI. One of the major merits of the mS

model is to get a comprehensive understanding of magnetic

field generation and its feedback mechanism on the electro-

static field generation. If one makes the further assumption

that the electrostatic activity was linked to asymmetric

behaviour of the particle distribution in the perpendicular

momentum direction, then an accurate description of high

velocity streams might be required for the fine description of

the amplification mechanism of the electrostatic energy. In

the nonlinear phase, each stream is subject to the same

wave-breaking scenario (connected to the magnetic trapping

process) but experiences its own magnetic bounce time scale

since Eq. (4) indicates that the bounce magnetic frequency

depends on the local value of the canonical momentum PC?.

Thus, each stream j “sees” a different bounce frequency xbj

depending on the initial invariant Cj. This fact induces a

symmetry-breaking on py in the nonlinear regime between a

couple of chosen invariants fCj;C�jg.
In contrast to the full-kinetic model, the number of

“streams” can be considered as infinite, so that an accurate

description of high velocity streams becomes difficult due to

the numerical dissipation and because the particle “bunches”

are located in the small densities regions of the distribution

function. Thus, in the V-model, the derivative operator

@=@py has to be approximated by a dissipative numerical

scheme and we are faced with the usual sampling problem.

Due to their inherent numerical noise, the problem is prob-

ably worse in PIC codes. On the other hand, a multistream

description can be used even a small number of streams with

a significant reduction of the numerical effort.

III. STUDY OF WI IN THE RELATIVISTIC REGIME

A. 1D2V semi-Lagrangian Vlasov simulations in the
relativistic regime of WI

Numerical simulations of WI have been performed in

the relativistic regime, using the 1D2V full kinetic simula-

tions, with an initial equilibrium distribution function of

Schlickeiser given in Refs. 18 and 19 defined by

Fðux; uyÞ ¼ Ce�lE�au2
x ¼ Ce�lðEþwu2

xÞ; (2)

where the parameter l ¼ mc2=Ty characterises, in the stand-

ard way, the perpendicular plasma temperature and a ¼ lw
introduces the temperature anisotropy of the distribution.

Here, the new variable E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

x þ u2
y

q
is the normalized

energy to mc2 and ux=y ¼ px=y=mc is the normalized momen-

tum. Note that for a ¼ 0, the distribution (2) reduces to the

isotropic Maxwell-J€uttner distribution. C is a normalization

constant (see Ref. 18 for more details) determined by impos-

ing the condition
Ð Ð

d2uFðux; uyÞ ¼ 1. The perpendicular

electron temperature is chosen to Ty ¼ 2000 keV and WI is

here driven by a temperature anisotropy defined by the pa-

rameter w ¼ 4. The distribution function is perturbed by a

magnetic fluctuations on the Bz component of the magnetic

field by using

dBz ¼
XM

m¼1

b0 sin
2pmx

L
þ um

� �
; (3)

where um are random phases and eb0=mxp ¼ 10�5 is the

normalized mode amplitude. We have taken M¼ 20 modes

and a plasma length of L ¼ 16pde. The phase space sampling

used here is NxNpx
Npy
¼ 1024� 1932 while the time step is

chosen to �txp ¼ 0:025. The boundaries on the momentum

components on px and py are, respectively, given by

6px;max ¼ 67:5mc and 6py;max ¼ 615mc, respectively.

Fig. 4 shows the time evolution of the magnetic energy
1

2l0L

Ð L
0

B2
z dx on top panel and the corresponding electrostatic

energy 1
2L

Ð L
0

e0E2
xdx in linear scale versus time on bottom

panel. We see that the magnetic energy density of Bz

increases exponentially in time until txp ’ 50. After the ini-

tial exponential growth, the magnetic energy continues to

grow in time and with a low frequency modulation until time

txp ¼ 100 and then saturates for txp � 100. It must be

pointed out that the growth of the magnetic energy is accom-

panied by a strong increase of electrostatic activity. On the

other hand, the energy density of both inductive and electro-

static field components rapidly decrease in time after the

FIG. 4. Temporal evolution of the magnetic energy (top panel) and of

the electrostatic part (bottom panel). The physical parameters are

Ty ¼ 2000 keV with a temperature anisotropy of w ¼ 4 using the

Schlickeiser’s distribution as indicated in Ref. 18. The growth of the mag-

netic energy is accompanied by a strong increase of electrostatic activity.

Furthermore, the energy density of the electrostatic energy rapidly decreases

after saturation. Here, the estimated growth rate of this initial phase was

found to be close to C=xp ’ 0:22. Results were obtained using the V-model

with full kinetic effects.
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initial step of exponential growth observed for all magnetic

plus electric components. Here, the estimated growth rate of

this initial phase was found to be close to C=xp ’ 0:22.

We anticipate Sec. III B and quote the simplest results.

There are actually two effects. The first effect is connected

again to the magnetic trapping process. However, in a purely

transverse Weibel scenario, there is no wave-particle reso-

nance since the real part of the frequency is zero. As we will

see later, the instability is here a mixture of transverse

and longitudinal electric modes, leading to the growth of

the plasma electric energy. The second effect is a self-

reorganization of the magnetic field Bz in terms of an

inverse-type cascade process. In many aspects, the results

presented here are similar to those observed for WI using

PIC simulations in the non relativistic regime in Ref. 5 or in

full relativistic regime in Refs. 6 and 20. For instance, the

shift of the spectrum to lower wave number k and the satura-

tion into a quasi-steady state have been already observed in

Ref. 20. However in Ref. 6, it is worth mentioning that a na-

ive extension of the bounce frequency to the relativistic case

would lead to a substantial discrepancy between theory and

PIC simulations. The plasma evolution, labelled here

“inverse cascade” process usually refers to a continuous flow

towards lower wave numbers although perhaps, “downward

chirp” might be more appropriate since the chirp is seen for

the transition in wave number from m¼ 7 till m¼ 5.

Furthermore, the saturation regime is associated with a

strong heating in the longitudinal direction. In the initial

stage of the instability, the kinetic energy is transferred to

the magnetic field. After saturation, part of the energy stored

in the electromagnetic field is transferred back to the plasma

particles, which leads to strong heating in the longitudinal

direction (here the px component). The distribution function

with an initial temperature anisotropy is unstable to WI

whose consequence is to reduce the anisotropy.

The one important question remaining is the role played

by the electrostatic fluctuations required to understand the

saturation of WI. It is not yet clear whether the observed

quasi steady magnetic BGK state predicted at the saturation

are stable. It was also observed in Ref. 20 in PIC simulations

that particles in the high energy tail of the distribution iso-

tropize at much slower rates that particle population taken in

the bulk of the distribution. Although they are minority in

number, these high energy particles (which indeed constitute

“high velocity streams”) can have a significant contribution.

At the moment, the effects induced by the resonant wave-

particle interaction are still an open question. Another aspect

met at the saturation is the origin of the growing electrostatic

field. In Ref. 15, the authors show that this electrostatic com-

ponent is driven by the magnetic pressure gradient, which

can redistribute particles in space.

B. Detailed phase space representation afforded by
the V-model

In the multistream model as argued in paper II, it is thus

possible to divide the particle population into classes or

particle “bunches” according to their initial perpendicular

canonical invariant Cj and to follow the evolution of each

particle class. Such numerical simulations based on the use

of the multistream model will be shown later in the

Subsections III C and III D. Such an approach not only

allows to recover the well-known result of Davidson et al. in

Ref. 16 with regards to the magnetic trapping scenario at sat-

uration but also to go beyond and understand the nature of

the particle “heating” in the longitudinal direction. In paper

II in Ref. 2, an interesting result is given using the mS-model

showing that each particle bunch experiences its own bounce

frequency in the magnetic trapping scenario, which in the

relativistic regime and for deeply trapped particles, writes as

xbj

xp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0c

xp

Cj

mcc2
0j

eBmax

mxp

s
; (4)

where c0j is the Lorentz factor approximated by

c0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

j

m2c2

q
.

Moreover, the 1D2V distribution f ðx; px; pyÞ may be

represented graphically by selecting different values of the

momentum component py, which can be connected to the

property of invariance of the canonical momentum py þ eAy

¼ const. Notice that the constant can be being chosen to be

equal to Cj for a given stream noted j, making possible a

direct comparison with the multistream simulation when Ay

is negligible. Figs. 5 and 6 display the behaviour, at three dif-

ferent times, of two selected particle streams initially chosen

first for a perpendicular momentum py equal to half the ther-

mal momentum 0:5py;th and second for 1:5py;th. Here, py;th

denotes the thermal momentum defined in paper I as

l�1 ¼ Ty

mc2 ¼
PþN

j¼�N

ajC
2
j

m2c2Cj
, which becomes here (with

2a ¼ 1)
2p2

y;th

m2c2cth
, leading to a value of py;th ’ 4:032mc for a

temperature of Ty ¼ 2000 keV. The “stream” picture is par-

ticularly clear in the x� px phase space.

Fig. 5 shows the time evolution of the electron distribu-

tion function corresponding to the former stream, i.e., the

one located at py ¼ 1
2

py;th ’ 2mc, obtained by the data of the

electron distribution function using the V-model. The phase

space structure reveals the formation of trapped particle

structures induced by the magnetic field. The available simu-

lation results suggest that each stream experiences a bounce

trapping frequency depending of the parameter Cj. It seems

that the bounce frequency proves to be well approximated by

Eq. (4). Choosing k0 ¼ 5�k ¼ 0:625xp=c and a magnetic

field amplitude of eBzmax=mxp ’ 0:80 (a value typically

observed in our simulation) yields to a frequency of

xb1 ¼ 0:448xp. Thus, the normalized trapping period sbxp

is close to 14.02 indicating that the final time of the simula-

tion corresponds in fact at 18 periods. The initial configura-

tion evolves slowly but at time txp ¼ 50, the formation of

the trapping structure starts. At time txp ¼ 62:5, one sees

the beginning of the coalescence process of the two first

magnetic structures at left on top panel in Fig. 5. Notice that

a second pair-wise vortex merging takes place in the central

region of the system. The fusion of vortices is achieved at

time txp ¼ 100 and the system exhibits then five magnetic

structures, which remain till the end of the simulation,

strengthening the conjecture of a stationary solution in the
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asymptotic limit. An interesting result is the rather smooth

magnetic structures in the final state in phase space at time

txp ¼ 250 after 18 bounce temporal periods.

Similar results can be obtained now for the latter consid-

ered “stream,” initially chosen at a value of py ¼ 3
2

py;th,

which is now plotted in Fig. 6 at the same times. Again the

inverse-type cascade is observed till the formation of the five

magnetic vortices shown, at the final time, on bottom panel

in Fig. 6. In contrast to the previous case shown in Fig. 5, it

is observed in Fig. 6 that the rate of “cleaning” of magnetic

vortices seems to decrease with increasing perpendicular

energy of the stream. In other words for the low energy pop-

ulation, the “cleaning” is faster than the one observed in the

case of the high energy stream. In fact, the phase mixing

remains identical but the number of phase space rotations

differs, thus the former stream, of low energy, reaches a

steady state more rapidly. This is due to the fact that, in the

case of the high energy particle population, trapped particles

experience a lower bounce trapping frequency. For instance

keeping k0c=xp ¼ 0:625 (i.e., the wave number value of the

mode m¼ 5) and a value of the maximum magnetic field

amplitude of eBzmax=mxp ¼ 0:80, the bounce trapping fre-

quency is then close to xb2 ’ 0:286xp for py ¼ 3
2

py;th

’ 6mc. The corresponding bounce period is then

sb ¼ 11:36x�1
p , and the system has known only 12 periods at

the same time txp ¼ 250.

The structures resulting from WI growth are character-

ized by the formation of strong trapping vortices in the

stream distribution. Such vortices have in effect modified the

plasma properties enough so that an electrostatic activity

starts to grow eventually leading to the coupling with

Langmuir waves. In the Vlasov simulations, discussed here,

the main process linked to the plasma reorganization begins

with the pair-wise merging of magnetic vortices and was

here labelled an “inverse-type cascade,” although perhaps,

“downward wave number chirp” might be more appropriate.

Such an instability is usually referred as the electrostatic

two-stream instability as in Ref. 5, which begins with a

symmetry-breaking instability of pair-wise merging of holes,

FIG. 6. Phase space representation of the distribution function in the x� px

space for the second selected stream now chosen at py ¼ 3
2

py;th ’ 6mc. The

observed behaviour corresponds to the combined action of the bounce

frequency variation induced by stream velocity, compensated for the reor-

ganization of the plasma in the form of an inverse-type cascade scenario.

The physical parameters are Ty ¼ 2000 keV with a temperature anisotropy

of w ¼ 4 using the Schlickeiser’s distribution. Results were obtained using

the V-model.

FIG. 5. Phase space representation of the distribution function in the x� px

space for a given value of the py momentum component chosen at one half

of momentum py;th ’ 2mc. The initial configuration evolves slowly but at

time txp ¼ 50, the formation of the trapping structure starts. On middle

panel, one sees the beginning of the coalescence process of the two first

magnetic structures at left. When the fusion of the two vortices is achieved,

the system exhibits a mode m¼ 5 on the bottom panel. Results were

obtained using the V-model using a perpendicular temperature of Ty ¼
2000 keV and a temperature anisotropy of w ¼ 4 using the Schlickeiser’s

distribution, corresponding to Fig. 4.
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an instability first observed in one-dimensional Vlasov-

Poisson simulations of strong two-beam instability by

Bertrand et al. in Ref. 21.

C. Detailed analysis of WI using the multistream
model

To further investigate the main role played by streams in

the saturation of WI, we focus now on numerical experiment

afforded by the multistream model. As mentioned previ-

ously, the part II of companion paper presents an analysis of

the saturation mechanism in terms of mixed electrostatic-

magnetic relativistic-type BGK structures. In the mS model,

the description of py is based on an exact class of solutions.

With the aim of obtaining the finest details of the momentum

distribution function, rather than using the commonly used

PIC model for the Vlasov equation with its inevitable numer-

ical noise, we keep here again the semi-Lagrangian numeri-

cal approach as previously used. In the 1D2V (V-model)

although noise and precision are not severe limits, the mo-

mentum resolution in py requirement for an accurate descrip-

tion of streams of weak densities (and therefore of high py)

can impose a severe computation burden. The large burden

for small density regions is chiefly due to the fact that the

fine momentum resolution, although really required for

describing many streams, is actually imposed over all

momentum space, and even in the full phase space due to rel-

ativistic coupling in space and velocity spaces. Thus, due to

the invariants Cj and the noiseless character of the semi-

Lagrangian approach, our mS model can give important new

insights on the understanding of kinetic processes leading to

the saturation or driving the quasi-steady state on long time.

By selecting appropriate initial particle “bunches,” depend-

ing on the problem of interest, the phase space trapping

structures can be isolated and examining in detail, allowing

to separate the different physical processes characterizing

each stream.

After determining that the key mechanism in WI satura-

tion is connected to the dynamics of streams, it is a natural

question as to whether the feature of WI can be recovered

by using a small number of streams. The results of our

simulations show that only seven streams are necessary to

reproduce the main physical processes as magnetic trapping,

pair-wise vortex merging or amplification of the electrostatic

energy. A set of numerical simulations of WI has been per-

formed by using the mS code for an initial condition based

on a temperature anisotropy distribution of Ty ¼ 2000 keV

and with a parameter w ¼ 4, i.e., a similar initial condition

as that previously used in full kinetic Vlasov simulations.

We perturb again the system by using a similar magnetic

perturbation given in Eq. (3). The other physical parameters

are identical to those used in the V-model. The phase space

sampling for the mS model is NxNpx
¼ 5132. The different

streams have been chosen with an identical spacing in

momentum of DC ¼ 1
2

py;th. Remember that our theory gives

good results in the linear analysis in that case (see paper I).

The x� px phase space dynamics of the chosen stream

at C3 ¼ 3
2

py;th is shown in Fig. 7 at the same instants of those

used in the V-model shown in Fig. 6. The figure shows that

the dynamics is correctly described by the mS-model where

only seven symmetrical streams were considered. Again the

evolution of the selected particle streams is driven by the

self-reorganization of the magnetic field component Bz in

terms of a downward chirp up to the final mode m¼ 5. This

process is outlined on top and middle panels in Fig. 7: we

observe clearly the pair-wise vortex merging, although the

location of the fusion sites differ, now located in region of

10 � xxp=c � 20 and 30 � xxp=c � 40. The figures exhibit

the transition from the initial state m¼ 7 (at time txp ¼ 50

on top panel), ending to the mode m¼ 5 on bottom panel.

Thus, even with a small number of streams, our mS-model

confirms the existence of the downward chirp in wave num-

ber for the magnetic field. The results obtained with the mS

model are very similar with those obtained with the full

1D2V Vlasov model. Notice that there are little modifica-

tions on the plasma behaviour due to the initial choice of the

random phases introduced in the perturbation term for the

magnetic field. Both codes exhibit after the “cleaning” the

same final state characterized by five magnetic trapping

structures. Simulations show that the plasma reaches a steady

state, which appears to coexist self-consistently with the

FIG. 7. The x� px phase space dynamics of the latter stream defined by

C3 ¼ 3
2

py;th. The curve corresponds for plots shown in Fig. 6 obtained with

the V-model. Results were obtained using the mS-model in the relativistic

regime of WI.
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electromagnetic field in a stationary magnetic version of the

BGK equilibrium.

D. Dynamics of the central stream

To further investigate the role of the weak electrostatic

field in the reorganization of the plasma as argued in paper

II, we now focus on the dynamics of the central stream.

Especially, interesting is the double strong modulation of the

electron x� px phase space of the central stream plotted in

Fig. 8. Thus, a substantial fraction of the magnetic energy is

also converted in the longitudinal electric field. As evident

from Fig. 8, particles of the central stream become strongly

structured around time txp ¼ 50 (at that time, the magnetic

field energy begins to saturate), indicating that particles are

now being trapped by the combined action of the electric

potential and the magnetic field. Whereas the electron x� px

phase space develops an oscillatory modulation on the mode

m¼ 5, the dominant mode is here the mode m¼ 10 and

therefore ten vortices are formed in phase space. Indeed, we

do not observe here a vortex merging in the behaviour of the

central beam. Since particles of the central beam experience

a quasi-zero magnetic trapping (C0 ¼ 0), we expect that the

dominant mode m¼ 10 is driven by the Lorentz force lead-

ing to the excitation of the electric field Ex. Although the

electric field component Ex is much weaker in intensity

when compared to the magnetic field component Bz, its pres-

ence might nevertheless be important, since it could mediate

resonant wave-particle interactions. As Fig. 8 shows, despite

its low intensity, the growth of Ex gives rise to strong particle

trapping mechanism, but of electrostatic nature, different of

the magnetic trapping mechanism dominant for the other

streams. The electrostatic trapping vortices exhibit a double

modulation on both the magnetic mode k0 ¼ 5�k (i.e., the

mode m¼ 5) but also on twice wave number, i.e., 2k0, ini-

tially driven by the Lorentz force. Particles reach a dynami-

cal equilibrium in which the Langmuir wave and the

magnetic field growth are halted and a stationary state is

established. We have also estimated the electrostatic bounce

frequency xbe, which is defined in a standard way by

xbe

xp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k0c

xp

eEx;max

mcthxpc

s
: (5)

We choose 2k0 ¼ 10�k ’ 1:250 and cth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

y;th

m2c2

q
’ 4:15

for a thermal momentum value of py;th ’ 4:032mc, Eq. (5)

gives then a value of the electrostatic bounce frequency of

xbe=xp ’ 0:17. For the estimation of xbe, we have used here

a maximum value of the electric field of eEx=mxpc of 0.10,

seen in the multistream simulation.

An interesting point about the electrostatic bounce fre-

quency defined by Eq. (5) is that it is comparable (although

somewhat weaker) to the value of the “quasilinear” bounce

frequency determined by the magnetic trapping. We have

shown in paper II that within the mS-model and for a circu-

larly polarization of the magnetic field, the motion of trapped

particles can then be treated as that of a particle in a potential

given by

wjðxÞ ¼
2C?ja?
mcc0j

cosðk0x� ujÞ; (6)

where the canonical invariant is now a vector of type

Cj ¼ C?j cos ujey þ C?j sin ujez. Here, a? ¼ eA?=mc is con-

stant in space and uj describes a random phase. The typical

time scale of a given stream j, characterized by the value of

its canonical invariant C?j, is the bouncing period

sbj ¼ 2p=xbj, where the bounce magnetic frequency is

given by

xbj ¼
p

2KðjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C?ja?k2

0

mcc2
0j

s
: (7)

In (7), the parameter j plays the role of a pitch angle, i.e., for

a deeply trapped particle population, we have indeed j! 0

and KðjÞ is the complete elliptic function of first kind. We

obtain then Kð0Þ ¼ p
2
; and for xbj, we recover the standard

expression given by Eq. (4).

FIG. 8. The x� px phase space dynamics of the central stream. As evident

from a comparison between Figs. 5–7, particles of the central stream exhibits

ten trapping vortices at time txp ¼ 250, with a weak modulation on the

magnetic mode m¼ 5, indicating that particles are now being trapped by the

combined action of the electric potential and the magnetic fields. Ten vorti-

ces are clearly visible in phase space indicating that the dominant mode is

here m¼ 10, i.e., 2k0. Results are obtained using the mS-model.
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Coming back to the case of a linearly polarized wave, it

is worth mentioning that results from the mS-model analysis

indicate, that the averaged bounce frequency due to the mag-

netic trapping can be obtained in a statistical way by the fol-

lowing expression:

�xb

xp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0c

xp

XN

j¼1

ajCj

ð1þ C2
j Þ

eBz;max

mxp

vuut ; (8)

which is close to the value �xb ’ 0:239xp for N¼ 3 (i.e.,

seven streams). In Eq. (8), Cj is expressed in mc-units. The

expected exponential growth of the excited mode yields to a

numerical growth rate close to Cnum ’ 0:233xp in well

agreement with the “quasilinear” value of �xb induced by

magnetic trapping. When �xb is comparable to the linear

growth rate Cth, the particle trapping becomes a significant

effect, in good agreement with the predictions of the quasi-

linear theory. While our multistream model allows the

obtaining of the dispersion relation in linear analysis, this

model is also an accurate tool for studying the instability

through numerical simulations in the nonlinear regime. The

multistream simulations demonstrate that the interaction

with the electrostatic component of the electric field can give

rise to a self reorganization in the time interval ½40; 60x�1
p �

where both magnetic and electrostatic trapping mechanisms

are growing leading to a stable state.

IV. SUMMARY AND CONCLUSION

This work completes a series of papers describing the

physics of the Weibel instability in the relativistic regime.

The geometry is here one-dimensional in space coordinate

taking advantage from the invariance property of the gener-

alised canonical momentum, i.e., by noticing that, for a given

j population, the quantity Pc? ¼ p? þ eA? ¼ Cj is constant

in time when the space variable q? is lacking. The work is

focused on the numerical approach allowed by the model

and in particular with numerical comparisons with the full

1D2V semi-Lagrangian Vlasov-Maxwell solver in the rela-

tivistic regime of WI.

The multistream model appears to be an interesting al-

ternative to the usual Vlasov kinetic description of the

Weibel instability, driven by a temperature anisotropy.

Interesting results have been obtained pointing to the ability

of the multistream model to depict and resolve kinetic effects

in the nonlinear regime of saturation, with the possibility of

coupling with the Langmuir wave. The findings of this series

of papers should be of general interest to researchers of both

inertial fusion and astrophysical communities where strong

relativistic effects are expected. To conclude, the multi-

stream approach offers an exact description of the plasma

dynamics even with a small number of “streams,” providing

a relatively simpler analytical framework in linear analysis

(paper I), in nonlinear situations (in paper II) and finally

bringing here a new way to check accuracy and validity of

full kinetic global codes in reduced geometry.

To end, we discussed our vortex-merging results in com-

parison of inverse-type cascade and of the concept of phase

mixing. Here, the origin of the electric turbulence can be

identified by considering the dynamics of particles located

on the central stream, a diagnosis available by the multi-

stream approach. The obtained results indicate that, in the

inverse-cascade style process, which may follow the initial

vortex-merging events, the waves are not in any sense locked

to the original purely magnetic BGK waves. Indeed the pair-

wise vortex merging scenario represents a downward chirp

in wave number rather than a wider spectrum implied in con-

cepts such as “inverse cascade.” Perhaps more sophisticated

spectral diagnosis for larger and “open” systems could eluci-

date this behaviour in future work. Once the phase space

resonance vortices are considerably melded, the behaviour

during the evolution becomes that of more or less uncorre-

lated plasma structures. In other words, once the vortices

cease to be well-connected with a pure magnetic trapping,

the behaviour of the plasma becomes that of a plasma with a

modified inhomogeneous distribution of hot electrons lead-

ing to the growth of an electrostatic field component.

The obtained sequences show clearly how quickly the

system moves from a classic fully trapped well-organized

plasma wave to a structure with much more phase space mix-

ing. However, most of the thin filaments in phase space have

disappeared over a long time due to the phase mixing. The

problem is probably more crucial when relativistic effects

are considered since such thin filaments can also be produced

by Weibel-type instabilities. Thus, in the “Eulerian” or semi-

Lagrangian approach, the numerical scheme must avoid the

numerical instabilities driven by the reconstruction of f and

provides a “cleaning” of the details of the velocity space. As

a result, finite-difference numerical simulation of the Vlasov

equation usually do not suffer from the numerical instabil-

ities driven by the filamentation in the velocity space. In

both numerical Vlasov codes, the system approaches a sta-

tionary solution. This is due to finer and finer filamentation

in phase space, which ultimately reaches the level of the

mesh size. However, the relaxation towards a stationary state

is “physical” and we have checked that it does not depend on

the step of the grid.

A last point concerns the reversibility of the Vlasov

equation. Of course, from a strictly mathematical point of

view, the Vlasov equation is completely reversible.

However, as we point out before, the classical phase space

tends to become more and more intricated, so that the

“cleaning” of thin filaments prevents the possibility of

inverting the dynamics and thus recovering the initial condi-

tion. It must be pointed out that the semi-Lagrangian scheme

is able to recover the collisionless linear Landau damping,

which is essentially a phase mixing phenomenon. However

in that case, the distribution function never loses memory of

the initial data which is indeed reminiscent to the existence

of a number of degrees of freedom in the Vlasov representa-

tion, which is virtually infinite. Thus it possible, in the case

of the study of the linear Landau damping, to recover the ini-

tial state after the well-known recurrence time T ¼ 2p
k�v,

where k corresponds to the plasma wave number and �v is

the standard size of the cell used in the velocity space. In the

case of more complex situations, such as the study of plasma

echoes,22 the “Vlasov” code, using the same semi-Lagrangian
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scheme, was found to be able to keep the information con-

tained in the highly filamented distribution function until the

time of the echo. As shown in Ref. 22, the echo is a typically

ballistic effect and can be interpreted in terms of the partial

reversibility properties of the physical system. On the other

hand, because the treatment of the “streams” is exact in the

multistream approach (in the sense that they constitute an

exact class of solutions), the only error in the corresponding

code is the round-off error due to the finite number of digits

in the computer words in the x� px phase space while the

treatment is exact in py. Thus, the “multistream” code might

allow a complete separation between the phenomena of nu-

merical and physical irreversible process and to study the

“interaction” between streams. The first one corresponds to a

loss of information while the second involves a smoothing of

informations by phase mixing, which, on the other hand,

are still conserved for the computation of the evolution of

the system.

ACKNOWLEDGMENTS

The author is indebted to the IDRIS computational cen-

ter, Orsay, France for computer time allocation on their

computers.

1A. Ghizzo and P. Bertrand, Phys. Plasmas 20, 082109 (2013).
2A. Ghizzo, Phys. Plasmas 20, 082110 (2013).
3R. L. Berger and R. C. Davidson, Phys. Fluids 15, 2327 (1972).
4A. I. Akhiezer and R. V. Polovin, Sov. Phys. JETP 3, 696 (1956); see also

I. V. Smetanin, D. Farina, J. Koga, and S. V. Bulanov, Phys. Lett. A 320,

438 (2004).
5M. E. Innocenti, M. Lazar, S. Markidis, G. Lapenta, and S. Poedts, Phys.

Plasmas 18, 052104 (2011).
6H. H. Kaang, C. M. Ryu, and P. H. Yoon, Phys. Plasmas 16, 082103

(2009).
7L. Palodhi, F. Califano, and F. Pegoraro, Plasma Phys. Controlled Fusion

51, 125006 (2009).
8L. Palodhi, F. Califano, and F. Pegoraro, Journal of Physics: Conference

Series 208, 012075 (2010).
9A. Inglebert, A. Ghizzo, T. Reveille, P. Bertrand, and F. Califano, Phys.

Plasmas 19, 122109 (2012).
10M. L. Begue, A. Ghizzo, and P. Bertrand, J. Comput. Phys. 151, 458

(1999).
11A. Ghizzo, F. Huot, and P. Bertrand, J. Comput. Phys. 186, 47 (2003).

12F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendr€ucker, and O. Coulaud,

J. Comput. Phys. 185, 512 (2003).
13Although the two philosophies PIC and Vlasov are different (we solve the

Vlasov equation instead of solving the motion of individual particles), the

numerical methods are somewhat similar. For instance for the 1D problem

say, for a (x, v) phase space; the distribution function, at time t, writes f(x,
v, t) and f is advanced in time performing successive shifts either in the

x-space (free particle motion) or in the v-space (acceleration related to the

electric field). This is similar to the leap-frog scheme to advance particles

in a PIC code. A “Vlasov” code needs a total number NxNv points in phase

space. In a PIC code we have also to consider Nx cells of length Dx to com-

pute the field; Nv can be compared as the number of particles in a cell.

Nevertheless, Nv cannot be small in a Vlasov code because of the phase

space filamentation: typically Nv � 50 � 100. See Ref. 21 for more

details.
14B. D. Fried, Phys. Fluids 2, 337 (1959).
15A. Stockem, M. E. Dieckmann, and R. Schlickeiser, Plasma Phys.

Controlled Fusion 51, 075014 (2009).
16R. C. Davidson, D. A. Hammer, I. Haber, and C. E. Wagner, Phys. Fluids

15, 317 (1972).
17The smearing of the phase space structure is usually associated to the

increase of the entropy. The Vlasov equation solution cannot change

along a characteristic and often the characteristics mix together phase

space regions where the distribution f exhibits significant different

values and then steep gradients are generated in f. In simulation that

are done on a grid in phase space, the grid almost inevitably

becomes too coarse as the fine graining develops. After a long time,

the filaments have disappeared because of phase mixing. However,

the trapping structure persists as a stationary solution and the entropy

is then conserved in this time interval. To test the code, different

phase space samplings have been used for the problem of the nonlin-

ear Landau damping in the 1D case. As time increases, the entropy

reaches a maximum value at about the same time that the instability

saturates and then shows no tendency for further growth. A detailed

examination of the time evolution shows that it takes somewhat larger

to obtain the “cleaning” of the microstructure by increasing the phase

space sampling. However, all simulation tests, used here, exhibit,

after the “cleaning” the same state corresponding to values of entropy

very close in the asymptotic plasma behaviour.
18R. Schlickeiser, Phys. Plasmas 11, 5532 (2004).
19U. Schaefer-Rolffs, I. Lerche, and R. Schlickeiser, Phys. Plasmas 13,

012107 (2006).
20T. Y. B. Yang, J. Arons, and A. B. Langdon, Phys. Plasmas 1, 3059

(1994).
21P. Bertrand, A. Ghizzo, M. R. Feix, E. Fijalkow, P. Mineau, N. D. Suh,

and M. Shoucri, in Proceedings of the International Workshop on Linear
Phenomena in Vlasov Plasmas, Cargèse, France 11–16 July 1088, edited
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